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Abstract. Action Lie groupoids are used to model spaces of orbits of ac-
tions of Lie groups on manifolds. For each such action groupoid M �H,
we construct a locally convex bialgebroid Dirac(M � H) with an an-
tipode over C∞

c (M), from which the groupoid M � H can be recon-
structed as its spectral action Lie groupoid AGsp(Dirac(M � H)).
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1. Introduction

Our motivation for this paper originates from the Gelfand–Naimark theorem.
To any locally compact, Hausdorff topological space X, one assigns the C∗-
algebra C0(X) of all continuous functions on X that vanish at infinity. The
set Spec(C0(X)) of all characters on C0(X) can be equipped with the weak-∗

topology, so that it becomes a locally compact Hausdorff space. The Gelfand–
Naimark theorem then says that the map Φlc

X : X → Spec(C0(X)), which
assigns to a point x ∈ X the evaluation δx at x, is a homeomorphism.

We wish to obtain a similar result for the class of geometric spaces
which can be represented by Lie groupoids [4,16,19,20]. These spaces include
orbifolds, spaces of leaves of foliations, and spaces of orbits of Lie groups
actions. In [21], a result in the spirit of the Gelfand–Naimark theorem was
established for the class of étale Lie groupoids, which can be used to model
orbifolds and spaces of leaves of foliations. To any étale Lie groupoid G , one
assigns the Hopf algebroid C∞

c (G ) of smooth compactly supported functions
on G (if G is not Hausdorff, one needs to be careful with the definition).
As an algebra C∞

c (G ) coincides with the Connes convolution algebra in the
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Hausdorff case [5], while the coalgebra structure is basically induced from
the sheaf [22], corresponding to the target map t : G → M of G . Finally,
the antipode on C∞

c (G ) is induced by the inverse map of G . For each such
Hopf algebroid C∞

c (G ), one can construct the spectral étale Lie groupoid
Gsp(C∞

c (G )), so that there is a natural isomorphism Φegr
G : G → Gsp(C∞

c (G ))
of Lie groupoids. Similar ideas were used in [10] to extend these results to
the semi-direct products of étale Lie groupoids and bundles of Lie groups.

Structure maps of an étale Lie groupoid G are local diffeomorphisms,
so, in particular, the fibers of the target map are discrete. It is, therefore,
enough to reconstruct the fibers of such a groupoid just as sets, which can
be done by utilizing the coalgebra structure on C∞

c (G ). However, in the case
of a general groupoid, one needs some additional information, which enables
us to recover the topology along the fibers. Let us explain the main idea
on a simple example. If Γ is a discrete group, then C∞

c (Γ) is just the group
Hopf algebra of Γ. Elements of Γ correspond to grouplike elements of C∞

c (Γ),
while the multiplication and inverse of Γ are encoded in multiplication and
antipode of C∞

c (Γ). If we now replace Γ with a non-discrete Lie group H,
one can still define its group Hopf algebra and reconstruct H, but only as a
group. To recover the topology and the smooth structure of H, we need some
additional structure. One way to solve this problem is to identify the group
Hopf algebra of H with the space Dirac(H) of distributions on H which is
spanned by Dirac distributions. The space Dirac(H) is a subspace of the space
E ′(H) of compactly supported distributions on H. If we equip Dirac(H) with
the induced strong topology from E ′(H), the following two things happen.
The group H is naturally homeomorphic to the space of Dirac distributions,
which are precisely the grouplike elements of the Hopf algebra Dirac(H). On
the other hand, the space Dirac(H) is dense in E ′(H). One can show that
by combining the well-known fact that C∞

c (H) is dense in E ′(H) with the
observation that the Riemann integral can be approximated arbitrarily well
by Riemann sums (see Proposition 3.7). As a result, we get that the strong
dual Dirac(H)′ is isomorphic to C∞(H). Now, observe that the space C∞(H)
is a Fréchet algebra, from which H can be reconstructed as a manifold.

Judging by the above example, we are led to consider Hopf algebroids
not only as purely algebraic objects, but with some additional topological
structure. The main idea consists of two parts. First of all, we assign to a Lie
groupoid G a certain Hopf algebroid, from which the algebraic structure of
G can be reconstructed. We then equip this Hopf algebroid with a suitable
locally convex structure, which enables us to recover the topology and smooth
structure of G .

In this paper, we use this idea on the class of action Lie groupoids, which
are used to describe spaces of orbits of Lie groups actions on manifolds. Each
such action Lie groupoid M � H is isomorphic as a groupoid to an étale Lie
groupoid M � H#, where H# is the group H with discrete topology. We use
this identification to define the Dirac bialgebroid Dirac(M �H) of M �H as a
certain subspace of the space E ′

t(M �H) of t-transversal distributions on M �

H. Transversal distributions on Lie groupoids were studied in [1,2,11,14,26]
and, crucially for our problem, it was shown in [14] that the space E ′

t(M �H)
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is a locally convex algebra, if we equip it with the strong topology of uniform
convergence on bounded subsets. With the induced topology, Dirac(M � H)
becomes a locally convex bialgebroid with an antipode.

The paper is organized as follows. In Sect. 2, we recall the basic defini-
tions and known results that are used in the rest of the paper. In Sect. 3, we
construct for every trivial bundle π : M ×N → M the space Diracπ(M ×N)
of transversal distributions of constant Dirac type. These are families of Dirac
distributions, supported on constant sections of π. If the fiber N is discrete,
Diracπ(M × N) coincides with the LF -space C∞

c (M × N), while, in general,
we show that it is a dense subspace of the space of π-transversal distributions
E ′

π(M × N). In Sect. 4, we define on Diracπ(M × N) a structure of a locally
convex coalgebra over C∞

c (M) and show that its strong C∞
c (M)-dual is nat-

urally isomorphic to the Fréchet algebra C∞(M × N). The combination of
the coalgebra structure and locally convex topology enables us to reconstruct
from Diracπ(M × N) the bundle π : M × N → M as the spectral bundle
Bsp(Diracπ(M ×N)). Finally, in Sect. 5, we use these results to assign to each
action Lie groupoid M � H and its Dirac bialgebroid Dirac(M � H). The
space Dirac(M � H) is a locally convex bialgebroid with an antipode, which
coincides with the locally convex Hopf algebra Dirac(H) in the case when M
is a point. Main result of the paper is Theorem 5.7 in which we show that the
groupoid M � H can be reconstructed from the bialgebroid Dirac(M � H)
as its spectral action Lie groupoid AGsp(Dirac(M � H)) (see Definition 5.6).

2. Preliminaries

In this subsection, we will review basic definitions and results that will be
needed in the rest of the paper. More details concerning locally convex vector
spaces and Lie groupoids can be found for example in [7,13,25], respectively
[16,19,20].

We will assume all our manifolds to be smooth, Hausdorff, and para-
compact, but not necessarily second-countable. For any such manifold M , we
will denote by C∞(M) the vector space of smooth C-valued functions on M .
The subspaces of compactly supported and R-valued functions on M will be
denoted by C∞

c (M), respectively, C∞(M, R).

2.1. Locally Convex Spaces

All our locally convex vector spaces will be complex and Hausdorff. A subset
B of a locally convex space E is bounded if and only if the set p(B) is
a bounded subset of R for any continuous seminorm p on E. For locally
convex vector spaces E and F , we will denote by Hom(E,F ) the space of
all continuous linear maps from E to F , equipped with the strong topology
of uniform convergence on bounded subsets. The basis of neighbourhoods of
zero in Hom(E,F ) consists of sets of the form

K(B, V ) = {T ∈ Hom(E,F ) |T (B) ⊂ V },

where B is a bounded subset of E and V is a neighbourhood of zero in F . If
E and F are modules over an C-algebra A, we will denote by HomA(E,F )
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the corresponding space of continuous A-module homomorphisms and equip
it with the induced topology from Hom(E,F ).

The space C∞(Rl) has a structure of a Fréchet algebra for any l ∈ N.
Topology on C∞(Rl) is generated by a family of seminorms {pL,m}, indexed
by compact subsets L of R

l and m ∈ N0, given by

pL,m(F ) = sup
x∈L,|α|�m

|Dα(F )(x)|

for F ∈ C∞(Rl). Here, we denoted Dα(F ) = ∂|α|F
∂x

α1
1 ···∂x

αl
l

, where α =

(α1, . . . , αl) ∈ N
l
0 is a multi-index and |α| = α1 + α2 + · · · + αl. If M is

a second-countable manifold, one can choose similar seminorms with respect
to some open cover of M with local coordinate charts to define the Fréchet
topology on C∞(M). This topology coincides with the topology of uniform
convergence of all derivatives on compact subsets of M . The strong dual
of the space C∞(M) is the space E ′(M) = Hom(C∞(M), C) of compactly
supported distributions on M .

If M is not compact, the subspace C∞
c (M) of C∞(M) is not complete in

the Fréchet topology, so we consider a finer LF-topology on C∞
c (M). For any

compact subset L of M , we denote by C∞
c (L) the subspace of functions with

support contained in L. The space C∞
c (L) is a closed subspace of C∞(M) and

hence a Fréchet space itself. The LF-topology on C∞
c (M) is now defined as

the inductive limit topology with respect to the family of all subspaces of the
form C∞

c (L) for L ⊂ M compact. The space C∞
c (M) with LF-topology is a

complete locally convex space, which is not metrizable, if M is not compact.
If M is a smooth manifold and E is a locally convex vector space, a

vector-valued function u : M → E is smooth if, in local coordinates, all partial
derivatives exist and are continuous. We will denote by C∞(M,E) the space
of smooth functions on M with values in E and by C∞

c (M,E) its subspace,
consisting of compactly supported functions. To make a distinction between
scalar functions and vector-valued functions, we will denote by f(x) ∈ C the
value of a function f ∈ C∞(M) at x and by ux ∈ E the value of a function
u ∈ C∞(M,E) at x.

2.2. Lie Groupoids

A Lie groupoid is given by a manifold M of objects and a manifold G of
arrows together with smooth structure maps: target t : G → M , source
s : G → M , multiplication mlt : G ×s,t

M G → G , inverse inv : G → G , and
unit uni : M → G . We assume that the source and the target maps are
submersions to ensure that G ×s,t

M G is a smooth manifold. A Lie groupoid is
étale if all its structure maps are local diffeomorphisms. Note that there exist
more general definitions of Lie groupoids, which we will not need.

Example 2.1. We will be mostly interested in action Lie groupoids. Suppose
H is a Lie group which acts from the right on the manifold M . The associated
action Lie groupoid G = M � H is then a Lie groupoid over M with the
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manifold of arrows M × H and with the following structure maps:

t(x, h) = x,

s(x, h) = xh,

mlt((x, h), (xh, h′)) = (x, h)(xh, h′) = (x, hh′),

inv(x, h) = (x, h)−1 = (xh, h−1),

uni(x) = (x, e).

Here, x ∈ M and h, h′ ∈ H are arbitrary, while e is the unit of the Lie group
H. The action groupoid G is étale if and only if the group H is discrete.

2.3. Real Commutative Algebras

Let A be an R-algebra. A real character on A is a nontrivial multiplicative
homomorphism from A to R. We will denote by

Spec(A)

the space of all real characters on A, equipped with the Gelfand topology
(i.e., the relative weak-∗ topology). If the algebra A satisfies the conditions of
the Theorem in [18], the space Spec(A) also has a natural smooth structure.

If Q is a smooth manifold, we have

Spec(C∞(Q)) = {δq | q ∈ Q},

where δq is the Dirac functional, concentrated at the point q. In this case,
we can equip the set Spec(C∞(Q)) with a topology and a smooth structure,
such that the map Φman

Q : Q → Spec(C∞(Q)), defined by Φman
Q (q) = δq, is a

diffeomorphism.

2.4. Coalgebras

Let R be a commutative ring. We say that R has local identities if, for any
r1, . . . , rn ∈ R, there exists r ∈ R, such that rri = ri for i = 1, . . . , n.
Similarly, a left R-module C is locally unitary if, for any c1, . . . , cn ∈ C,
there exists r ∈ R, such that rci = ci for i = 1, . . . , n.

Suppose now that R is an associative, commutative algebra with local
identities over the field of complex numbers C. A coalgebra over R is a locally
unitary left R-module C, equipped with two R-linear maps

Δ : C → C ⊗R C,

ε : C → R,

called comultiplication and counit, which satisfy the conditions of being
counital and coassociative. This means that equalities (id ⊗ ε) ◦ Δ = id,
(ε ⊗ id) ◦ Δ = id, respectively, (id ⊗ Δ) ◦ Δ = (Δ ⊗ id) ◦ Δ hold. Note that
these conditions make sense, because we can identify C with R ⊗R C and
C ⊗R R, since C is locally unitary. A coalgebra C over R is cocommutative
if σ ◦ Δ = Δ, where the flip isomorphism σ : C ⊗R C → C ⊗R C is given by
σ(c ⊗ c′) = c′ ⊗ c.

Our main examples of coalgebras will be coalgebras associated with
sheaves, which were introduced in [22].
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Example 2.2. Let P and M be manifolds and let π : P → M be a local
diffeomorphism (i.e., P is a sheaf over M). The ring C∞

c (M) always has local
units, but it is unital if and only if M is compact. It will be convenient
to denote for any f ∈ C∞

c (M) by 1f ∈ C∞
c (M) a function which satisfies

1ff = f . If supp(f) �= M , the function 1f is not uniquely defined.
The space C∞

c (P ) has a natural structure of a locally unitary left C∞
c (M)-

module with the multiplication given by

(f · F )(p) = f(π(p))F (p)

for f ∈ C∞
c (M), F ∈ C∞

c (P ) and p ∈ P . The counit ε : C∞
c (P ) → C∞

c (M) is
given by

ε(F )(x) =
∑

p∈π−1(x)

F (p)

for any F ∈ C∞
c (P ) and any x ∈ M . Note that the above sum is finite, since

F has compact support and the fibers of π are discrete.
To describe the comultiplication, let us recall that an open subset W ⊂

P is π-elementary if π|W : W → π(W ) is a diffeomorphism. For any f ∈
C∞

c (π(W )), we can consider the function f ◦ π|W ∈ C∞
c (W ) as an element

of C∞
c (P ), if we extend it by zero outside of W . Since any a ∈ C∞

c (P ) has
compact support, it can be written (nonuniquely) as a finite sum a =

∑n
i=1 fi◦

π|Wi
, where W1, . . . ,Wn are π-elementary subsets of P and fi ∈ C∞

c (π(Wi))
for i = 1, . . . , n. The comultiplication Δ : C∞

c (P ) → C∞
c (P ) ⊗C∞

c (M) C∞
c (P )

can be now defined by

Δ

(
n∑

i=1

fi ◦ π|Wi

)
=

n∑

i=1

(fi ◦ π|Wi
) ⊗ (1fi

◦ π|Wi
).

One can show that the definition of Δ is independent of the various choices
that we have made and that we obtain in this way a cocommutative coalgebra
C∞

c (P ) over C∞
c (M).

For our purposes, we will be mostly interested in trivial sheaves. If Γ is
a discrete topological space, then the projection π : M × Γ → M is a local
diffeomorphism. We can decompose the vector space C∞

c (M × Γ) as a direct
sum

C∞
c (M × Γ) =

⊕

y∈Γ

C∞
c (M × {y}).

Using this decomposition, we can write every element a ∈ C∞
c (M × Γ)

uniquely in the form

a =
n∑

i=1

fi · δyi

for some f1, . . . , fn ∈ C∞
c (M) and some y1, . . . , yn ∈ Γ. Here, we have denoted

for any f ∈ C∞
c (M) and any y ∈ Γ by f · δy ∈ C∞

c (M ×Γ) the function, given
by

(f · δy)(x, y′) =
{

f(x); y′ = y,
0; y′ �= y
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for (x, y′) ∈ M × Γ. The comultiplication and counit are then given on the
generators of C∞

c (M × Γ) by the formulas

Δ(f · δy) = (f · δy) ⊗ (1f · δy),

ε(f · δy) = f.

In the rest of this subsection, we will focus on coalgebras over the algebra
C∞

c (M) for some manifold M and recall the main results from [22]. For any
x ∈ M , we denote by

Ix = {f ∈ C∞
c (M) | f |U = 0 for some neighbourhood U of x}

the ideal of C∞
c (M), consisting of all functions with trivial germ at x. The

quotient algebra of C∞
c (M) with respect to this ideal will be denoted by

C∞
c (M)x = C∞

c (M)/Ix.

Now, let C be a coalgebra over C∞
c (M). The quotient

Cx = C/IxC

then inherits a structure (Δx, εx) of a coalgebra over C∞
c (M)x which is called

the local coalgebra of C at x. The image of c ∈ C in the quotient Cx will be
denoted by c|x ∈ Cx.

An element c ∈ C is weakly grouplike if Δ(c) = c ⊗ c′ for some c′ ∈ C.
A weakly grouplike element c ∈ C is normalized on an open subset U ⊂ M
if εx(c|x) = 1 for all x ∈ U . Weakly grouplike elements of the sheaf coalgebra
C∞

c (P ) are precisely elements of the form f ◦ π|W for some π-elementary
open subset W of P and some f ∈ C∞

c (π(W )). Such an element f ◦ π|W is
normalized on U ⊂ π(W ) if f |U ≡ 1.

Since the local ring C∞
c (M)x is unital for any x ∈ M , we can also define

the set of grouplike elements of Cx by

G(Cx) = {ξ ∈ Cx |Δx(ξ) = ξ ⊗ ξ, εx(ξ) = 1}.

An element ξ ∈ Cx is grouplike if and only if ξ = c|x for some weakly grouplike
element c ∈ C, which is normalized on some open neighbourhood of x.

The spectral sheaf Esp(C) of a C∞
c (M)-coalgebra C is the sheaf

πsp(C) : Esp(C) → M

with the stalk

Esp(C)x = G(Cx).

The topology on Esp(C) is defined by the basis, consisting of πsp(C)-
elementary subsets of Esp(C) of the form

c|U = {c|x ∈ Esp(C) |x ∈ U} ⊂ Esp(C),

where c ∈ C is a weakly grouplike element, normalized on an open subset U
of M .

Now, let π : P → M be a sheaf over M . By Theorem 2.4 in [22], we
have a natural isomorphism of sheaves

Φshv
P : P → Esp(C∞

c (P ))
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defined by

Φshv
P (p) = (f ◦ π|W )|π(p),

where p ∈ P , W is a π-elementary neighbourhood of p in P and f ∈
C∞

c (π(W )) is such that f |π(p) = 1 ∈ C∞
c (M)π(p). Moreover, by Theorem

2.10 in [22], a coalgebra C is isomorphic to some sheaf coalgebra C∞
c (P ) if

and only if C is locally grouplike, which by definition means that for every
x ∈ M , the C∞

c (M)x-module Cx is free with the basis G(Cx).

2.5. Bialgebroids and Hopf Algebroids

Bialgebroids and Hopf algebroids are generalizations of bialgebras and Hopf
algebras over arbitrary rings. In the literature [3,6,12,15,17,23,24,27], one
can find several similar definitions, which are in general inequivalent. Our
definition follows the one in [21].

Let R be a commutative C-algebra with local units. We say that a C-
algebra A extends R if R is a subalgebra of A and A has local units in R. We
do not assume that R is a central subalgebra of A. Any C-algebra A which
extends R, is naturally an R-R-bimodule. We will denote by A⊗RA = A⊗ll

RA
the tensor product of left R-modules, which has two natural right R-module
structures. To be precise, for a, a′ ∈ A and r ∈ R, the two right module
structures are given by (a ⊗ a′)r = ar ⊗ a′, respectively, (a ⊗ a′)r = a ⊗ a′r.

A bialgebroid over R is a C-algebra A which extends R, together with
structure maps Δ : A → A ⊗R A and ε : A → R for which (A,Δ, ε) is a
cocommutative coalgebra, such that:

(i) Δ(A) ⊂ A⊗RA, where A⊗RA is the algebra consisting of those elements
of A ⊗R A, on which both right R-actions coincide,

(ii) ε|R = id and Δ|R is the canonical embedding R ⊂ A ⊗R A,
(iii) ε(ab) = ε(aε(b)) and Δ(ab) = Δ(a)Δ(b) for any a, b ∈ A.

Antipode on a bialgebroid A is a C-linear involution S : A → A which satisfies
the conditions:

(i) S|R = id and S(ab) = S(b)S(a) for any a, b ∈ A,
(ii) μA ◦ (S ⊗ id) ◦ Δ = ε ◦ S, where μA denotes the multiplication in A.

A Hopf algebroid over R is a bialgebroid A over R with an antipode. Note that
in the case when R is a central subalgebra of A, the notions of bialgebroid
and Hopf algebroid coincide with the more familiar notions of bialgebra and
Hopf algebra.

In the next example, we will recall from [21] the Hopf algebroid associ-
ated with an étale Lie groupoid.

Example 2.3. Let G be an étale Lie groupoid over M . Multiplication on G
induces a convolution product [5] on C∞

c (G ), given by the formula

(a1 ∗ a2)(g) =
∑

g=g1g2

a1(g1)a2(g2)

for a1, a2 ∈ C∞
c (G ). Note that this sum is always finite as a1 and a2 are

compactly supported. Since t : G → M is a sheaf, we can also consider



MJOM Locally Convex Bialgebroid of an Action Lie Groupoid Page 9 of 28    17 

the space C∞
c (G ) as a locally grouplike coalgebra over C∞

c (M). Finally, the
antipode S : C∞

c (G ) → C∞
c (G ) is defined by the formula

S(a) = a ◦ inv

for a ∈ C∞
c (G ). In this way, C∞

c (G ) becomes a Hopf algebroid over C∞
c (M).

Suppose now that Γ is a discrete group which acts from the right on the
manifold M and denote by M � Γ the associated action groupoid. We then
have the decomposition

C∞
c (M � Γ) =

⊕

g∈Γ

C∞
c (M × {g}).

For any g ∈ Γ and f ∈ C∞
c (M), let us denote by gf ∈ C∞

c (M) the function,
given by (gf)(x) = f(xg) for x ∈ M . If we use the notation from Example 2.2,
the convolution product and the antipode on C∞

c (M � Γ) can be described
on the set of generators by the formulas

(f1 · δg1) ∗ (f2 · δg2) = (f1(g1f2)) · δg1g2 ,

S(f · δg) = (g−1f) · δg−1 .

Now, let A be a Hopf algebroid over C∞
c (M). We will next recall from

[21] the construction of the spectral étale Lie groupoid Gsp(A), associated
with A. Note that A is a coalgebra over C∞

c (M), so we have the notion of
weakly grouplike elements. We say that a weakly grouplike element a ∈ A is
S-invariant if there exists a′ ∈ A, such that Δ(a) = a ⊗ a′ and Δ(S(a)) =
S(a′)⊗S(a). In the case of the Hopf algebroid C∞

c (G ) of an étale Lie groupoid
G , an element a ∈ C∞

c (G ) is S-invariant weakly grouplike if and only if it is
of the form f ◦ t|W for some bisection W of G and some f ∈ C∞

c (t(W )) (a
bisection of an étale Lie groupoid G is an open subset W of G which is both
t-elementary and s-elementary).

An arrow of A with target y ∈ M is an element g ∈ G(Ay), for which
there exists an S-invariant weakly grouplike element a ∈ A, such that g = a|y.
The set of all arrows of A with target y will be denoted by Gsp(A)y. All arrows
of A form a subsheaf Gsp(A) of Esp(A), whose projection will be denoted by

t = πsp(A)|Gsp(A) : Gsp(A) → M.

To describe the source map of Gsp(A), we first recall that each S-invariant
weakly grouplike element a ∈ A induces a C-linear map Ta : C∞

c (M) →
C∞

c (M), given by Ta(f) = ε(S(fa)). If a is normalized on an open subset U
of M , one can find an open subset U ′ of M and a unique diffeomorphism
τU,a : U ′ → U , such that Ta(C∞

c (U)) ⊂ C∞
c (U ′) and Ta(f) = f ◦ τU,a for any

f ∈ C∞
c (U). Furthermore, the element S(a) is S-invariant weakly grouplike,

normalized on U ′, and we have that τU ′,S(a) = τ−1
U,a. The source map s :

Gsp(A) → M is now defined by

s(a|y) = τ−1
U,a(y),

where a ∈ A is an S-invariant weakly grouplike element, normalized on U .
Now, choose elements a, b ∈ A which represent an arrow a|y ∈ Gsp(A)y and
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an arrow b|x ∈ Gsp(A)x such that s(a|y) = x. The product of a|y and b|x is
then defined by

a|yb|x = (ab)|y.

The unit uni(x) ∈ Gsp(A) at the point x ∈ M is given by

uni(x) = f |x,

where f ∈ C∞
c (M) ⊂ A is any function with germ f |x = 1 ∈ C∞

c (M)x.
Finally, the inverse of an arrow a|y ∈ Gsp(A)y with s(a|y) = x is defined by

a|−1
y = S(a)|x.

The groupoid Gsp(A) is an étale Lie groupoid over M , called the spectral
étale Lie groupoid of the Hopf algebroid A. For any étale Lie groupoid G
over M , we have a natural isomorphism of Lie groupoids

Φegr
G : G → Gsp(C∞

c (G )),

defined by

Φegr
G (g) = (f ◦ t|W )|t(g),

where W is any bisection of G which contains g and f ∈ C∞
c (t(W )) is any

function with f |t(g) = 1 ∈ C∞
c (M)t(g).

Hopf algebroid A is isomorphic to a Hopf algebroid of the form C∞
c (G )

for an étale Lie groupoid G if and only if it is locally grouplike, which means
that for every y ∈ M , the C∞

c (M)y-coalgebra Ay is a free C∞
c (M)y-module

with the basis consisting of arrows of A at the point y.

3. Transversal Distributions of Constant Dirac Type

Let π : M ×N → M be a trivial bundle over M with fiber N . In the spirit of
the Gelfand–Naimark theorem, we will assign to it a locally convex C∞

c (M)-
module Diracπ(M ×N) of distributions of constant Dirac type on M ×N and
show that its strong C∞

c (M)-dual is isomorphic to the space C∞(M × N). In
general, the space Diracπ(M ×N) is a dense subspace of the space E ′

π(M ×N)
of compactly supported transversal distributions. However, in the case when
N = Γ is discrete, the space Diracπ(M × Γ) is complete and isomorphic to
the LF-space C∞

c (M × Γ).
We start with the definition of transversal distributions on a trivial

bundle.

Definition 3.1. Let M and N be second-countable manifolds and let M × N
be the trivial bundle over M with fiber N and projection π : M × N → M .
The space of π-transversal distributions with compact support is the space

E ′
π(M × N) = HomC∞

c (M)(C∞(M × N), C∞
c (M)).

In other words, E ′
π(M × N) is the space of continuous C∞

c (M)-linear
maps from C∞(M × N) to C∞

c (M), where the C∞
c (M)-module structure on

C∞(M × N) is given by

(f · F )(x, y) = f(x)F (x, y)
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for f ∈ C∞
c (M), F ∈ C∞(M ×N) and (x, y) ∈ M ×N . The space E ′

π(M ×N)
is a C∞

c (M)-module as well, with module structure given by

(f · T )(F ) = T (f · F )

for f ∈ C∞
c (M), F ∈ C∞(M ×N) and T ∈ E ′

π(M ×N). If we equip the space
E ′

π(M × N) with the strong topology of uniform convergence on bounded
subsets, it becomes a complete locally convex space.

Remark 3.2. (1) It was shown in [14] that there is an isomorphism

E ′
π(M × N) ∼= C∞

c (M, E ′(N)),

which enables us to identify a π-transversal distribution T ∈ E ′
π(M × N)

with a smooth, compactly supported family u = u(T ) ∈ C∞
c (M, E ′(N)).

We will denote the value of u at x ∈ M by ux ∈ E ′(N). If we denote by
πN : M × N → N the projection to N , the distribution ux is given by the
formula

ux(F ) = T (F ◦ πN )(x)

for any F ∈ C∞(N). We can also view any u ∈ C∞
c (M, E ′(N)) as a π-

transversal distribution T = T (u), if we define

T (F )(x) = ux(F ◦ ιx)

for F ∈ C∞(M ×N). Here, ιx : N → {x}×N is given by ιx(y) = (x, y) for x ∈
M . Different letters T and u are used intentionally to make a slight distinction
between transversal distributions and smooth families of distributions along
the fibers.

(2) We can define a support of a family u ∈ C∞
c (M, E ′(N)) either as

a subspace of M or a subspace of M × N . The support of u is the sub-
set supp(u) of M , defined by supp(u) = {x ∈ M |ux �= 0}. On the other
hand, the total support of u is the subset suppM×N (u) of M × N , con-
sisting of all points (x, y) ∈ M × N , which satisfy the condition that for
every open neighbourhood U of (x, y), there exists F ∈ C∞

c (U), such that
u(F ) �= 0. For u ∈ C∞

c (M, E ′(N)), both supports are compact and we have
π(suppM×N (u)) = supp(u). We can also define the support of a π-transversal
distribution T ∈ E ′

π(M × N) as the subset supp(T ) = suppM×N (u(T )) of
M × N . For more details about supports, we refer the reader to [9].

(3) If dim(M) > 0, the space HomC∞
c (M)(C∞(M × N), C∞

c (M)) in fact
coincides with the space LinC∞

c (M)(C∞(M × N), C∞
c (M)) of C∞

c (M)-linear
maps, without any assumption on continuity (see [8]).

Let us take a look at some important examples of transversal distribu-
tions that will be used throughout the paper.

Example 3.3. (1) Let π : M × N → M be a trivial bundle and denote for
any y ∈ N by Ey = M × {y} the horizontal subspace of M × N . For any
f ∈ C∞

c (M), we define a π-transversal distribution �Ey, f� ∈ E ′
π(M × N) by

�Ey, f�(F )(x) = f(x)F (x, y),
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for F ∈ C∞(M × N). We think of �Ey, f� as a smooth family of Dirac distri-
butions, supported on the constant section Ey and weighted by the function
f . In particular, we have

�Ey, f�x = f(x)δy.

(2) Let M = R
l, N = R

k and let π : R
l × R

k → R
l be the projection

onto R
l. For φ ∈ C∞

c (Rl × R
k), we define a π-transversal distribution Tφ ∈

E ′
π(Rl × R

k) by

Tφ(F )(x) =
∫

R
k

φ(x, y)F (x, y) dy

for F ∈ C∞(Rl×R
k). The distribution Tφ corresponds to the family of smooth

densities on R
k, parametrized by R

l and explicitly given by

(Tφ)x = φ(x,−)dV,

where dV is the Lebesgue measure on R
k.

The map φ 
→ Tφ defines a continuous, injective C∞
c (Rl)-linear map

C∞
c (Rl × R

k) ↪→ E ′
π(Rl × R

k).

Note that the LF -topology on C∞
c (Rl ×R

k) is strictly finer than the subspace
topology that is induced from E ′

π(Rl × R
k) via the above map. In particular,

if M = R
0 is a point, the above construction enables us to consider the space

C∞
c (Rk) as a subspace of the space E ′(Rk).

Let us now denote for a manifold N by N# the set N with the discrete
topology. The projection π# : M × N# → M is then a local diffeomorphism.
Note that the manifold M × N# is paracompact, but not second-countable
if dim(N) > 0.

Using the notation from the Example 2.2, we have a decomposition

C∞
c (M × N#) =

⊕

y∈N#

C∞
c (M × {y}),

which enables us to write every element a ∈ C∞
c (M × N#) uniquely in the

form

a =
n∑

i=1

fi · δyi

for some f1, . . . , fn ∈ C∞
c (M) and some y1, . . . , yn ∈ N . Now, define an

injective C∞
c (M)-linear map ΨM×N : C∞

c (M × N#) → E ′
π(M × N) by

ΨM×N

(
n∑

i=1

fi · δyi

)
=

n∑

i=1

�Eyi
, fi�.

Definition 3.4. Let M × N be a trivial bundle with projection π : M × N →
M . The space of π-transversal distributions of constant Dirac type is the
space

Diracπ(M × N) = ΨM×N (C∞
c (M × N#)) ⊂ E ′

π(M × N).
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The space Diracπ(M×N) is equipped with the induced topology from E ′
π(M×

N).
If M is a point, we denote by Dirac(N) the subspace of E ′(N), spanned

by Dirac distributions.

We will show in the sequel that Diracπ(M × N) is a proper, dense
subspace of E ′

π(M × N) if dim(N) > 0. However, in the case, when N = Γ is
discrete, we have the following description of the space Diracπ(M × Γ).

Proposition 3.5. Let M ×Γ be a trivial bundle over a second-countable mani-
fold M with a countable discrete fiber Γ and bundle projection π : M×Γ → M .

(a) The map ΨM×Γ : C∞
c (M × Γ) → E ′

π(M × Γ) is an isomorphism of
C∞

c (M)-modules, so we have Diracπ(M × Γ) = E ′
π(M × Γ).

(b) The map ΨM×Γ is an isomorphism of locally convex spaces with respect
to the LF -topology on C∞

c (M ×Γ) and the strong topology on E ′
π(M ×Γ).

Proof. (a) First, recall that we have an isomorphism E ′
π(M × Γ) ∼=

C∞
c (M, E ′(Γ)) of C∞

c (M)-modules. It is, therefore, enough to show that every
u ∈ C∞

c (M, E ′(Γ)) is of the form u = ΨM×Γ(a) for some a ∈ C∞
c (M × Γ).

Since Γ is discrete, the space E ′(Γ) is isomorphic to the locally con-
vex direct sum

⊕
y∈Γ Span(δy) of one-dimensional subspaces, spanned by

Dirac distributions. Any u ∈ C∞
c (M, E ′(Γ)) has compact support, so its im-

age u(M) ⊂ E ′(Γ) is compact and hence bounded. This implies that u(M)
lies in some finite-dimensional subspace

⊕n
i=1 Span(δyi

) ⊂ E ′(Γ) for some
y1, . . . , yn ∈ Γ. We can therefore find functions f1, . . . , fn : M → C, such
that

ux =
n∑

i=1

fi(x)δyi

for every x ∈ M . If we denote by 1yi
∈ C∞(M × Γ) the function, which is

equal to 1 on M × {yi} and zero elsewhere, we have fi = u(1yi
) ∈ C∞

c (M),
and therefore

u = ΨM×Γ

(
n∑

i=1

fi · δyi

)
.

(b) To see that ΨM×Γ is continuous, first, choose a basic neighbourhood
K(B, V ) of zero in E ′

π(M×Γ), where B is a bounded subset of C∞(M×Γ) and
V is a neighbourhood of zero in C∞

c (M). From the definition of LF -topology
on C∞

c (M × Γ), it follows that we only have to show that the restrictions
of ΨM×Γ onto subspaces of the form C∞

c (L × {y}) are continuous for all
y ∈ Γ and all compact subsets L of M . Define a multiplication map μ :
C∞

c (L × {y}) × C∞(M × Γ) → C∞
c (M) by

μ(f · δy, F )(x) = f(x)F (x, y)

for f · δy ∈ C∞
c (L × {y}) and F ∈ C∞(M × Γ). Note that μ is continuous, so

we can find neighbourhoods V1 and V2 of zero in C∞
c (L × {y}), respectively,

C∞(M × Γ), such that μ(V1, V2) ⊂ V . Since B ⊂ C∞(M × Γ) is bounded,
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we can assume that B ⊂ V2 (if necessary, rescale V1 and V2 by appropriate
inverse factors). Now, observe that

μ(f · δy, F ) = ΨM×Γ(f · δy)(F ).

For f · δy ∈ V1 and F ∈ B, we thus have ΨM×Γ(f · δy)(F ) = μ(f · δy, F ) ∈ V ,
which shows that ΨM×Γ(V1) ⊂ K(B, V ).

Finally, we have to show that the map Ψ−1
M×Γ is continuous. Let us

choose a net (uα)α∈A that converges to zero in E ′
π(M × Γ). The set {uα |α ∈

A} is then a bounded subset of E ′
π(M × Γ), so there exists a compact subset

of M × Γ which contains all supports supp(uα) for α ∈ A. In particular, we
can find a compact subset L of M and elements y1, y2, . . . , yn ∈ Γ, such that
for every α ∈ A, we can write

uα =
n∑

i=1

�Eyi
, fα,i�

for some fα,1, . . . , fα,n ∈ C∞
c (L). If we evaluate uα at 1yi

(see part (a) of the
proof for the definition of 1yi

), we get that uα(1yi
) = fα,i converges to zero

in C∞
c (M) for 1 � i � n, which implies that Ψ−1

M×Γ(uα) =
∑n

i=1 fα,i · δyi

converges to zero in C∞
c (M × Γ). �

We will now move on to the study of the space Diracπ(M × N) in the
case of non-discrete fiber and show that it is a dense subspace of the space
E ′

π(M × N).
To do that, we first recall some facts about the convolution of distribu-

tions on Euclidean spaces. Usually, the convolution of compactly supported
distributions v, w ∈ E ′(Rk) is defined as the push-forward of v ⊗ w along the
multiplication map. However, for the purposes of this paper, we will use the
definition of the convolution product on E ′(Rk) that can be easily general-
ized to arbitrary Lie groupoids and is useful in concrete computations (see
Sect. 5). For any F ∈ C∞(Rk), we can define a smooth map R

k → C∞(Rk)
by y → F ◦ Ly, where the left translation Ly : R

k → R
k is defined by

Ly(y′) = y+y′ for y ∈ R
k. If we compose this map with an arbitrary distribu-

tion w ∈ E ′(Rk), we thus get a smooth map R
k → C, given by y → w(F ◦Ly).

The convolution product ∗ : E ′(Rk)×E ′(Rk) → E ′(Rk) can be then described
by the formula

(v ∗ w)(F ) = v(y → w(F ◦ Ly))

for F ∈ C∞(Rk) and v, w ∈ E ′(Rk). The convolution product is a bilinear,
jointly continuous map and it turns E ′(Rk) into a commutative, locally convex
algebra.

As we have seen in Example 3.3, we can consider C∞
c (Rk) as a subspace

of E ′(Rk). We can explicitly describe the convolution of an arbitrary distribu-
tion with a smooth function as follows. Choose any ρ ∈ C∞

c (Rk) and consider
it as an element Tρ ∈ E ′(Rk), which we will for simplicity denote just by ρ.
Let ρ̃ ∈ C∞(Rk) be defined by ρ̃(z) = ρ(−z). For any v ∈ E ′(Rk), we then
have that v ∗ ρ ∈ C∞

c (Rk) ⊂ E ′(Rk) is a smooth function, given by

(v ∗ ρ)(y) = v(ρ̃ ◦ L−y)
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for y ∈ R
k. This shows that C∞

c (Rk) is actually an ideal of E ′(Rk).
We will now use these results in the setting of transversal distributions.

For any u = (ux)x∈R
l ∈ C∞

c (Rl, E ′(Rk)) and any ρ ∈ C∞
c (Rk), we define

u ∗ ρ ∈ C∞
c (Rl, E ′(Rk)) pointwise by

(u ∗ ρ)x = ux ∗ ρ.

Smoothness of u∗ρ follows from bilinearity and continuity of the convolution
product. One can, moreover, show that u∗ρ is actually of the form u∗ρ = Tφ

for the smooth function φ ∈ C∞
c (Rl × R

k), given by

φ(x, y) = ux(ρ̃ ◦ L−y).

We will next show that the image of the map C∞
c (Rl ×R

k) ↪→ C∞
c (Rl, E ′

(Rk)), given by φ 
→ Tφ, is a dense subspace of C∞
c (Rl, E ′(Rk)).

To do that, we first recall from [9] an explicit description of a neighbour-
hood basis of zero in the space C∞

c (Rl, E ′(Rk)). Denote K0 = ∅ and let Kn =
{x ∈ R

l | |x| � n} be the ball with centre at zero and radius n ∈ N. Choose
an increasing sequence of natural numbers m = (m1,m2, . . .), a decreasing
sequence of positive real numbers e = (ε1, ε2, . . .) and let B = (B1, B2, . . .) be
an increasing sequence of bounded subsets of C∞(Rk). Now, define a subset
VB,m,e ⊂ C∞

c (Rl, E ′(Rk)) by

VB,m,e = {u ∈ C∞
c (Rl, E ′(Rk)) | pBn

((Dαu)x)
< εn for x ∈ Kc

n−1 and |α| � mn},

where the seminorm pBn
on E ′(Rk) is given by

pBn
(v) = sup

F∈Bn

|v(F )|

for v ∈ E ′(Rk). The family of all such sets VB,m,e, with B, m, and e as
defined above then forms a basis of neighbourhoods of zero for a topology
on C∞

c (Rl, E ′(Rk)), for which the natural identification C∞
c (Rl, E ′(Rk)) ∼=

E ′
π(Rl × R

k) becomes an isomorphism of locally convex vector spaces (see
[9]).

Proposition 3.6. The image of the map C∞
c (Rl×R

k) ↪→ C∞
c (Rl, E ′(Rk)), given

by φ 
→ Tφ, is a dense subspace of C∞
c (Rl, E ′(Rk)).

Proof. Let us choose a one-parameter family (ρt) ∈ C∞
c (Rk) ⊂ E ′(Rk), for

t ∈ (0, 1), which converges to the Dirac distribution δ0 ∈ E ′(Rk) as t → 0.
Now, choose any u ∈ C∞

c (Rl, E ′(Rk)) and define ut = u ∗ ρt ∈ C∞
c (Rl ×

R
k) for t ∈ (0, 1). We will show that ut → u as t → 0. To do that, take an

arbitrary basic neighbourhood of zero in C∞
c (Rl, E ′(Rk)) of the form VB,m,e.

Since u is compactly supported, we have supp(u) = supp(ut) ⊂ Kn for some
n ∈ N and all t ∈ (0, 1). We need to show that for t small enough, we have
u − ut ∈ VB,m,e, which by the above observation means that pBn

(Dα(u −
ut)x) < εn for all x ∈ Kn and all α with |α| � mn. Equivalently, if we denote
D(εn) = {z ∈ C | |z| < εn}, then for all such x and α, we have

Dα(u − ut)x ∈ K(Bn, D(εn)) ⊂ E ′(Rk).
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Now, note that the set A = {(Dαu)x |x ∈ Kn, |α| � mn} is compact and,
hence, a bounded subset of E ′(Rk). Since the convolution ∗ : E ′(Rk) ×
E ′(Rk) → E ′(Rk) is bilinear and continuous, we can find a neighbourhood
V of zero in E ′(Rk) such that V ∗A ⊂ K(Bn, D(εn)). Since ρt → δ0 as t → 0,
we have that δ0 − ρt ∈ V for t small enough, and hence

Dα(u − ut)x = (Dαu)x − (Dαu ∗ ρt)x = (δ0 − ρt) ∗ (Dαu)x ∈ K(Bn, D(εn)).

�

We will next show, using ideas from Riemannian integration, that ar-
bitrary transversal distribution of the form Tφ ∈ C∞

c (Rl, E ′(Rk)) can be ap-
proximated by elements of Diracπ(Rl × R

k).
Choose any L > 0 and any n ∈ N and denote tj = −L

2 + jL
n for

0 � j � n − 1. The set I = {t0, t1, . . . , tn−1}k is then a finite subset of the
cube D = [−L

2 , L
2 ]k. If we denote for t ∈ I by Dt = t + [0, L

n ]k the cube with

volume vol(Dt) =
(

L
n

)k
, we can express D =

⋃
t∈I Dt as a union of nk such

small cubes. Now, define a distribution Δn ∈ Dirac(Rk) ⊂ E ′(Rk) by

Δn =
(

L
n

)k ∑

t∈I

δt.

Using the fundamental theorem of calculus, one can show that for any F ∈
C∞(Rk), we have the following bound:

∣∣∣∣
∫

D

F (y) dy − Δn(F )
∣∣∣∣ � kLk+1

n
pD,1(F ),

where pD,1 measures the size of the gradient of F and is defined as in Sect. 2.1.
This bound basically says that the sequence (Δn)n∈N converges to

∫
D

in
E ′(Rk).

Proposition 3.7. The space Diracπ(Rl × R
k) is a dense subspace of C∞

c

(Rl, E ′(Rk)).

Proof. By Proposition 3.6, it is enough to show that for every φ ∈ C∞
c (Rl ×

R
k), the distribution Tφ ∈ C∞

c (Rl, E ′(Rk)) can be approximated arbitrarily
well by elements of Diracπ(Rl × R

k).
Choose any φ ∈ C∞

c (Rl × R
k) and suppose π

R
k(supp(φ)) ⊂ D ⊂ R

k

for some L > 0 as above. For n ∈ N, we define a π-transversal distribution
Δφ,n ∈ Diracπ(Rl × R

k) by the formula

Δφ,n(F )(x) =
(

L
n

)k ∑

t∈I

φ(x, t)F (x, t).

We will show that Δφ,n → Tφ in C∞
c (Rl, E ′(Rk)) as n → ∞. This means

that, for every set of the form VB,m,e ⊂ C∞
c (Rl, E ′(Rk)), we have Tφ − Δφ,n ∈

VB,m,e for n ∈ N big enough. Both Tφ and Δφ,n have supports contained in
π(supp(φ)) ⊂ Kj for some j ∈ N, so we have to show that

|Dα
x (Tφ(F ) − Δφ,n(F ))(x)| < εj

for x ∈ Kj , F ∈ Bj and |α| � mj . Since Bj is a bounded subset of C∞(Rl ×
R

k), the set B̃j = φBj = {F̃ = φF |F ∈ Bj} is bounded in C∞(Rl × R
k) as
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well, so there exists a constant C < ∞, such that sup{pKj×D,mj+1(F̃ ) | F̃ ∈
B̃j} < C. For F ∈ Bj , x ∈ Kj and |α| � mj , we now compute the following:

|Dα
x (Tφ(F ) − Δφ,n(F ))(x)|

=

∣∣∣∣∣

∫

D

Dα
x (φ(x, y)F (x, y)) dy − (

L
n

)k ∑

t∈I

Dα
x (φ(x, t)F (x, t))

∣∣∣∣∣ ,

=

∣∣∣∣∣

∫

D

(Dα
x F̃ )(x, y) dy − (

L
n

)k ∑

t∈I

(Dα
x F̃ )(x, t)

∣∣∣∣∣ ,

� kLk+1

n
pKj×D,mj+1(F̃ ) <

CkLk+1

n
.

We conclude that Δφ,n → Tφ in C∞
c (Rl, E ′(Rk)) as n → ∞. �

As a corollary, we get the following result.

Proposition 3.8. Let M × N be a trivial bundle over M with fiber N and
projection π : M × N → M . The space Diracπ(M × N) is a dense subspace
of E ′

π(M × N).

Proof. Every transversal distribution T ∈ E ′
π(M × N) has compact support,

so we can write it as a sum

T = T1 + T2 + · · · + Tn,

where each Ti ∈ E ′
π(M × N) has support contained in the set of the form

Ui × U ′
i for some domains of coordinate charts Ui ≈ R

l on M and U ′
i ≈

R
k on N . By Proposition 3.7, we can find for each neighbourhood of zero

V ⊂ E ′
π(M ×N) elements ui ∈ Diracπi

(Ui ×U ′
i) ⊂ Diracπ(M ×N), such that

Ti−ui ∈ 1
nV for 1 � i � n. If we define u = u1+u2+· · ·+un ∈ Diracπ(M×N),

we then have T − u ∈ V . �

Let us now denote for simplicity by

Diracπ(M × N)′ = HomC∞
c (M)(Diracπ(M × N), C∞

c (M)),

E ′
π(M × N)′ = HomC∞

c (M)(E ′
π(M × N), C∞

c (M))

the C∞
c (M)-duals of the C∞

c (M)-modules Diracπ(M × N) and E ′
π(M × N).

Define a C∞
c (M)-linear map

ˆ: C∞(M × N) → Diracπ(M × N)′,

by

F̂ (u) = u(F )

for F ∈ C∞(M × N) and u ∈ Diracπ(M × N).

Theorem 3.9. Let M ×N be a trivial bundle over M with fiber N and bundle
projection π : M × N → M . The mapˆ: C∞(M × N) → Diracπ(M × N)′ is
an isomorphism of locally convex C∞

c (M)-modules.
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Proof. We first show that the mapˆ: C∞(M × N) → Diracπ(M × N)′ is a
C∞

c (M)-linear isomorphism. It is injective, since Diracπ(M×N) separates the
points of C∞(M ×N). To see that it is surjective, choose any φ ∈ Diracπ(M ×
N)′. Since Diracπ(M×N) is a dense subspace of E ′

π(M×N) and since C∞
c (M)

is complete, there exists a unique continuous extension φ : E ′
π(M × N) →

C∞
c (M) of φ to E ′

π(M × N). From Theorem 4.5 in [9], it now follows that
φ = F̂ for some F ∈ C∞(M × N).

It remains to be shown that the mapˆ: C∞(M ×N) → Diracπ(M ×N)′

is a homeomorphism. It is continuous as it can be written as a composition

C∞(M × N) ˆ−→ E ′
π(M × N)′ −→ Diracπ(M × N)′,

where the left map is continuous by Theorem 4.5 in [9] and the right map is
the continuous restriction of functionals from E ′

π(M ×N) to Diracπ(M ×N).
In the remainder of the proof, we will show that the above map is open.

Let us choose an arbitrary subbasic neighbourhood of zero in C∞(M ×N) of
the form

VL×K,m,ε = {F ∈ C∞(M × N) | |Dα
x Dβ

y F (x, y)|
< ε for (x, y) ∈ L × K, |α| + |β| � m},

where m ∈ N, ε > 0, L is a compact subset of M which lies in some chart
UM ≈ R

l, and K is a compact subset of N which lies in some chart UN ≈ R
k.

Our goal is to find a bounded subset B ⊂ Diracπ(M × N) and a neighbour-
hood V of zero in C∞

c (M), such that K(B, V ) ⊂ ̂VL×K,m,ε.
For n ∈ N, t ∈ (0,∞) and y ∈ R, we define a distribution Δn

t (y) ∈
Dirac(R) by

Δn
t (y) =

1
(2t)n

n∑

k=0

(−1)k

(
n

k

)
δy+(n−2k)t.

Using the Taylor’s theorem, one can show that Δn
t (y) converges in E ′(R)

to Dn
y |y as t → 0, where Dn

y |y is the distribution which computes the nth
derivative at the point y. More generally, denote β = (β1, β2, . . . , βk) ∈ N

k
0 ,

y = (y1, y2, . . . , yk) ∈ R
k and define

Δβ
t (y) = Δβ1

t (y1) ⊗ Δβ2
t (y2) ⊗ · · · ⊗ Δβk

t (yk) ∈ E ′(Rk).

Again, we have that Δβ
t (y) ∈ Dirac(Rk) converges to Dβ

y |y in E ′(Rk) as t → 0.
Using K and m from the definition of VL×K,m,ε, we now define the subset

BK,m = {Δβ
t (y) | y ∈ K, t ∈ (0, 1), |β| � m} ⊂ Dirac(Rk) ⊂ E ′(Rk).

Using estimates from the Taylor’s theorem, one can show that BK,m is a
bounded subset of E ′(Rk). Now, note that the bilinear map C∞

c (M)×E ′(N) →
C∞

c (M, E ′(N)), given by (f, v) 
→ fv for (fv)x = f(x)v, is continuous. If
we choose a function η ∈ C∞

c (UM ) ⊂ C∞
c (M), such that η ≡ 1 on some

neighbourhood of L, it now follows from the above observation that:

B = ηBK,m = {ηv | v ∈ BK,m}
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is a bounded subset of Diracπ(M × N). Finally, let us define an open neigh-
bourhood V of zero in C∞

c (M) by

V = {f ∈ C∞
c (M) | |Dα

x f(x)| < ε
2 for x ∈ L, |α| � m}.

Now, choose any φ = F̂ ∈ K(B, V ), so that φ(u) = u(F ) ∈ V for
u ∈ B. If we write u = ηv = η

∑n
i=1 aiδyi

for some a1, . . . , an ∈ C and some
y1, . . . , yn ∈ UN , we have for x ∈ L and |α| � m the following estimate:

|u(Dα
x F )(x)| =

∣∣∣∣∣η(x)
n∑

i=1

ai(Dα
x F )(x, yi)

∣∣∣∣∣ = |Dα
x (u(F ))(x)| < ε

2 .

Here, we have used the fact that η ≡ 1 on some neighbourhood of L and
denoted by Dα

x F the α-partial derivative of F in the horizontal direction.
For any y ∈ K and any β with |β| � m, the net Δβ

t (y) ∈ BK,m converges
to Dβ

y |y in E ′(Rk) as t → 0. If we define ut = ηΔβ
t (y) ∈ B, we then have for

x ∈ L the estimate

|Dβ
y Dα

x F (x, y)| = lim
t→0

|ut(Dα
x F )(x)| � ε

2 < ε.

To sum it up, for (x, y) ∈ L×K and |α|, |β| � m, we have |Dβ
y Dα

x F (x, y)| < ε,

which implies that F ∈ VL×K,m,ε and, consequently, φ = F̂ ∈ ̂VL×K,m,ε. �

4. Spectral Bundle of the Coalgebra of Transversal
Distributions of Constant Dirac Type

From Theorem 3.9, it follows that C∞(M × N) is isomorphic to the strong
C∞

c (M)-dual of Diracπ(M × N). We will now equip the space Diracπ(M ×
N) with a structure of a locally convex coalgebra over C∞

c (M), such that
its strong C∞

c (M)-dual Diracπ(M × N)′ is a Fréchet algebra, isomorphic to
C∞(M × N).

We will use the isomorphism ΨM×N : C∞
c (M×N#) → Diracπ(M×N) to

transfer coalgebra structure from C∞
c (M ×N#) to Diracπ(M ×N). Explicitly,

using the notation from Example 2.2, we define on Diracπ(M×N) a structure
of a coalgebra over C∞

c (M) with structure maps

Δ : Diracπ(M × N) → Diracπ(M × N) ⊗C∞
c (M) Diracπ(M × N),

ε : Diracπ(M × N) → C∞
c (M),

explicitly given by

Δ

(
n∑

i=1

�Eyi
, fi�

)
=

n∑

i=1

�Eyi
, fi� ⊗ �Eyi

, 1fi
�,

ε

(
n∑

i=1

�Eyi
, fi�

)
=

n∑

i=1

fi.

Since C∞(M ×N) is isomorphic to the strong dual of Diracπ(M ×N), we
can use it to define the C∞

c (M)-injective topology on Diracπ(M ×N)⊗C∞
c (M)
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Diracπ(M × N). For any pair of functions F,G ∈ C∞(M × N), we define a
C∞

c (M)-linear map

F ⊗ G : Diracπ(M × N) ⊗C∞
c (M) Diracπ(M × N) → C∞

c (M)

by

(F ⊗ G)

(
n∑

i=1

u′
i ⊗ u′′

i

)
=

n∑

i=1

u′
i(F )u′′

i (G).

The C∞
c (M)-injective topology on Diracπ(M × N) ⊗C∞

c (M) Diracπ(M × N)
is now defined by specifying basic neighbourhoods of zero of the form

K(A,B, V ) = {ũ ∈ Diracπ(M × N)⊗2 | (F ⊗ G)(ũ) ∈ V, for F ∈ A, G ∈ B},

where A,B ⊂ C∞(M × N) ∼= Diracπ(M × N)′ are bounded subsets and V is
a neighbourhood of zero in C∞

c (M).

Proposition 4.1. The triple (Diracπ(M ×N),Δ, ε) is a cocommutative, locally
convex coalgebra over C∞

c (M), in the sense that Δ and ε are continuous maps.

Proof. Let us denote by 1 the unit of the algebra C∞(M ×N). We then have
ε = 1̂, which shows that ε is a continuous map.

To see that Δ is continuous, we choose any basic neighbourhood of zero
in Diracπ(M × N) ⊗C∞

c (M) Diracπ(M × N) of the form K(A,B, V ) as above.
The set

A · B = {FG |F ∈ A, G ∈ B}
is then a bounded subset of C∞(M × N). For any u =

∑n
i=1�Eyi

, fi� ∈
K(A · B, V ) any F ∈ A and any G ∈ B, we now have

(F ⊗ G)(Δ(u))(x) = (F ⊗ G)

(
n∑

i=1

�Eyi
, fi� ⊗ �Eyi

, 1fi
�

)
(x),

=
n∑

i=1

fi(x)1fi
(x)F (x, yi)G(x, yi),

= u(FG)(x).

This implies that Δ(K(A ·B, V )) ⊂ K(A,B, V ), and hence, Δ is continuous.
�

Since Diracπ(M × N) is a cocommutative, counital coalgebra over
C∞

c (M), its dual Diracπ(M × N)′ naturally becomes a commutative alge-
bra with unit ε∗ over C∞

c (M), if we define

(φ · ψ)(u) = (φ ⊗ ψ)(Δ(u))

for φ, ψ ∈ Diracπ(M ×N)′ and u ∈ Diracπ(M ×N). Continuity of φ·ψ follows
from continuity of φ ⊗ ψ and Δ.

On both Diracπ(M × N) and Diracπ(M × N)′, we can naturally define
conjugation as follows. For any u ∈ Diracπ(M × N), we define conjugation
by

u =
n∑

i=1

�Eyi
, fi� =⇒ u =

n∑

i=1

�Eyi
, fi�.
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Using the above formula and complex conjugation on C∞
c (M), we now define

for any φ ∈ Diracπ(M × N)′ the element φ ∈ Diracπ(M × N)′ by

φ(u) = φ(u)

for u ∈ Diracπ(M × N). It is now a straightforward calculation to extend
Theorem 3.9 in the following way.

Proposition 4.2. Let M × N be a trivial bundle over M with fiber N and
bundle projection π : M×N → M . The mapˆ: C∞(M×N) → Diracπ(M×N)′

is an isomorphism of locally convex algebras with involutions.

Using the definitions and notations from the Subsection 2.4, we now
define for any x ∈ M the local C∞

c (M)x-coalgebra

Diracπ(M × N)x = Diracπ(M × N)/IxDiracπ(M × N).

It follows from [22] that the space Diracπ(M ×N)x is a free C∞
c (M)x-module,

generated by the set G(Diracπ(M ×N)x) of grouplike elements. The spectral
sheaf of the C∞

c (M)-coalgebra Diracπ(M × N) is the sheaf

πsp : Esp(Diracπ(M × N)) → M

with the stalk at the point x ∈ M given by

Esp(Diracπ(M × N))x = G(Diracπ(M × N)x).

Note that the sheaves M ×N# and Esp(Diracπ(M ×N)) over M are isomor-
phic via the map

(x, y) 
→ �Ey, f�|x,

where f ∈ C∞
c (M) is any function with f |x = 1 ∈ C∞

c (M)x.
Let us now define the real part of Diracπ(M × N)′ by

Diracπ(M × N)′
R

= {φ ∈ Diracπ(M × N)′ |φ = φ},

and note that it corresponds to the algebra C∞(M × N, R) via the isomor-
phism from Proposition 4.2. This implies that Diracπ(M × N)′

R
satisfies the

conditions of the main theorem in [18], so it can be used to define a smooth
structure on the space Spec(Diracπ(M × N)′

R
). Furthermore, we have a nat-

ural bijection

ΘM×N : Esp(Diracπ(M × N)) → Spec(Diracπ(M × N)′
R
),

defined by

ΘM×N (�Ey, f�|x)(φ) = φ(�Ey, f�)(x)

for φ ∈ Diracπ(M × N)′
R
. We will now use this bijection to transfer the

smooth structure from Spec(Diracπ(M × N)′
R
) to Esp(Diracπ(M × N)).

Definition 4.3. Let π : M × N → M be a trivial bundle over M with fiber
N . The spectral bundle

Bsp(Diracπ(M × N))

of the coalgebra Diracπ(M × N) is the set Esp(Diracπ(M × N)), equipped
with the bundle projection πsp : Bsp(Diracπ(M ×N)) → M and the topology
and smooth structure, such that ΘM×N is a diffeomorphism.
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We will show in the next theorem that Bsp(Diracπ(M × N)) is a trivial
bundle over M , naturally isomorphic to the bundle M × N . Define a map

Φbun
M×N : M × N → Bsp(Diracπ(M × N)),

by

Φbun
M×N (x, y) = �Ey, f�|x.

Theorem 4.4. Let π : M × N → M be a trivial bundle over M with fiber
N . The map Φbun

M×N : M × N → Bsp(Diracπ(M × N)) is an isomorphism of
trivial bundles over M .

Proof. Let us denote by Sp : Spec(C∞(M ×N, R)) → Spec(Diracπ(M ×N)′
R
)

the diffeomorphism, induced by the inverse ofˆ: C∞(M×N, R) → Diracπ(M×
N)′

R
. We then have the commutative diagram

M × N
Φbun

M×N−−−−→ Bsp(Diracπ(M × N))

Φman
M×N

⏐⏐�
⏐⏐�ΘM×N

Spec(C∞(M × N, R))
Sp−−−−→ Spec(Diracπ(M × N)′

R
)

Since Φman
M×N , ΘM×N and Sp are diffeomorphisms, Φbun

M×N is a diffeo-
morphism, as well. The equality πsp ◦ Φbun

M×N = π follows from the equality
πsp ◦ Φshv

M×N# = π. �

Let us now take a look at this construction in the case of a single man-
ifold.

Example 4.5. Let M be a single point and consider the manifold N as a
trivial bundle over a point. In this case, we have

Diracπ(M × N) = Dirac(N) = Span{δy | y ∈ N}.

Every element u ∈ Dirac(N) can be expressed as a finite sum u =
∑n

i=1 λiδyi

for unique λ1, . . . , λn ∈ C and y1, . . . , yn ∈ N . The space Dirac(N) is a
coalgebra over C with structure maps

Δ

(
n∑

i=1

λiδyi

)
=

n∑

i=1

λiδyi
⊗ δyi

,

ε

(
n∑

i=1

λiδyi

)
=

n∑

i=1

λi.

Grouplike elements of Dirac(N) are precisely Dirac distributions, so we have

G(Dirac(N)) = {δy | y ∈ N}.

The spectral sheaf Esp(Dirac(N)) is the set G(Dirac(N)) with the discrete
topology and projection onto the point. The map ΘN : Esp(Dirac(N)) →
Spec(Dirac(N)′

R
) is defined by ΘN (δy)(φ) = φ(δy), which means that ΘN (δy)

= δ̂y. The topology on Bsp(Dirac(N)) = G(Dirac(N)), which is induced by
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ΘN , coincides with the subspace topology on G(Dirac(N)), induced from
E ′(N). Finally, the diffeomorphism

Φbun
N : N → Bsp(Dirac(N))

is given by Φbun
N (y) = δy.

5. Locally Convex Bialgebroid of an Action Lie Groupoid

In this section, we will assign to each action groupoid M �H a locally convex
bialgebroid with antipode Dirac(M � H) over C∞

c (M), from which the Lie
groupoid M � H can be reconstructed.

Let M be a second-countable manifold and let H be a second-countable
Lie group, which acts on M from the right. If we denote by H# the group H
with the discrete topology, the group H# acts on M from the right as well,
so we obtain two action groupoids M �H and M �H#. These two groupoids
are isomorphic as groupoids but not as Lie groupoids if dim(H) > 0.

Groupoid M � H# is étale, so we can construct its Hopf algebroid

C∞
c (M � H#) =

⊕

h∈H#

C∞
c (M × {h}).

Moreover, since M �H is a Lie groupoid, we also have a convolution product,
as defined in [14], on the space

E ′
t(M � H) = HomC∞

c (M)(C∞(M × H), C∞
c (M))

of t-transversal distributions on M � H. It can be described explicitly as
follows. The left translation by g ∈ M � H is the diffeomorphism Lg :
t−1(s(g)) → t−1(t(g)), defined by Lg(h) = gh. For any F ∈ C∞(M × H) and
any g ∈ M �H, it follows that F ◦Lg ∈ C∞(t−1(s(g))) and one can show that
the function M×H → R, g 
→ Ts(g)(F ◦Lg), is smooth for any T ∈ E ′

t(M �H).
For any T ′, T ′′ ∈ E ′

t(M � H), the convolution T ′ ∗ T ′′ ∈ E ′
t(M � H) is then

defined by

(T ′ ∗ T ′′)(F )(x) = T ′
(
g 
→ T ′′

s(g)(F ◦ Lg)
)

(x),

for any F ∈ C∞(M × H) and any x ∈ M .
Using the notation from Example 2.2, we define an injective C∞

c (M)-
linear map ΨM�H : C∞

c (M � H#) → E ′
t(M � H) by

ΨM�H

(
n∑

i=1

fi · δhi

)
=

n∑

i=1

�Ehi
, fi�.

Proposition 5.1. The map ΨM�H : C∞
c (M � H#) → E ′

t(M � H) is multi-
plicative.



   17 Page 24 of 28 J. Kališnik MJOM

Proof. Let us first prove that ΨM�H is multiplicative on the set of basis
elements. Choose f1, f2 ∈ C∞

c (M), h1, h2 ∈ H and denote a1 = f1 · δh1 ,
respectively, a2 = f2 · δh2 . We then have

(ΨM�H(a1) ∗ ΨM�H(a2))(F )(x)

= ΨM�H(a1)
(
(x, h) 
→ �Eh2 , f2�xh(F ◦ L(x,h))

)
(x),

= �Eh1 , f1� ((x, h) 
→ f2(xh)F (x, hh2)) (x),

= f1(x)f2(xh1)F (x, h1h2).

On the other hand (see Example 2.3), we have a1 ∗ a2 = (f1(h1f2)) · δh1h2 ,
and hence

ΨM�H(a1 ∗ a2)(F )(x) = �Eh1h2 , f1(h1f2)�(F )(x) = f1(x)f2(xh1)F (x, h1h2).

Multiplicativity of the map ΨM�H now follows from linearity of ΨM�H and
bilinearity of both convolution products. �

Definition 5.2. Let M � H be an action groupoid of an action of a second-
countable Lie group H on a second-countable manifold M and let M �H# be
the associated étale groupoid. The Dirac bialgebroid of M � H is the space

Dirac(M � H) = ΨM�H(C∞
c (M � H#)).

The Dirac bialgebroid Dirac(M � H) inherits from C∞
c (M � H#) a

structure of a locally grouplike Hopf algebroid over C∞
c (M). Moreover, by

Proposition 4.1, we obtain on Dirac(M � H) a structure of a locally convex
coalgebra. Finally, as shown in [14], the multiplication on E ′

t(M � H) and
hence on Dirac(M � H) is separately continuous. We sum up these observa-
tions in the following proposition.

Proposition 5.3. The Dirac bialgebroid Dirac(M � H) of any action Lie
groupoid M �H is a locally convex bialgebroid with an antipode over C∞

c (M).

Remark 5.4. A locally convex bialgebroid is a bialgebroid (A,Δ, ε, μ),
equipped with a locally convex structure, such that Δ and ε are continu-
ous maps and μ is separately continuous. We do not know if the antipode
S on Dirac(M � H) is continuous in general, which would mean that it is a
locally convex Hopf algebroid.

Example 5.5. Let us take a look at the case when the group H acts trivially on
M . The associated action groupoid M�H is in this case just the trivial bundle
of Lie groups over M with fiber H, which will be denoted by M × H. The
multiplication and antipode can be expressed on generators by the formulas

�Eh1 , f1� ∗ �Eh2 , f2� = �Eh1h2 , f1f2�,

S(�Eh, f�) = �Eh−1 , f�.

In this case, C∞
c (M) is a central subalgebra of Dirac(M ×H). Moreover, from

the equality t ◦ inv = t, it follows that S is continuous. As a result, we see
that Dirac(M × H) is a locally convex Hopf algebra over C∞

c (M).
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Now, take any action Lie groupoid M � H. The spectral étale Lie
groupoid Gsp(Dirac(M �H)) of Dirac(M �H) is then isomorphic to the étale
groupoid M � H#. Moreover, since Dirac(M � H) is a locally convex coalge-
bra over C∞

c (M), we also have the bijection ΘM�H : Gsp(Dirac(M � H)) →
Spec(Dirac(M � H))′

R
).

Definition 5.6. The spectral action Lie groupoid

AGsp(Dirac(M � H))

of the Dirac bialgebroid Dirac(M � H) is the groupoid Gsp(Dirac(M � H)),
equipped with the smooth structure, such that the map ΘM�H is a diffeo-
morphism.

Define a map

Φagr
M�H : M � H → AGsp(Dirac(M � H)),

by

Φagr
M�H(x, h) = �Eh, f�|x,

where f ∈ C∞
c (M) is such that f |x = 1 ∈ C∞

c (M)x.

Theorem 5.7. Let M � H be an action groupoid of an action of a second-
countable Lie group H on a second-countable manifold M . The map

Φagr
M�H : M � H → AGsp(Dirac(M � H))

is an isomorphism of Lie groupoids.

Proof. Since M � H is isomorphic to M � H# and AGsp(Dirac(M � H))
is isomorphic to Gsp(Dirac(M � H)), the map Φagr

M�H is an isomorphism of
groupoids. By Theorem 4.4, it is also a diffeomorphism, which implies that
it is an isomorphism of Lie groupoids. �

Example 5.8. Let H be a Lie group, so that Dirac(H) is a locally convex
Hopf algebra over C. Example 4.5 shows that AGsp(Dirac(H)) = {δh |h ∈
H} is naturally diffeomorphic to H. The multiplication and inverse maps
on AGsp(Dirac(H)) are induced by the multiplication and the antipode on
Dirac(H). Namely, for any h, h′ ∈ H, we have

δhδh′ = δh ∗ δh′ = δhh′ ,

δ−1
h = S(δh) = δh−1 .
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