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Abstract: In this article, we deal with the following p-fractional Schrédinger-Kirchhoff equations with electro-
magnetic fields and the Hardy-Littlewood-Sobolev nonlinearity:

|ufPis

M(ul )= 4t + VOOLup~2u = A |

P dy | jufPes?u + k [u"%u, x €RV,
[RN

. PN-py
where0 <s<1<p,ps<N,p<q< ZpS*y, 0 < u < N, A, and k are some positive parameters, ps*u = N_psz is the

critical exponent with respect to the Hardy-Littlewood-Sobolev inequality, and functions V and M satisfy the
suitable conditions. By proving the compactness results using the fractional version of concentration compact-
ness principle, we establish the existence of nontrivial solutions to this problem.
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1 Introduction

In this article, we intend to study the following p-fractional Schrédinger-Kirchhoff equations with electro-
magnetic fields and the Hardy-Littlewood-Sobolev nonlinearity in R¥:

|uf?is

MU )(~A)5 0 + VOOIUP2u = A _[ dy| [uis2u + k [uft?u,  x € RY, (1.1)

v X =yl
where0 <s<1<p,ps<N,p<q< Zps"ju, 0 < u <N, A, and k are some positive parameters,

‘ u(x) - e"("'”'A(%)u(y)‘p
wia = [ T dxdy,
[RZN y
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N_ K
ps’fu = pN_ 582 is the critical exponent with respect to the Hardy-Littlewood-Sobolev inequality, V € C(R¥, Ry) is
an electric potential, A € C(RY, RY) is a magnetic potential, and V and M satisfy the following assumptions:

(V) V:RY - R is a continuous function and has critical frequency, i.e., V(0) = mir}v V(x) = 0. Moreover, the
XER

set Vo = {x € RY : V(x) < 1o} has finite Lebesgue measure for some 7, > 0.
(M) (my) The Kirchhoff function M : R — R* is a continuous and nondecreasing. In addition, there exists a
positive constant my > 0 such that M(t) = m, for allt € R;

(my) For some g € (p/q, 1], we have M (t) = aM(t)t for all t > 0, where M (t) = f(:M(s)ds.

When p = 2, we know that the fractional operator (-4)%, which up to normalization constants, can be
defined on smooth functions u as:

u(x) - e )'A(y)u(y)
Ix = y|Veze

(~A)5u(x) = 2lim _[

dy, x €RY,
0 RM\Be(x)

(see d’Avenia and Squassina [1]). There already exist several articles dedicated to the study of the Choquard
equation, and this problem can be used to describe many physical models [2,3]. Recently, d’Avenia and
Squassina [1] considered the following fractional Choquard equation of the form:

(=A)u + wu = (K*uP)luP?u, u€ HRN), N=3, (1.2)

and the existence of ground-state solutions was obtained by using the Mountain pass theorem and the Ekeland
variational principle. For more results on problems with the Hardy-Littlewood-Sobolev nonlinearity without
the magnetic operator case, see [4-9].

For the case p # 2, lannizzotto et al. [10] investigated the following fractional p-Laplacian equation:

(=A)pu=f(x,u) in Q,

(1.3)
u=0 in RMQ.

The existence and multiple solutions for Problem (1.3) were proved using the Morse theory. Xiang et al. [11]
dealt with a class of Kirchhoff-type problems driven by nonlocal elliptic integro-differential operators, and two
existence theorems were obtained using the variational method. Souza [12] studied a class of nonhomogeneous
fractional quasilinear equations in R¥ with exponential growth of the form:

(-A)pu+ VOOluP~?u = f(x,u) + Ah  in Q. (1.4)

Using a suitable Trudinger-Moser inequality for fractional Sobolev spaces, they established the existence of
weak solutions for Problem (1.4). In particular, Nyamoradi and Razani [13] considered a class of new Kirchhoff-
type equations involving the fractional p-Laplacian and Hardy-Littlewood-Sobolev critical nonlinearity. The
existence of infinitely many solutions was obtained by using the concentration compactness principle and
Krasnoselskii’s genus theory. For more recent advances on this kind of problems, we refer the readers
to [14-28].

On the other hand, one of the main features of Problem (1.1) is the presence of the magnetic field operator
A. When A # 0, some authors have studied the following equation:

-(Vu - iA)%u + V(x)u = f(x, |u)u, (1.5)
which has appeared in recent years, where the magnetic operator in equation (1.5) is given by:
—-(Vu - iA)%u = -Au + 2iA()-Vu + |JAQCOPu + iudivA(x).

Squassina and Volzone [29] proved that up to correcting the operator by the factor (1 - s), it follows that
(=A)Su converges to —(Vu - iA)?u as s — 1. Thus, up to normalization, the nonlocal case can be seen as an
approximation of the local one.
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Recently, many researchers have paid attention to the problems with fractional magnetic operator. In
particular, Mingqi et al. [30] proved some existence results for the following Schrdodinger-Kirchhoff-type
equation involving the magnetic operator:

M([uf; )(=M)5u + VOOu = f(x, [uhu  in RY, (L6)

where f satisfies the subcritical growth condition. For the critical growth case, Binlin et al. [31] considered the
following fractional Schrédinger equation with critical frequency and critical growth:

e5(=A)5u + VOOu = f(x, luDu + KOOlufa?u  in RY. W)

The existence of ground-state solution tending to trivial solution as € — 0 was obtained using the variational
method. Furthermore, Song and Shi [32] were concerned with a class of the p-fractional Schrédinger-Kirchhoff
equations with electromagnetic fields; under suitable additional assumptions, the existence of infinite solu-
tions was obtained using the variational method. More results about fractional equations involving the Hardy-
Littlewood-Sobolev and critical nonlinear can be found in [33-36].

Inspired by the aforementioned works, in this study, we are interested in the p-fractional Schrédinger-
Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity. As far as we
know, there have not been any results for Problem (1.1) yet. We note that there are many difficulties in dealing
with such problems due to the presence of the electromagnetic field and critical nonlinearity. In order to
overcome these difficulties, we shall adopt the concentration-compactness principles and some new techni-
ques to prove the (PS), condition. Moreover, we shall use the variational methods in order to establish the
existence and multiplicity of solutions for Problem (1.1). Here are our main results.

Theorem 1.1. Suppose that Conditions (V) and (M) are satisfied. Then there exists I > 0 such that if A > A* > 0,
then there exists at least one solution u, of Problem (1.1) and u; —» 0 as A — o,

Theorem 1.2. Suppose that Conditions (V) and (M) are satisfied. Then, for any m € N, there exists A, > 0 such
that if A > A, then Problem (1.1) has at least m pairs of solutions uy;, Uy -;, 1 = 1,2,..., m and u, +; > 0 as A — o,

This article is organized as follows. In Section 2, we present the working space and the necessary pre-
liminaries. In Section 3, we apply the principle of concentration compactness to prove that the (PS), condition
holds. In Section 4, we check that the mountain pass geometry is established. In Section 5, we use the critical
point theory and some subtle estimates to prove our main results.

2 Preliminaries
In this section, we shall give the relevant notations and some useful auxiliary lemmas. For other background
information, we refer to Papageorgiou et al. [37]. Let
WA RY, €) = {u € LPRY, C) : [ulsa < o},
where s € (0,1) and

) Xt p 1p
‘ u(x) - e'(X’Y)'A(Ty)u(y)‘

[ulsa = J. Ix _y|N+pS dxdy

The norm of the fractional Sobolev space is given by:

lullwsr @y ey = ([u]g,A + ||u||€1’)1/p~
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In order to study Problem (1.1), we shall use the following subspace of W3”(R, C) defined by:

E =
[RN

ue WyRY, ) : [Veoupdx < w’

with the norm

1/p
lule = l[u]é’,A . IV<x>|u|del .
[RN
Condition (V) implies that E = W3”(R", C) is continuous.
Next, we state the well-known Hardy-Littlewood-Sobolev inequality and the diamagnetic inequality,
which will be used frequently.

Proposition 2.1. (Hardy-Littlewood-Sobolev inequality [38, Theorem 4.3]) Let 1 < t,r < o, and 0 < y < N with
1 1

Tt % =2,u € L([RY), and v € L'(RY). Then, there exists a sharp constant C(N, u, t,r) > 0, independent of
u and v, such that

[uOlvy)l

oy G < CO Y-

[RNl

By the Hardy-Littlewood-Sobolev inequality, there exists C(N, i) > 0 such that

ﬂ' |04 [Pis [u(y)Pis

TR CQV, wlul*  forall u € E.

Also, there exists C(N, ) > 0 such that

[ ) P [y [P

dxdy < CQV, w|[ul[f* forall u € E.
R |X ‘J/|”

Lemma 2.1. (Diamagnetic inequality [1, Lemma 3.1, Remark 3.2]) For every u € Wj’p([RN,C), we obtain
|u] € WSP(RYN). More precisely, we have [|u|]s < [u]s 4.

3 The Palais-Smale condition

First, we define the set
C.(RM) = {u € C(RM) : supp(u) is a compact subset of R¥}

and denote by Co(RY) the closure of C.(R") with respect to the norm |1} = sup |7(x)|. The measure u gives the
norm: xR
lleall = sup |, M,
NECRY), |nl=1
where (4, n) = I[RNI]d,u.
In order to prove the compactness condition, we introduce the following fractional version of the con-
centration compactness principle.
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Lemma 3.1. (See Xiang and Zhang [39]) Assume that there exist bounded non-negative measures w, {, and v on

RY, and at most countable set {x;}ic; € Q\{0} such that

- u weaklyin WSP(RY),
J‘llun(X)l lunOIIP

X -y dy - w weakly * in M(RY),
|t P

oy | Il = v weakly * in M(RY).
|RN

Then, there exist a countable sequence of points {x;} C RYN and families of positive numbers {v;:i € I},

{G:i€1}, and {w; : i € I} such that
|[uQOl=u(y)IlP

s W+ 2 wids,

RY i€l

C=lup + 3 Gy

i€l
[ e
=)oy
[Rle_yVl

where I is at most countable. Furthermore, we have

.
julis + 3 viéi,
i€l

p

*
ws

2N-pt
<w and visCWN, WG N,

Sp,HVi

where is the Dirac mass of mass 1 concentrated at {x;} C RV,

Lemma 3.2. (See Xiang and Zhang [39]) Let {u,}, C WSP(RN) be a bounded sequence such that

U, — u weakly in WSP(RV),
J’llun(X)l lunO)IP

X — Y[V dy - w weakly * in M(RN),
|t P

-y Y |unlis — v weakly * in M(RY)
[RN

and define

- [[unCOl=[unIIP
Wo = lim limsu —+dXd B
R - pﬂ_!i |X _le DS y

o = lim limsup I |up P dx
R—o

n-© N
Pus Pis
Veo = lim limsupJ] [n QO [P dxdy.
R o S0 Ix =yl

Then, the quantities W, {», and V. are well defined and satisfy

|t OO s [ () Pis

limsup = | dv + Ve,
n-ow BN |X - )’l” [I-{[V
- p
limsup wdxdy = de + Weo,
now BN Ix = yI**p N

3D
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llmsupflunlpsdx Id(+ o

n—oo

In addition, the following inequality holds

p
* 2N-u

S,,,Hvofp“" SWe and Ve < C(N, W)V (32)
In order to prove the main results, we define the energy functional of Problem (1.1) as follows
|y [P () [P k
i = —M([u]sA) + j voolupdx - - [[ OO gy X urax. (33)
wr, 3 -yl a2

Under hypothetical Conditions (V) and (M), a simple test as in Willem [40], yields that J;, € CY(E, R) and its
critical points are the weak solutions of Problem (1.1), if

M([ulf )ReL(u, v) + Re I VOO ulP~2uvdx = ReI [I dy [ufPus~2u + k |uj2ulvdx, (34)
where
Mm—ﬂ”%) ~ ) - e o) - e ) a5
L(u,v) = H TG dxdy .
[RZN
andv € E.

Next, we state and prove the following lemma.

Lemma 3.3. Assume that Conditions (V) and (M) hold. Then, any (PS). sequence {un}, for J, is bounded in E
and c 2 0.

Proof. Suppose that {u,}, C E is a (PS) sequence for J;. Then, we have

¢+ 0D = () = T ([unll) + + [ VOOIuPax
p P

. r (3.6)
—dydx - — | Junl?7dx

zps AR |x = )’|” q I}-Q[V "

and
5 @), v) = RefM([un 2 )L1tn, v) + [ VOO Iunl? 2up7x
RN
(11 Pis - B L 3.7
- A I m ly | |un|Prs Uy (X)V [dx - k I |un|9%u,vdx
[RN [RN y IRN
= o(D)|lunllE-

It follows from (3.6), (3.7), and (M) that
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e + oDl 2 () = 0w )
= LWl - —MWMMWMM+{1‘%IV@WMMX
p Pl

[un (V)P |t () P
Ix -y

1

dydx (3.8)

*

q 2p,

1 1 1
2| = - =|mo[un)§ +[———] V(X)|uplPdx
JOHM ; qé e

p
o 1] [1 1]
L o
P q P q

This fact implies that {u,}, is bounded in E. We also obtain ¢ = 0 from (3.8). ]

> min a2

Now, we can show that the following compactness condition holds.

Lemma 3.4. Assume that Conditions (V') and (M) hold. Then, J, () satisfies (PS). condition, for allsp < N < sp? and

. W
A 5P (mosp,H)Zp;u'p.

c<|=-
qa 2,

Proof. Let {un}, be a (PS). sequence for J,. Then, by Lemma 3.3, we know that the sequence {un}, is bounded in
E. Moreover, we know that there exists a subsequence, still denoted by {u,}, such that u, - u weakly in E.
Moreover, we have

U, > u ae.in RN, wu, - u in LSRY), 1<s<p’. (3.9

Now, by the concentration-compactness principle, we may assume that there exist bounded non-negative
measures w, {, and v on RY, and an at most countable set {X;}ic; € Q\{0} such that

[[un QO [unWIP

p*
TR L

[RN
and

|t P

——dy /| [uplPis — .
Ix -y
[RN

Now, there exists a countable sequence of points {x;} C RV and families of positive numbers {v; : i € I},
{G:1€ 1}, and {w; : 1 € I} such that

= dx + ) Wby,

i€l

I [[uCOI=[uIP
x = y|Vee

( = |u|pS + ZG6xi:

i€l

[ua[Pis
|t
R

ulPis + ) viby.
i€l

We can also obtain

p -

2 *
Sp.Vi Tas < w; and v; < CWN,w¢G N

(3.10)
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In the sequel, we shall prove that

I=0. (3.11)

Suppose, to the contrary, that I # @. Then, we can define a smooth cut-off function such that ¢ € C;’(RY) and

0<¢<1,¢=1inB(x &), d(x)=0in [RN\B(xi, 2e). Lete > 0 and ¢£i = ¢[X'X" , Where i € I. It is not difficult to

£

see that {uy@/}, is bounded in E. Then, (/' (tty), un9}) — 0, which implies

‘ () — e AL Ny () ‘,, 3

x = y|Vee

Ml [ dxdy + [ VOOl Pgicdx
R RY (3.12)
|un () ot OO P 1)

|x =yl

=~ Re{M([unl?.0) L(ttr, ungD} + A[] dydx + k [ [unf1g/00)dx + 0,(D),
R™ RY

where

Xx+y

() — &AL Ny (y)

p-2 . X+y - -
() = €045 D, (9P - )

b=y

Lty wg) = [ dxdy,
IRZN

By the Holder inequality, we know that

| Re{M ([t 18 )L (Un, un@D}
p (p-Dip

Xty

‘ () - AL Ny ()

1/p

Ploi(x) = di(v)IP
J'J' [un (| |¢£(X3V+ s¢5()’)| dxdy
R b=y P (313)

IA
o

dxdy

b =y

IA

uCOPI800) = BiP
Ul

by Y

[RZN
On the other hand, as in the proof of Lemma 3.4 in Zhang et al. [24], we can obtain that

lunCOP 19100 ~ g P
lim li dxdy = 0. .
e .

It follows from (3.12)-(3.14) and the diamagnetic inequality that
mow; < /1\/1'. (3.15)
This fact together with (3.8) implies that

Wi
M vi=0 or D) v 2 A meS, )%,

If (II) occurs for some iy € I, then

C= }lg?o [Jx(un) - 5(],{ (un): un>

[t ()Pt |t () [P

b e

11
qa 2,

2

dydx (3.16)

_b W
A 2sup (mOSp,H)ZI’s',ﬂ’.

1 1 1
o el AR el
q 2, q 2,
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This is an obvious contradiction to the choice of c¢. This completes the proof of (3.11).

Next, we shall prove the concentration at infinity. To this end, set ¢, € C;°(RY) for R > 0, and satisfies
¢r(x) = 0for|x| < R, ¢p(x) = 1for|x| > 2R,0 < ¢, < 1,and |Vg,| < %. Invoking Theorem 2.4 of Xiang and Zhang
[39], we define

We = lim limsup

R

TE

J |[unCOI= [Un I P P (X)
RZN

n—o

. . e
(e = lim limsup | |up|’ ¢pdx
R n—oo N

R

and

Veo = lim limsup

J’ |14 () P [Un(y) s i (X) dxdy.

L Ix =yl
By Lemma 3.2, we have
U () |Pies |1 Pis (X
limsupI (0O n(y)”|u Ol )dxdy = Idv + Voo,
n—oo [RZN |X _yl [RN
|[unCOI=[urWIIP P (x)
limsup - dxdy = | dw + W,
] J
timsup [ fuFdx = [d¢+ g
n—oo [RN |RN
Moreover,
p N-p
7 =
Sp,vap“’S SWwe and Vo< CN, )N . 317
Similar discussion as earlier yields
Zplj
() V=0 or (V) Vo2 AmeS,p)%.
Furthermore, proceeding as in the proof of (3.14), we can obtain v.» = 0. Thus,
Un (V)P | ()P u(y)|Pu|u(x)P
HI n(Y)[Pou| rf I " dydx - J’J'I O[] (u I "dydx  as n — w, 318)
R Ix - yl RV |x = )’|

By the Brézis-Lieb lemma [41], we have

OO WO o o [ a0 - uQOis |un(y) = uQ)IPis
b -yl b b -yl

f [145,00) P | (y) Pl

dxdy + o(1). (3.19
TR y + o). (319)

mw=£

Hence, (3.18) and (3.19) imply that

- Ps |un(Y) = Ds
[[ 100 = WOV = WOy 1y g g 320
o x -yl
Moreover, it is easy to see that
IGW@W*W@%%M@WM&MW&%MQWM~0 as n - 3.21)

[RN
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By (3.20), (3.21), and the Hoélder inequality, we have
(5 (n) = J{(w), un = u) = Re{M([un]§ A)L(Un, tn ~ u) = M([U] A)L(W, Uy ~ 1)
+ IV(X)(lun(X)lp_zun(X) = [COPu))Un(x) = u(x))dx
[RN

|un(x) = uQO)Pis un(y) = u(y)|Pis
-2 dxd
RL b=y Y

-k I(Iun(X)Iq‘zun(X) = QO ?u(x))(un(x) - u(X))dX]
[RN

> Re

Ml ()7 ([ ) = ()]

+ M7 ()% - (unlla?]

p-1 1 1

+ jV(x)|un|de' JV(x)|un|del - IV<x)|u|de]
RY RY RY

+ jV<x)|u|pdx] IV(x)|u|de' - IV<x>|un|pdx’
RY RY RY

=R

[¢)

1

P

+ || [ veoluapax| -
[RN

1
P

_[ V(x)|u|1’dx’
[RN

p-1 p-1
P

< || [ veorupdx| -
[RN

J’ VOOufPdx
|RN

Since u, — uin E and J;(u,) — 0 as n — « in E*, we can conclude that

;) = J; (W), Uy — 1) = 0

as n — o,
It follows from u, — u a.e in R and the Fatou lemma that
[ulf 4 < liminflu,)b, = &4
n—oo

and

_[V(x)|u|pdx < liminf IV(X)|un|de = d,.

RY RN
We note that
p-1
1

M@)d;, " - MuP (UL |2 0

(d)r - ([l 4y
| J

and

p-1

IV(X)|u|de’ >0,
[RN

1

p

()b - )7 -

IV(x)|u|de
[RN

DE GRUYTER

(3.22)

(2t = Q) M ) () = M) [0 |

(3.23)

(3.24)

(3.25)

(3.26)
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since g(t) = M (t)tpT?1 is nondecreasing for t > 0. Thus, by
Jyup) = J; W), up —u)y >0 asn- o

and (3.20)—(3.26), we obtain

0 = liminfRe

n—o

|2 % = QI ) = MU )7

R R R R

IV(X)|u|de’

IV<x>|un|dey -

+ jv<x>|un|pdx’ - IV(x)|u|de’

- (327)

M@)d; P - MU (Ul

> Ref[(d)? — ([ul2.]

1

p

+ () - ()7 - IV(x>|u|de’ .
[RN

[veorupax
[RN

It follows from (3.25)—(3.27) that
P

X+y

u(x) - e“*‘”"*[ v ]u(y)

- dxdy =d; and V(x)|ulPdx = d..
== bt :

Then, ||uy||le = |Julle- We note that E is a reflexive Banach space; thus, u, — u strongly converges in E. This
completes the proof of Lemma 3.4. O

4 Auxiliary results

First, we shall prove that functional J, has a mountain path structure.

Lemma 4.1. Let Conditions (V) and (M) hold. Then,
(C1) There exist some constants ay, B, > 0 such that J,(w) >0 if u € Bg\{0} and J,(w) =z a; if u € 0Bg,

where Bg = {u € E : ||ul|z < B};
(C2) We have

Jiw) - - asu€FCE, |[ulg—,

where F is a finite-dimensional subspace of E.
Proof. It follows from the Hardy-Littlewood-Sobolev inequality that there exists C(N, ¢) > 0 such that

dxdy < C(N, w|[ul[f* forall u € E.

f |t OO Pis | (y ) Pis
Ix =yl

By virtue of (V) and (M), we obtain

A 2p*
—CQV, wllull™ - Chuli. 4D
2ps’ P

J,@) = min -

oa 1
'p

Since ps’fy, q > p, we know that Conclusion (C;) of Lemma 4.1 holds.
In order to prove Conclusion (C;) of Lemma 4.1, we note that it follows from Condition (m;) that
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— M(t
M(t) < %t% = Cot%, forall t 2ty > 0. 4.2)

ty
Let w € C;°(RY, €) with ||w|| = 1. Thus,

1
(tw) < —t + —tP tZP
h PP W, -[ Ix -yl

dydx - gtq |wld.

Note that all norms are equivalent in a finite-dimensional space. Then, the aforementioned fact together with
p< S < Zp:y implies that Conclusion (C;) of Lemma 4.1 holds. ]

Invoking Binlin et al. [31, Theorem 3.2], we have

.[ [ ) oOIP

e 9 € CRY, 9y =11 = 0.

Forany1>(¢>0,let¢, € Cy(RY) with |¢,lq =1 and supp ¢, C By, (0) be such that

[[ |¢((X) - ¢((y)|p dxdy < CLPN-W-ps)plq

|X y|N+ps
and define
'ﬁ((X) = eiA(O)X(P((X), l/))t,((x) = lﬁ;(/l_TX) 4.3)
and
1 14
= - . 4.4)
(N=-ps)| 2p}, - P
So, we have
00 - el aceiny, qyp K
b e [[H = S| O veom e o [ 1o
[RZN RN [RN
i T T, 1/0’
co W’((X) — ey A((A'x+2 y)/p)l/)((y)p) tb k
< gt =gl [[ P dedy| +— [ VOOl Pdx - 105 [y dx
W Yy | q v

A
= X Wy,

where

1/o
)=

H [u(x) — el A+ D)y (y) P

=y o

j VOnOlupax - j |u?dx.

[RN

Since q > p/a, we can find ¢, € [0, +) such that

H [ (x) = ei(x—y)-A((ATxﬂ’y)/p)w(_(y)|p

TG dxdy

CO
max Wy(ty),) < —t§ lo
t=0 p

¢P

+ L[Vl pdx.
P v

Using the aforementioned analysis, we can prove the following conclusions.

Lemma 4.2. For each { > 0, there exists Aqg = Ao({) > 0 such that
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X) — elx=)-A(@"x+A"y)/p) p -1 2p-1
_U |¢(( ) lp(()’)| dxdy < C((pN_(N_ps)q)/q . 2P 22p
Ix - y|Vree p-ps ps

for all 0 < Ay < A and some constant C > 0 depending only on [¢];

Proof. For each ¢ > 0, we know that

J], I (x) = ei(x-,v)~A((A’xﬂiv)/p)w((y)|p

b =y

dxdy

|0 X6, (x) ~ el XD IPIUO g (y)Pp

>

R™
1,00 = GOIP
A |

[RZN

|9, ()P |l AO-AGXANIP) - q)p

Ix = y|Vpe

Note that

(x = Y)(A®) - A

p

)
eI AO-A@X*AP) — 1P = 2P sin? .
Let y € B,, and take |x - y| < 1/ |¢,[*¥ such that x| < r; + 1/ 115 Then, we have
y ¢ y 1L ¢ 1L

A'x + ATy
p

< X o+ = |15,
D I |¢(|

By the continuity of the function A, there exists A4y > 0 such that for any A > A, one has

ATx + Ay
A0)-A T

SCIoH" for blsn and sne g9,
which means
| i) (AO-A@X+AYP) — P < |x - y|PP |¢(|‘P/S .
Let {> 0 and y € By, and define
Ney =

XERYN:|x-y| <

1
|¢(| L.

(
Then, for all A > A, > 0, we obtain

|¢((y)|17|ei(X‘Y)'(A(O)—A((ATX+ATy)/p)) - 1P
dxd
[,!'z[z [x = y|N*ps Ly

i(x=y)-(AO)-AAX+AY)[p)) — 1P

I|¢((y)|pdy _[ € [x - y[v+ps

B,{

+ [lgordy [

By, [RN\N(
j|¢((y)| dy j PO ol [l800rey |
) i

c By, RM\N;

|0y (A=A X+ D) Ip) - 1}p

Ix = y|Vps

IN

- y|N+PSdX

IA

ps 4+ Z_rps,
P‘PS( PSZ

dxdy.

- 13

(4.5)
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This completes the proof of Lemma 4.2. O

It follows from V(0) = 0 and suppg, C B, (0) that

V(A™x) < {p forall |x]<r, and A>A*
|¢(|p
Thus,
Co . plo o 2p-1 221 tf
max Wy(td,) < —t§'°(C{PN-WN=pIDIq 4+ ———Ps + ——ps)l/o 4 =, (4.6)
na. A(ts) p U (C¢ p_pS( pSC) p(

where C > 0 and C, > 0. So, for any A > max{Ay, A*}, we can obtain

op-1 op-1 o |
C{PN-0N=ps)D)/q + s+ —rs| o+ Loma, 4.7
p

p -

CO |o
maxJ, (¢t <|=¢?
na Lt ) Pl

So we have the following conclusion.

Lemma 4.3. Let Conditions (V) and (M) hold. Then, for each k > 0, there exists Ax > 0 such that for any
0 <Ac <A, and €, € E, we have that ||| > 0,,];(t€) < 0, and

_»p
max J, (t€) < kA #u?, (4.8)
te[0,1]

Proof. Select { > 0 so small that

G plo N 2P~ 1o té)

—t§"?°|c¢PN-WN=-ps)DIq + (ps + _(ps +—(<k

p p-ps p
Lety, ; € E Dbe the function defined by (4.3). Let Ac = min{Ao, A*} and choose 3 > 0 such that i‘}||l,bM|| >, and
Lt ) <0forallt= 1. By (4.7), setting &, = ?}11,1),\, » We can obtain the conclusion of Lemma 4.3. |

Now, fix m* € N. Then, we can select m* functions ¢(i € C;°(RY) such that supp ¢}n supp ¢, =
@,i#k ¢ |s =1and
J—J- |¢((X) - ¢((Y)|p

=y dxdy < C{(PN-(N=ps)D)/q,

Let 7" > 0 be such that supp ¢} C Bi(0) for i = 1,2,..., m*. Define
P00 = e“O%l(x) 4.9)
and

v 00 = wg(/l-fx). (4.10)
Let

H ,{’(‘* = span

1 2 m*
l/JM, l/)M, ...,l/)/l’(’.

. * : *
Since for each u = Z,cy; , € Hjg , we have

5

20s et
i=1

14

’

S,A

m*
[veompdx = Y1ep [ voorw; pax
RN i=1 RV
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and
1 P: psf 1
] deym_ [ lusax
zps,leZN Ix =yl q RN
m 1 |Ciwi((Y) |p:*‘ |Cil,bi((X) |p:u 1 ‘
= Yo — o dyde + [ e frfax.
i=1 ps,y[RZN Ix =yl q e
Hence,

m*
JAOEYDIAC)
i=1
for € > 0. Similar to the previous discussion, we have

. o .
Jicl ) < A H(|efy)
and we can obtain the following estimate:
p-1 2p-1 p
maxh(u) < Cm* &tg/G(C((pN—(N—ps)q)/q + Z_Cps + Z_(ps)llo + ti( N
ueHgy p pb-ps ps p

for any ¢ —» 0 and C > 0. From (4.11), we obtain the following lemma.

- 15

(4.11)

Lemma 4.4. Let Conditions (V) and (M) hold. Then, for each m* € N, there exists A+ > 0 such that for each

0 < Ay < A and m*-dimensional subspace F),. the following holds

_r
max J,(u) < kA #up,
MEF/\M*

Proof. Let { > 0 be small enough so that

1 s 2210—1(!)5)1/(7 té}(
+ — + —(| < k.
p-Dps ps p

Cm*lﬁtg’/ T(CEPN-WN-pDIq +
p

Set Fy» = H ,{'} = span l/)i o lpi o l/)/{"( . Thus, the conclusion of Lemma 4.4 follows from (4.11).

5 Proofs of main results

In the section, we shall prove the existence and multiplicity of solutions for Problem (1.1).

Proof of Theorem 1.1. Let 0 < k < gp. By Lemma 3.4, we can select Ay > 0 and for 0 < A < A, and define the

minimax value as follows:

¢ = inf maxJ, (tey),
YETRE[0,1]

where
L={y €C(0,1,E): y(0) =0 and y(Q) = é}.

By Lemma 4.1, we know that

P
Ay < C S KA Woup,
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By virtue of Lemma 3.4, we can see that J, satisfies the (PS). condition, and there isu, € E such that J; (u;) = 0
and J;(u;) = ¢ Then, u, is a nontrivial solution of Problem (1.1). Moreover, since u; is a critical point of J;, by
(M) and y € [p, p/], we have

K W > L) = J(w) - %]A/ (wuz

1. 1 1 1
= ;M([HA]QA) - ;M([uA]E,A)[uA]g,A + [5 - ;IE[IV(X)IHAIPUIX

+‘1_LA

J' |u/\()})|p:#|u/1(x)|p:u

R |x =yl

1 1
dydx + k | [= [wp? - = |uyl?
Ly IQ[VT 2 g ™

dx G1)

22 - At + £ - 2| [reonapen
P vl

1 1 2, 2y 1 1
fio L AH'”AO}N OO [_ - L oo
v h oyl y o4l
So, we have u; » 0 as A — . This completes the proof of Theorem 1.1. O

Proof of Theorem 1.2. Denote the set of all symmetric (in the sense that -Z = Z) and closed subsets of E by .
For each Z € }, define gen (Z) to be the Krasnoselski genus and

j(Z) = min gen(«(Z) N 0B,),
(ED*
where I,» is the set of all odd homeomorphisms ¢ € C(E, E), and g, is the number from Lemma 4.1. Then j is a
version of Benci’s pseudoindex [42]. Let

G = inf supf,(w),1<i<m*
j(Z)ZquZ

Since J,(u) 2 a; for allu € aBgA and since j(Fp) = dimE,,+ = m*, we have

__r
<o s S S sup J(u) £ KA e,
UEHypm*

_p
Lemma 3.4 implies that J, satisfies the (PS), condition at all levels ¢ < gpd #.?. By the critical point theory, we
know that all ¢y; are critical levels, i.e., J; has at least m* pairs of nontrivial critical points satisfying

__r
ay S]A(u,\) < KA e,

Therefore, Problem (1.1) has at least m* pairs of solutions and u, 4; > 0 as A - . O
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