The automorphism group of the zero-divisor digraph of matrices over an antiring

David Dolžan * (D)
Faculty of Mathematics and Physics, University of Ljubljana,
Jadranska 21, 1000 Ljubljana, Slovenia and IMFM, Jadranska 19, 1000 Ljubljana, Slovenia
Gabriel Verret (
Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Received 26 September 2019, accepted 29 May 2023, published online 3 October 2023

Abstract

We determine the automorphism group of the zero-divisor digraph of the semiring of matrices over an antinegative commutative semiring with a finite number of zero-divisors.

Keywords: Automorphism group of a graph, zero-divisor graph, semiring.
Math. Subj. Class. (2020): 05C60, 16Y60, 05C25

1 Introduction

In recent years, the zero-divisor graphs of various algebraic structures have received a lot of attention, since they are a useful tool for revealing the algebraic properties through their graph-theoretical properties. In 1988, Beck [3] first introduced the concept of the zerodivisor graph of a commutative ring. In 1999, Anderson and Livingston [1] made a slightly different definition of the zero-divisor graph in order to be able to investigate the zerodivisor structure of commutative rings. In 2002, Redmond [15] extended this definition to also include non-commutative rings. Different authors then further extended this concept to semigroups [6], nearrings [4] and semirings [8].

Automorphisms of graphs play an important role both in graph theory and in algebra, and finding the automorphism group of certain graphs is often very difficult. Recently, a

[^0](1) This work is licensed under https://creativecommons.org/licenses/by/4.0/
lot of effort has been made to determine the automorphism group of various zero-divisor graphs. In [1], Anderson and Livingston proved that $\operatorname{Aut}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)$ is a direct product of symmetric groups for $n \geq 4$ a non-prime integer. In the non-commutative case, the case of matrix rings and semirings is especially interesting. Thus, it was shown in [10] that, when p is a prime, $\operatorname{Aut}\left(\Gamma\left(\mathrm{M}_{2}\left(\mathbb{Z}_{p}\right)\right)\right)$ is isomorphic to $\operatorname{Sym}(p+1)$, the symmetric group of degree $p+1$. More generally, it was proved in [13], that $\operatorname{Aut}\left(\Gamma\left(\mathrm{M}_{2}\left(\mathbb{F}_{q}\right)\right)\right) \cong \operatorname{Sym}(q+1)$. In [18], the authors determined the automorphism group of the zero-divisor graph of all rank one upper triangular matrices over a finite field, and in [16] they determined the automorphism group of the zero-divisor graph of the matrix ring of all upper triangular matrices over a finite field. Recently, the automorphism group of the zero-divisor graph of the complete matrix ring of matrices over a finite field has been found independently in [17] and [20].

In this paper, we study the zero-divisor graph of matrices over commutative semirings. The theory of semirings has many applications in optimization theory, automatic control, models of discrete event networks and graph theory (see e.g. [2, 5, 12, 19]) and the zerodivisor graphs of semirings were recently studied in [9, 7, 14]. For an extensive theory of semirings, we refer the reader to [11]. There are many natural examples of commutative semirings, for example, the set of nonnegative integers (or reals) with the usual operations of addition and multiplication. Other examples include distributive lattices, tropical semirings, dioïds, fuzzy algebras, inclines and bottleneck algebras.

The theory of matrices over semirings differs quite substantially from the one over rings, so the methods we use are necessarily distinct from those used in the ring setting. The main result of this paper is the determination of the automorphism group of the zerodivisor digraph of a semiring of matrices over an antinegative commutative semiring with a finite number of zero-divisors (see Theorem 3.12).

2 Definitions and preliminaries

2.1 Digraphs

A digraph Γ consists of a set $\mathrm{V}(\Gamma)$ of vertices, together with a binary relation $\rightarrow \mathrm{on} \mathrm{V}(\Gamma)$. An automorphism σ of Γ is a permutation of $\mathrm{V}(\Gamma)$ such that $u \rightarrow v \Longleftrightarrow \sigma(u) \rightarrow \sigma(v)$. The automorphisms of Γ form its automorphism group $\operatorname{Aut}(\Gamma)$.

Let Γ be a digraph and let $v \in \mathrm{~V}(\Gamma)$. We write $\mathrm{N}^{-}(v)=\{u \in \mathrm{~V}(\Gamma): u \rightarrow v\}$ and $\mathrm{N}^{+}(v)=\{u \in \mathrm{~V}(\Gamma): v \rightarrow u\}$. If, for $u, v \in \mathrm{~V}(\Gamma)$, we have $\mathrm{N}^{-}(u)=\mathrm{N}^{-}(v)$ and $\mathrm{N}^{+}(u)=\mathrm{N}^{+}(v)$, then we say u and v are twin vertices. The relation \sim on $\mathrm{V}(\Gamma)$, defined by $u \sim v$ if and only if u and v are twin vertices, is clearly an equivalence relation preserved by $\operatorname{Aut}(\Gamma)$. For $v \in \mathrm{~V}(\Gamma)$, we shall denote by \bar{v} the \sim-equivalence class of v. Let $\bar{\Gamma}$ be the graph with these equivalence classes as vertices and $\bar{u} \rightarrow_{\bar{\Gamma}} \bar{v}$ if and only if $u \rightarrow_{\Gamma} v$. For $\sigma \in \operatorname{Aut}(\Gamma)$ we denote by $\bar{\sigma}$ the induced automorphism of $\bar{\Gamma}$. An automorphism $\sigma \in \operatorname{Aut}(\Gamma)$ is called regular if $\bar{\sigma}$ is the identity map.

2.2 Semirings

A semiring is a set S equipped with binary operations + and \cdot such that $(S,+)$ is a commutative monoid with identity element 0 , and (S, \cdot) is a semigroup. Moreover, the operations + and \cdot are connected by distributivity and 0 annihilates S.

A semiring S is commutative if $a b=b a$ for all $a, b \in S$, and antinegative if, for all $a, b \in S, a+b=0$ implies that $a=0$ or $b=0$. Antinegative semirings are also called
zerosum-free semirings or antirings. The smallest nontrivial example of an antiring is the Boolean antiring $\mathbb{B}=\{0,1\}$ with addition and multiplication defined so that $1+1=$ $1 \cdot 1=1$.

Let S be a semiring. For $x \in S$, we define the left and right annihilators in S by $\operatorname{Ann}_{L}(x)=\{y \in S: y x=0\}$ and $\operatorname{Ann}_{R}(x)=\{y \in S: x y=0\}$. If S is commutative, we simply write $\operatorname{Ann}(x)$ for $\operatorname{Ann}_{L}(x)=\operatorname{Ann}_{R}(x)$. We denote by $\mathrm{Z}(S)$ the set of zerodivisors of S, that is $\mathrm{Z}(S)=\{x \in S: \exists y \in S \backslash\{0\}$ such that $x y=0$ or $y x=0\}$. The zero-divisor digraph $\Gamma(S)$ of S is the digraph with vertex-set S and $u \rightarrow v$ if and only if $u v=0$.

It is easy to see that if $n \geq 1$ and S is a semiring, then the set $\mathrm{M}_{n}(S)$ of $n \times n$ matrices forms a semiring with respect to matrix addition and multiplication. If S is antinegative, then so is $\mathrm{M}_{n}(S)$. If S has an identity 1 , let $E_{i j} \in \mathrm{M}_{n}(S)$ with entry 1 in position (i, j), and 0 elsewhere. For $s \in S$, define $s E_{i j} \in \mathrm{M}_{n}(S)$ as the matrix with entry s in position (i, j), and 0 elsewhere.

3 The automorphisms of the zero-divisor digraph

The following fact will be used repeatedly.
Lemma 3.1. Let S be a semiring. If $A, B \in S$ and $\sigma \in \operatorname{Aut}(\Gamma(S))$, then

$$
\sigma\left(\operatorname{Ann}_{L}(A)\right)=\operatorname{Ann}_{L}(\sigma(A)) \quad \text { and } \quad \sigma\left(\operatorname{Ann}_{R}(A)\right)=\operatorname{Ann}_{R}(\sigma(A))
$$

Proof. We have

$$
\begin{aligned}
X \in \sigma\left(\operatorname{Ann}_{L}(A)\right) & \Longleftrightarrow \sigma^{-1}(X) \in \operatorname{Ann}_{L}(A) \\
& \Longleftrightarrow \sigma^{-1}(X) A=0 \\
& \Longleftrightarrow X \sigma(A)=0 \\
& \Longleftrightarrow X \in \operatorname{Ann}_{L}(\sigma(A))
\end{aligned}
$$

The proof of the second part is analogous.
Lemma 3.2. Let S be an antiring and let $\Gamma=\Gamma(S)$. If $A, B \in S$ and $\sigma \in \operatorname{Aut}(\Gamma)$, $\frac{\text { then } \sigma(A+B)}{\sigma(A)+\sigma(B)}$.

Proof. Using antinegativity, we have

$$
\begin{aligned}
X \in \operatorname{Ann}_{L}(\sigma(A+B)) & \Longleftrightarrow X \sigma(A+B)=0 \\
& \Longleftrightarrow \sigma^{-1}(X)(A+B)=0 \\
& \Longleftrightarrow \sigma^{-1}(X) A=\sigma^{-1}(X) B=0 \\
& \Longleftrightarrow X \sigma(A)=X \sigma(B)=0 \\
& \Longleftrightarrow X(\sigma(A)+\sigma(B))=0 \\
& \Longleftrightarrow X \in \operatorname{Ann}_{L}(\sigma(A)+\sigma(B)) .
\end{aligned}
$$

We have proved that $\operatorname{Ann}_{L}(\sigma(A+B))=\operatorname{Ann}_{L}(\sigma(A)+\sigma(B))$. An analogous proof yields $\operatorname{Ann}_{R}(\sigma(A+B))=\operatorname{Ann}_{R}(\sigma(A)+\sigma(B))$. This implies that $\sigma(A+B)$ and $\sigma(A)+\sigma(B)$ are twin vertices.

Definition 3.3. Let S be a commutative semiring, let $n \in \mathbb{N}$ and let $A \in \mathrm{M}_{n}(S)$ with (i, j) entry $a_{i j}$. For every $i, j \in\{1, \ldots, n\}$, we define $C_{i}(A)=\bigcap_{k=1}^{n} \operatorname{Ann}\left(a_{k i}\right)$ and $R_{j}(A)=\bigcap_{k=1}^{n} \operatorname{Ann}\left(a_{j k}\right)$. Let $\mathcal{A}_{R}(A):=\left(C_{1}(A), \ldots, C_{n}(A)\right) \in \mathcal{P}(S)^{n}$ and $\mathcal{A}_{L}(A):=$ $\left(R_{1}(A), \ldots, R_{n}(A)\right) \in \mathcal{P}(S)^{n}$, where $\mathcal{P}(S)$ denotes the power set of S.

The next theorem characterizes the twin vertices of $\Gamma\left(\mathrm{M}_{n}(S)\right)$.
Theorem 3.4. Let S be a commutative antiring, let $n \in \mathbb{N}$ and let $A, B \in \mathrm{M}_{n}(S)$. Then A and B are twin vertices of $\Gamma\left(\mathrm{M}_{n}(S)\right)$ if and only if $\mathcal{A}_{L}(A)=\mathcal{A}_{L}(B)$ and $\mathcal{A}_{R}(A)=$ $\mathcal{A}_{R}(B)$.

Proof. Let $a_{i j}$ and $b_{i j}$ be the (i, j) entry of A and B, respectively. Suppose first that A and B are twin vertices of $\Gamma\left(\mathrm{M}_{n}(S)\right)$ and assume that $\mathcal{A}_{R}(A) \neq \mathcal{A}_{R}(B)$. This implies that, for some $i \in\{1, \ldots, n\}$, we have $C_{i}(A) \neq C_{i}(B)$. Swapping the role of A and B if necessary, there exists $s \in S$ such that $s \in C_{i}(A)$ and $s \notin C_{i}(B)$. Therefore, there exists $k \in\{1, \ldots, n\}$ such that $s \notin \operatorname{Ann}\left(b_{k i}\right)$. Now, let $C=s E_{i k} \in \mathrm{M}_{n}(S)$ and observe that $A C=0$ but $B C \neq 0$, so $\mathrm{N}^{+}(A) \neq \mathrm{N}^{+}(B)$, which is a contradiction with the fact that A and B are twin vertices. We have thus proved that $\mathcal{A}_{R}(A)=\mathcal{A}_{R}(B)$. A similar argument yields that $\mathcal{A}_{L}(A)=\mathcal{A}_{L}(B)$.

Conversely, assume now that $\mathcal{A}_{L}(A)=\mathcal{A}_{L}(B)$ and $\mathcal{A}_{R}(A)=\mathcal{A}_{R}(B)$. Suppose there exists $X \in \mathrm{M}_{n}(S)$ such that $A X=0$. Therefore, for all $i, j \in\{1, \ldots, n\}$ we have $\sum_{k=1}^{n} a_{i k} x_{k j}=0$. Since S is an antiring, this further implies that $a_{i k} x_{k j}=0$ for all $i, j, k \in\{1, \ldots, n\}$. So, $x_{k j} \in \operatorname{Ann}\left(a_{i k}\right)$ and therefore $x_{k j} \in C_{k}(A)=C_{k}(B)$ for all $k \in\{1, \ldots, n\}$. Thus, for all $i, j, k \in\{1, \ldots, n\}$, we have $x_{k j} \in \operatorname{Ann}\left(b_{i k}\right)$. This yields $b_{i k} x_{k j}=0$ for all $i, j, k \in\{1, \ldots, n\}$, so $B X=0$. Thus, we have proved that $\mathrm{N}^{+}(A) \subseteq \mathrm{N}^{+}(B)$. By swapping the roles of A in B we also get $\mathrm{N}^{+}(B) \subseteq \mathrm{N}^{+}(A)$, so $\mathrm{N}^{+}(A)=\mathrm{N}^{+}(B)$. A similar argument yields that $\mathrm{N}^{-}(A)=\mathrm{N}^{-}(B)$, thus A and B are twin vertices.

Definition 3.5. Let S be a commutative semiring and let $\alpha \in S \backslash \mathrm{Z}(S)$. We say that $\alpha=e_{1}+e_{2}+\cdots+e_{s}$ such that $e_{i} \neq 0$ for all i and $e_{i} e_{j}=0$ for all $i \neq j$ is a decomposition of α of length s. The length $\ell(\alpha)$ of α is the supremum of the length of a decomposition of α (note that $\ell(\alpha)$ can be infinite). We say that α is of maximal length if $\ell(\alpha) \geq \ell(\beta)$ for all $\beta \in S \backslash \mathrm{Z}(S)$.

A semiring S is decomposable if $S \backslash Z(S)$ contains an element of length at least 2, otherwise it is indecomposable.

Lemma 3.6. Let S be a commutative antiring and let $\alpha \in S \backslash \mathrm{Z}(S)$ be of finite maximal length s with decomposition $\alpha=e_{1}+e_{2}+\cdots+e_{s}$. Then, for every $i \in\{1, \ldots, s\}$, the subsemiring $e_{i} S$ is indecomposable.

Proof. Suppose that $e_{i} S$ is decomposable for some $i \in\{1, \ldots, s\}$, say $i=1$ without loss of generality. By definition, there exists $e_{1} w \in e_{1} S \backslash \mathrm{Z}\left(e_{1} S\right)$ such that $e_{1} w=f_{1}+f_{2}$, where $f_{1}, f_{2} \in e_{1} S \backslash\{0\}$ and $f_{1} f_{2}=0$. For all $j \neq 1$, we have $e_{j} e_{1} w=0$ and thus $e_{j} f_{1}=e_{j} f_{2}=0$ by antinegativity. Let $\beta=e_{1} w+e_{2}+\cdots+e_{s}$.

Suppose that $\beta x=0$ for some $x \in S$. By antinegativity, we have $\left(e_{1} w\right)\left(e_{1} x\right)=0$ and $e_{2} x=\cdots=e_{s} x=0$. Since $e_{1} w$ is not a zero-divisor in $e_{1} S$ this implies that $e_{1} x=0$ and therefore also $\alpha x=0$. However, α is not a zero-divisor, so we can conclude that $x=0$.

This shows that $\beta=f_{1}+f_{2}+e_{2}+\cdots+e_{s}$ is not a zero-divisor in S, which is a contradiction with the maximal length of α.

We shall investigate commutative antirings with identity where 1 is an element of finite maximal length. The next lemma shows that in this case, we can study the automorphisms of the zero-divisor digraph of the matrix ring componentwise.

Lemma 3.7. Let S be a commutative antiring and suppose $1 \in S$ is of finite maximal length s with decomposition $1=e_{1}+e_{2}+\cdots+e_{s}$. Let $n \in \mathbb{N}$ and $\sigma \in \operatorname{Aut}\left(\Gamma\left(\mathrm{M}_{n}(S)\right)\right)$. Then there exists $\omega \in \operatorname{Sym}(s)$ such that, for every $r \in\{1, \ldots, s\}$, we have $\sigma\left(e_{r} \mathrm{M}_{n}(S)\right)=$ $e_{\omega(r)} \mathrm{M}_{n}(S)$.

Proof. Let $r \in\{1, \ldots, s\}$, let $i, j \in\{1, \ldots, n\}$ and let $B=\sigma\left(e_{r} E_{i j}\right)$. So, $\overline{\sigma\left(e_{r} E_{i j}\right)}=$ $\overline{\sum_{k=1}^{s} e_{k} B}$. By Lemma 3.2, we have $\overline{e_{r} E_{i j}}=\overline{\sum_{k=1}^{s} \sigma^{-1}\left(e_{k} B\right)}$. Since S is antinegative, for every $k \in\{1, \ldots, s\}$, there exists $f_{k} \in S$ such that $\sigma^{-1}\left(e_{k} B\right)=f_{k} E_{i j}$. Since $f_{k}=f_{k}\left(e_{1}+e_{2}+\cdots+e_{s}\right)=f_{k} e_{r} \in e_{r} S$, we have $\sum_{k=1}^{s} f_{k}=e_{r} z$ for $z=\sum_{k=1}^{s} f_{k}$. Observe that $\overline{e_{r} E_{i j}}=\overline{z E_{i j}}$ yields $z \in S \backslash \mathrm{Z}(S)$.

Let $k, k^{\prime} \in\{1, \ldots, s\}$. We have $\operatorname{Ann}_{L}\left(f_{k} E_{i j}\right), \operatorname{Ann}_{L}\left(f_{k^{\prime}} E_{i j}\right) \subseteq \operatorname{Ann}_{L}\left(f_{k} f_{k^{\prime}} E_{i j}\right)$ hence $\operatorname{Ann}_{L}\left(e_{k} B\right), \operatorname{Ann}_{L}\left(e_{k^{\prime}} B\right) \subseteq \operatorname{Ann}_{L}\left(\sigma\left(f_{k} f_{k^{\prime}} E_{i j}\right)\right)$. If $k \neq k^{\prime}$, then $\mathrm{M}_{n}(S) \subseteq$ $\operatorname{Ann}_{L}\left(e_{k} B\right)+\operatorname{Ann}_{L}\left(e_{k^{\prime}} B\right)$, which is possible only if $f_{k} f_{k^{\prime}}=0$. We have shown that $f_{k} f_{k^{\prime}}=0$ for every $k, k^{\prime} \in\{1, \ldots, s\}$ with $k \neq k^{\prime}$.

It follows that

$$
z=\left(e_{1}+e_{2}+\cdots+e_{s}\right) z=\sum_{i \neq r} e_{i} z+\sum_{k=1}^{s} f_{k}
$$

is a decomposition of z. Since $z \notin \mathrm{Z}(S), e_{i} z \neq 0$ and, since $\ell(z) \leq \ell(1)=s$, it follows that all but exactly one of the f_{k} 's are 0 . This implies that all but one of the $e_{k} B$'s are 0 and there exists $k \in\{1, \ldots, s\}$ such that $\overline{\sigma\left(e_{r} E_{i j}\right)}=\overline{e_{k} B}$. This shows the existence of a permutation $\omega \in \operatorname{Sym}(s)$ such that $\overline{\sigma\left(e_{r} E_{i j}\right)}=\overline{e_{\omega(r)} B}$.

Let $t \in\{1, \ldots, n\}$. We have $e_{r}^{2}=e_{r} \neq 0$, so $e_{r} E_{i j} e_{r} E_{j t} \neq 0$ and $\overline{\left(e_{\omega(r)} B\right) \sigma\left(e_{r} E_{j t}\right)} \neq$ 0 . This implies $\overline{\sigma\left(e_{r} E_{j t}\right)} \in \overline{e_{\omega(r)} \mathrm{M}_{n}(S)}$.

As this holds for all $j, t \in\{1, \ldots, n\}$ and for any $A \in \mathrm{M}_{n}(S)$, we have $A=\left(e_{1}+e_{2}+\right.$ $\left.\cdots+e_{s}\right) A$, we have $\overline{\sigma\left(e_{r} \mathrm{M}_{n}(S)\right)} \subseteq \overline{e_{\omega(r)} \mathrm{M}_{n}(S)}$. By the same token, we can conclude that a twin vertex to a vertex from $e_{r} \mathrm{M}_{n}(S)$ is itself in $e_{r} \mathrm{M}_{n}(S)$, therefore also $\sigma\left(e_{r} \mathrm{M}_{n}(S)\right) \subseteq$ $e_{\omega(r)} \mathrm{M}_{n}(S)$. Since σ is a bijection, $\sigma\left(e_{r} \mathrm{M}_{n}(S)\right)=e_{\omega(r)} \mathrm{M}_{n}(S)$.

We next focus on the automorphisms restricted to the matrices over indecomposable subsemirings.

Proposition 3.8. Let S be a commutative antiring and suppose $1 \in S$ is of finite maximal length s with decomposition $1=e_{1}+e_{2}+\cdots+e_{s}$. Let $u, v \in\{1, \ldots, s\}, S_{1}=e_{u} S$ and $S_{2}=e_{v} S$. Let $n \in \mathbb{N}$ and $\sigma \in \operatorname{Aut}\left(\Gamma\left(\mathrm{M}_{n}(S)\right)\right)$ such that $\sigma\left(\mathrm{M}_{n}\left(S_{1}\right)\right)=\mathrm{M}_{n}\left(S_{2}\right)$. If $i, j \in\{1, \ldots, n\}$, then there exist $y \in S_{2} \backslash \mathrm{Z}\left(S_{2}\right)$ and $k, \ell \in\{1, \ldots, n\}$ such that $\sigma\left(e_{u} E_{i j}\right)=y E_{k \ell}$.

Proof. Write $\sigma\left(e_{u} E_{i j}\right)=\sum_{k, \ell} \beta_{k \ell} E_{k \ell}$. Let $A_{k \ell}=\sigma^{-1}\left(\beta_{k \ell} E_{k \ell}\right)$. By Lemma 3.2, $\sigma\left(e_{u} E_{i j}\right)$ and $\sigma\left(\sum_{k, \ell} A_{k \ell}\right)$ are twin vertices, therefore $e_{u} E_{i j}$ and $\sum_{k, \ell} A_{k \ell}$ are twin vertices as well. Now, twin vertices of $e_{u} E_{i j}$ must be of the form $z E_{i j}$, so $\sum_{k, \ell} A_{k \ell}=z E_{i j}$ for some $z \in S$. Since $z=z\left(e_{1}+e_{2}+\cdots+e_{s}\right)$, we conclude that $z \in S_{1}$. Note also
that z is not a zero-divisor in S_{1}, since $e_{u} E_{i j}$ and $z E_{i j}$ are twin vertices. Since S is antinegative, we can conclude that, for all $k, \ell \in\{1, \ldots, n\}$, there exist $\alpha_{k \ell} \in S_{1}$ such that $A_{k \ell}=\alpha_{k \ell} E_{i j}$ and $\sum_{k, \ell} \alpha_{k \ell}=z$.

Let $k, k^{\prime}, \ell, \ell^{\prime} \in\{1, \ldots, n\}$ with $(k, \ell) \neq\left(k^{\prime}, \ell^{\prime}\right)$. Now, we either have $k \neq k^{\prime}$ or $\ell \neq \ell^{\prime}$. Suppose first that $k \neq k^{\prime}$. Since S is commutative, we have $\operatorname{Ann}_{L}\left(A_{k \ell}\right)=$ $\operatorname{Ann}_{L}\left(\alpha_{k \ell} E_{i j}\right) \subseteq \operatorname{Ann}_{L}\left(\alpha_{k \ell} \alpha_{k^{\prime} \ell^{\prime}} E_{i j}\right)$. By Lemma 3.1, this implies $\operatorname{Ann}_{L}\left(\beta_{k \ell} E_{k \ell}\right) \subseteq$ $\operatorname{Ann}_{L}\left(\sigma\left(\alpha_{k \ell} \alpha_{k^{\prime} \ell^{\prime}} E_{i j}\right)\right)$. Similarly, we have $\operatorname{Ann}_{L}\left(\beta_{k^{\prime} \ell^{\prime}} E_{k^{\prime} \ell^{\prime}}\right) \subseteq \operatorname{Ann}_{L}\left(\sigma\left(\alpha_{k \ell} \alpha_{k^{\prime} \ell^{\prime}} E_{i j}\right)\right)$. Since $k \neq k^{\prime}, \mathrm{M}_{n}(S)=\operatorname{Ann}_{L}\left(\beta_{k \ell} E_{k \ell}\right)+\operatorname{Ann}_{L}\left(\beta_{k^{\prime} \ell^{\prime}} E_{k^{\prime} \ell^{\prime}}\right) \subseteq \operatorname{Ann}_{L}\left(\sigma\left(\alpha_{k \ell} \alpha_{k^{\prime} \ell^{\prime}} E_{i j}\right)\right)$, which implies $\sigma\left(\alpha_{k \ell} \alpha_{k^{\prime} \ell^{\prime}} E_{i j}\right)=0$ and thus $\alpha_{k \ell} \alpha_{k^{\prime} \ell^{\prime}}=0$. If $\ell \neq \ell^{\prime}$, we arrive at the same conclusion by using right annihilators, namely that distinct $\alpha_{k \ell}$'s annihilate each other. Since S_{1} is indecomposable by Lemma 3.6, the sum $\sum_{k, \ell} \alpha_{k \ell}=z$ has at most one nonzero summand. It follows that there is at most one non-zero $A_{k \ell}$ and at most one non-zero $\beta_{k \ell} E_{k \ell}$. This concludes the proof of the first part, with $y=\beta_{k \ell}$.

It remains to show that $y \notin \mathrm{Z}\left(S_{2}\right)$. Suppose, on the contrary, that $y \in \mathrm{Z}\left(S_{2}\right)$. By the first part of the result, there exist $y^{\prime} \in S_{1}$ and $i^{\prime}, j^{\prime} \in\{1, \ldots, n\}$ such that $\sigma^{-1}\left(e_{v} E_{k \ell}\right)=$ $y^{\prime} E_{i^{\prime} j^{\prime}}$. Since $y \in \mathrm{Z}\left(S_{2}\right)$, we have $\operatorname{Ann}_{L}\left(e_{v} E_{k \ell}\right) \subsetneq \operatorname{Ann}_{L}\left(y E_{k \ell}\right)$ and $\operatorname{Ann}_{R}\left(e_{v} E_{k \ell}\right) \subsetneq$ $\operatorname{Ann}_{R}\left(y E_{k \ell}\right)$. By Lemma 3.1, it follows that $\operatorname{Ann}_{L}\left(y^{\prime} E_{i^{\prime} j^{\prime}}\right) \subsetneq \operatorname{Ann}_{L}\left(e_{u} E_{i j}\right)$ and of course also $\operatorname{Ann}_{R}\left(y^{\prime} E_{i^{\prime} j^{\prime}}\right) \subsetneq \operatorname{Ann}_{R}\left(e_{u} E_{i j}\right)$. This is only possible if $i=i^{\prime}$ and $j=j^{\prime}$ which implies $\operatorname{Ann}_{L}\left(y^{\prime} E_{i j}\right) \subsetneq \operatorname{Ann}_{L}\left(e_{u} E_{i j}\right)$, a contradiction.

Lemma 3.9. Let S be a commutative antiring and suppose $1 \in S$ is of finite maximal length s with decomposition $1=e_{1}+e_{2}+\cdots+e_{s}$. Let $u, v \in\{1, \ldots, s\}, S_{1}=e_{u} S$ and $S_{2}=e_{v} S$. Let $n \in \mathbb{N}$ and $\sigma \in \operatorname{Aut}\left(\Gamma\left(\mathrm{M}_{n}(S)\right)\right)$ such that $\sigma\left(\mathrm{M}_{n}\left(S_{1}\right)\right)=\mathrm{M}_{n}\left(S_{2}\right)$. If $x \in \mathrm{Z}\left(S_{1}\right)$ and $i, j \in\{1, \ldots, n\}$, then there exist $z \in \mathrm{Z}\left(S_{2}\right)$ and $k, \ell \in\{1, \ldots, n\}$ such that $\sigma\left(x E_{i j}\right)=z E_{k \ell}$.

Proof. By Proposition 3.8, we know that $\sigma\left(e_{u} E_{i j}\right)=y E_{k \ell}$ for some $y \notin \mathrm{Z}\left(S_{2}\right)$ and $k, \ell \in$ $\{1, \ldots, n\}$. Since $x \in \mathrm{Z}\left(S_{1}\right)$, we have $\operatorname{Ann}_{L}\left(e_{u} E_{i j}\right) \subsetneq \operatorname{Ann}_{L}\left(x E_{i j}\right)$ and $\operatorname{Ann}_{R}\left(e_{u} E_{i j}\right) \subsetneq$ $\operatorname{Ann}_{R}\left(x E_{i j}\right)$. By Lemma 3.1, it follows that $\operatorname{Ann}_{L}\left(y E_{k \ell}\right) \subsetneq \operatorname{Ann}_{L}\left(\sigma\left(x E_{i j}\right)\right)$ and also $\operatorname{Ann}_{R}\left(y E_{k \ell}\right) \subsetneq \operatorname{Ann}_{R}\left(\sigma\left(x E_{i j}\right)\right)$. This implies that all entries of $\sigma\left(x E_{i j}\right)$ are zeros except entry (k, ℓ), so $\sigma\left(x E_{i j}\right)=z E_{k \ell}$ for some $z \in S_{2}$. Because $\operatorname{Ann}_{L}\left(y E_{k \ell}\right) \neq$ $\operatorname{Ann}_{L}\left(\sigma\left(x E_{i j}\right)\right)=\operatorname{Ann}_{L}\left(z E_{k \ell}\right)$ and $\operatorname{Ann}_{R}\left(y E_{k \ell}\right) \neq \operatorname{Ann}_{R}\left(\sigma\left(x E_{i j}\right)\right)=\operatorname{Ann}_{R}\left(z E_{k \ell}\right)$, we must have $z \in \mathrm{Z}\left(S_{2}\right)$.

Lemma 3.10. Let S be a commutative antiring and suppose $1 \in S$ is of finite maximal length s with decomposition $1=e_{1}+e_{2}+\cdots+e_{s}$. Let $u, v \in\{1, \ldots, s\}, S_{1}=e_{u} S$ and $S_{2}=e_{v} S$. Let $n \in \mathbb{N}$ and $\sigma \in \operatorname{Aut}\left(\Gamma\left(\mathrm{M}_{n}(S)\right)\right)$ such that $\sigma\left(\mathrm{M}_{n}\left(S_{1}\right)\right)=\mathrm{M}_{n}\left(S_{2}\right)$. Then there exists $\pi \in \operatorname{Sym}(n)$ such that $\overline{\sigma\left(e_{u} E_{i j}\right)}=\overline{e_{v} E_{\pi(i) \pi(j)}}$ for all $i, j \in\{1, \ldots, n\}$.

Proof. Let $i, j, j^{\prime} \in \underline{\{1, \ldots, n\}}$ with $j \neq j^{\prime}$. By Proposition 3.8, there exist $k, k^{\prime}, \ell, \ell^{\prime} \in$ $\{1, \ldots, n\}$ such that $\overline{\sigma\left(e_{u} E_{i j}\right)}=\overline{e_{v} E_{k \ell}}$ and $\overline{\sigma\left(e_{u} E_{i j^{\prime}}\right)}=\overline{e_{v} E_{k^{\prime} \ell^{\prime}}}$. For all $r, s \in\{1, \ldots, n\}$ with $s \neq i$, we have $e_{u} E_{r s}\left(e_{u} E_{i j}+e_{u} E_{i j^{\prime}}\right)=0$. By Lemma 3.2, this implies that $\overline{\sigma\left(e_{u} E_{r s}\right)\left(e_{u} E_{k \ell}+e_{u} E_{k^{\prime} \ell^{\prime}}\right)}=0$ and thus $\overline{\left(\sum_{r, s \neq i} \sigma\left(e_{u} E_{r s}\right)\right)\left(e_{u} E_{k \ell}+e_{u} E_{k^{\prime} \ell^{\prime}}\right)}=0$. By Proposition 3.8, $\overline{\sigma\left(e_{u} E_{r s}\right)}=\overline{e_{v} E_{r^{\prime} s^{\prime}}}$ for some $r^{\prime}, s^{\prime} \in\{1, \ldots, n\}$. Since σ is a permutation, $\sum_{r, s \neq i} \sigma\left(e_{u} E_{r s}\right)$ is a matrix with exactly n entries equal to 0 . It follows that $k=k^{\prime}$.

By the paragraph above, there exists $\pi \in \operatorname{Sym}(n)$ such that $\overline{\sigma\left(e_{u} E_{a b}\right)}=\overline{e_{v} E_{\pi(a) c}}$, for some c. A similar argument yields that there exists a permutation such that $\overline{\sigma\left(e_{u} E_{a b}\right)}=$
$\overline{e_{v} E_{c \pi^{\prime}(b)}}$, for some c. However, for every $j, k \in\{1, \ldots, n\}$ with $j \neq k$, we have $E_{j j} E_{k k}=0$ and thus $E_{\pi(j) \pi^{\prime}(j)} E_{\pi(k) \pi^{\prime}(k)}=0$. This implies that $\pi(k) \neq \pi^{\prime}(j)$ for every $k \neq j$, so $\pi(j)=\pi^{\prime}(j)$. Therefore $\pi^{\prime}=\pi$.

For $\pi \in \operatorname{Sym}(n)$ and $A \in \mathrm{M}_{n}(S)$, let $\theta_{\pi}(A)$ be the matrix obtained from A by applying the permutation π to its rows and columns. Note that θ_{π} induces a permutation of $\mathrm{M}_{n}(S)$.

Corollary 3.11. Let S be a commutative antiring and suppose $1 \in S$ is of finite maximal length s with decomposition $1=e_{1}+e_{2}+\cdots+e_{s}$. Let $u, v \in\{1,2, \ldots, s\}, S_{1}=e_{u} S$ and $S_{2}=e_{v} S$. Let $n \in \mathbb{N}$ and $\sigma \in \operatorname{Aut}\left(\Gamma\left(\mathrm{M}_{n}(S)\right)\right)$ such that $\sigma\left(\mathrm{M}_{n}\left(S_{1}\right)\right)=\mathrm{M}_{n}\left(S_{2}\right)$. Then there exist $\pi \in \operatorname{Sym}(n)$ and τ an isomorphism from $\Gamma\left(S_{1}\right)$ to $\Gamma\left(S_{2}\right)$ such that, if we extend τ entry-wise to a mapping $\mathrm{M}_{n}\left(S_{1}\right) \rightarrow \mathrm{M}_{n}\left(S_{2}\right)$ and restrict σ to $\mathrm{M}_{n}\left(S_{1}\right)$, then $\bar{\sigma}=\overline{\theta_{\pi} \circ \tau}$.

Proof. By Lemma 3.10, there exists $\pi \in \operatorname{Sym}(n)$ such that $\overline{\sigma\left(e_{u} E_{i j}\right)}=\overline{\theta_{\pi}\left(e_{v} E_{i j}\right)}$ for all $i, j \in\{1, \ldots, n\}$. Let $\rho=\theta_{\pi}^{-1} \circ \sigma$ and note that $\rho \in \operatorname{Aut}\left(\Gamma\left(\mathrm{M}_{n}(S)\right)\right)$ and we have $\overline{\rho\left(e_{u} E_{i j}\right)}=\overline{e_{v} E_{i j}}$ for all $i, j \in\{1, \ldots, n\}$.

Let $x \in \mathrm{Z}\left(S_{1}\right)$ and $i, j, j^{\prime} \in\{1, \ldots, n\}$. Clearly, $\rho\left(\mathrm{M}_{n}\left(S_{1}\right)\right)=\mathrm{M}_{n}\left(S_{2}\right)$ so, by Lemma 3.9, there exist $z, z^{\prime} \in \mathrm{Z}\left(S_{2}\right)$ such that $\rho\left(x E_{i j}\right)=z E_{i j}$ and $\rho\left(x E_{i j^{\prime}}\right)=z^{\prime} E_{i j^{\prime}}$.

Let $X=\left\{s \in S_{2} ; s z=0\right\}$. We show that $X \subseteq \operatorname{Ann}\left(z^{\prime}\right)$. Let $a \in S_{2}$ such that $a z=0$. Note that $\left(a E_{i i}\right)\left(z E_{i j}\right)=0$. Since $a \in \mathrm{Z}\left(S_{2}\right)$, Lemma 3.9 implies that there exists $b \in \mathrm{Z}\left(S_{1}\right)$ such that $a E_{i i}=\rho\left(b E_{i i}\right)$, hence $\rho\left(b E_{i i}\right) \rho\left(x E_{i j}\right)=0$ and therefore also $\left(b E_{i i}\right)\left(x E_{i j}\right)=0$ which implies $b x=0$. It follows that $\left(b E_{i i}\right)\left(x E_{i j^{\prime}}\right)=0$, $\rho\left(b E_{i i}\right) \rho\left(x E_{i j^{\prime}}\right)=0$ and $\left(a E_{i i}\right)\left(z^{\prime} E_{i j^{\prime}}\right)=0$ which yields $a z^{\prime}=0$.

We have shown that $X \subseteq \operatorname{Ann}\left(z^{\prime}\right)$. A symmetrical argument yields $\operatorname{Ann}\left(z^{\prime}\right) \subseteq X$ hence $X=\operatorname{Ann}\left(z^{\prime}\right)$ which implies that $\overline{\rho\left(x E_{i j^{\prime}}\right)}=\overline{z^{\prime} E_{i j^{\prime}}}=\overline{z E_{i j^{\prime}}}$ (where for $A \in$ $\mathrm{M}_{n}\left(S_{2}\right)$, by a slight abuse of notation, \bar{A} now refers to the image in $\bar{\Gamma}\left(\mathrm{M}_{n}\left(S_{2}\right)\right)$ and not in $\bar{\Gamma}\left(\mathrm{M}_{n}(S)\right)$). A similar argument shows that $\overline{\rho\left(x E_{i^{\prime} j}\right)}=\overline{z E_{i^{\prime} j}}$ for all $i^{\prime} \in\{1, \ldots, n\}$. This implies that $\overline{\rho\left(x E_{k \ell}\right)}=\overline{z E_{k \ell}}$ for all $k, \ell \in\{1, \ldots, n\}$.

Let τ denote the mapping $S_{1} \rightarrow S_{2}$ that satisfies $\rho\left(x E_{11}\right)=\tau(x) E_{11}$. Since ρ is a bijection from $\mathrm{M}_{n}\left(S_{1}\right)$ to $\mathrm{M}_{n}\left(S_{2}\right), \tau$ is a bijection from S_{1} to S_{2}. If $x, y \in S_{1}$, then $x y=0$ if and only if $\left(x E_{11}\right)\left(y E_{11}\right)=0$ if and only if $\tau(x) \tau(y)=0$, therefore τ is an isomorphism from $\Gamma\left(S_{1}\right)$ to $\Gamma\left(S_{2}\right)$. Now, extend τ to an entry-wise mapping $\mathrm{M}_{n}\left(S_{1}\right) \rightarrow \mathrm{M}_{n}\left(S_{2}\right)$. Let $A=\left[a_{i j}\right], B=\left[b_{i j}\right] \in \mathrm{M}_{n}\left(S_{1}\right)$. Note that $A B=0$ if and only if $\sum_{k=1}^{n} a_{i k} b_{k j}=0$ for every $1 \leq i, j \leq n$ if and only if $a_{i k} b_{k j}=0$ for every $1 \leq i, j, k \leq n$, so τ induces an isomorphism from $\Gamma\left(\mathrm{M}_{n}\left(S_{1}\right)\right)$ to $\Gamma\left(\mathrm{M}_{n}\left(S_{2}\right)\right)$. Observe that, restricted to $\mathrm{V}\left(\Gamma\left(\mathrm{M}_{n}\left(S_{1}\right)\right)\right)$, we have $\bar{\rho}=\bar{\tau}$. As $\sigma=\theta_{\pi} \circ \rho$, this concludes the proof.

We can now join these findings into the following theorem.
Theorem 3.12. Let S be a commutative antiring and suppose $1 \in S$ is of finite maximal length s with decomposition $1=e_{1}+e_{2}+\cdots+e_{s}$. Let $n \in \mathbb{N}$ and $\sigma \in \operatorname{Aut}\left(\Gamma\left(\mathrm{M}_{n}(S)\right)\right)$. Then there exist $\omega \in \operatorname{Sym}(s)$ and, for every $i \in\{1, \ldots, s\}$, there exist $\pi_{i} \in \operatorname{Sym}(n)$ and an isomorphism $\tau_{i}: \Gamma\left(e_{i} S\right) \rightarrow \Gamma\left(e_{\omega(i)} S\right)$ such that, if we extend τ_{i} entry-wise to a mapping $\mathrm{M}_{n}\left(e_{i} S\right) \rightarrow \mathrm{M}_{n}\left(e_{\omega(i)} S\right)$, then

$$
\overline{\sigma(A)}=\overline{\left(\sum_{i=1}^{s}\left(\theta_{\pi_{i}} \circ \tau_{i}\right)\left(e_{i} A\right)\right)} \text { for all } A \in \mathrm{M}_{n}(S)
$$

Conversely, if $\omega \in \operatorname{Sym}(s)$ has the property that, for every $i \in\{1, \ldots, s\}$, we have $\Gamma\left(e_{i} S\right) \cong \Gamma\left(e_{\omega(i)} S\right), \tau_{i}$ is an isomorphism from $\Gamma\left(e_{i} S\right)$ to $\Gamma\left(e_{\omega(i)} S\right)$ and $\pi_{i} \in \operatorname{Sym}(n)$, then σ defined with $\sigma(A)=\sum_{i=1}^{s}\left(\theta_{\pi_{i}} \circ \tau_{i}\right)\left(e_{i} A\right)$ is an automorphism of $\Gamma\left(\mathrm{M}_{n}(S)\right)$.

Proof. By Lemma 3.7, there exists $\omega \in \operatorname{Sym}(s)$ such that, for every $i \in\{1, \ldots, s\}$, we have $\sigma\left(e_{i} \mathrm{M}_{n}(S)\right)=e_{\omega(i)} \mathrm{M}_{n}(S)$.

By Corollary 3.11, there exist $\pi_{i} \in \operatorname{Sym}(n)$ and τ_{i} an isomorphism from $\Gamma\left(e_{i} S\right)$ to $\Gamma\left(e_{\omega(i)} S\right)$ such that, if we extend τ_{i} entry-wise to a mapping $\mathrm{M}_{n}\left(e_{i} S\right) \rightarrow \mathrm{M}_{n}\left(e_{\omega(i)} S\right)$ and restrict σ to $\mathrm{M}_{n}\left(e_{i} S\right)$, then $\bar{\sigma}=\overline{\theta_{\pi_{i}} \circ \tau_{i}}$.

Now, let $A \in \mathrm{M}_{n}(S)$. We have $\bar{A}=\overline{e_{1} A+e_{2} A+\cdots+e_{s} A}$ and the result follows by Lemma 3.2.

Remark 3.13. Throughout the paper, we restricted ourselves to studying semirings with the property that no non-zero-divisor element can be written as a sum of infinitely many mutually orthogonal zero-divisors. Obviously, any semiring with a finite set of zerodivisors satisfies this condition.

ORCID iDs

David Dolžan (i) https://orcid.org/0000-0001-6548-3945
Gabriel Verret (D) https://orcid.org/0000-0003-1766-4834

References

[1] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447, doi:10.1006/jabr.1998.7840, https://doi.org/10.1006/jabr. 1998.7840.
[2] F. Baccelli and J. Mairesse, Ergodic theorems for stochastic operators and discrete event networks, in: Idempotency, Cambridge University Press, Cambridge, pp. 171-208, 1998.
[3] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226, doi:10.1016/ 0021-8693(88)90202-5, https://doi.org/10.1016/0021-8693(88) 90202-5.
[4] G. A. Cannon, K. M. Neuerburg and S. P. Redmond, Zero-divisor graphs of nearrings and semigroups, in: H. Kiechle, A. Kreuzer and M. Thomsen (eds.), Nearrings and Nearfields, Springer, Dordrecht, pp. 189-200, 2005.
[5] R. Cuninghame-Green, Minimax Algebra, volume 166, Springer Science \& Business Media, 2012.
[6] F. R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), 206-214, doi:10.1007/s002330010128, https: //doi.org/10.1007/s002330010128.
[7] D. Dolžan and P. Oblak, The zero-divisor graphs of rings and semirings, Int. J. Algebra Comput. 22 (2012), 1250033, 20, doi:10.1142/s0218196712500336, https://doi.org/10. 1142/s0218196712500336.
[8] S. Ebrahimi Atani, The zero-divisor graph with respect to ideals of a commutative semiring., Glas. Mat., III. Ser. 43 (2008), 309-320, doi:10.3336/gm.43.2.06, https: / / doi . org/10. 3336/gm.43.2.06.
[9] S. Ebrahimi Atani, An ideal based zero-divisor graph of a commutative semiring., Glas. Mat., III. Ser. 44 (2009), 141-153, doi:10.3336/gm.44.1.07, https: / / doi. org/10.3336/gm. 44.1.07.
[10] J. Han, The zero-divisor graph under group actions in a noncommutative ring, J. Korean Math. Soc. 45 (2008), 1647-1659, doi:10.4134/jkms.2008.45.6.1647, https://doi.org/10. $4134 / \mathrm{jkms} .2008 .45 \cdot 6.1647$.
[11] U. Hebisch and H. J. Weinert, Semirings: Algebraic theory and Applications in Computer Science, volume 5 of Ser. Algebra, World Scientific Publishing, Singapore, 1998.
[12] P. Li, A heuristic method to compute the approximate postinverses of a fuzzy matrix, IEEE Trans. Fuzzy Syst. 22 (2014), 1347-1351, doi:10.1109/tfuzz.2013.2282231, https: / / doi. org/10.1109/tfuzz.2013.2282231.
[13] S. Park and J. Han, The group of graph automorphisms over a matrix ring, J. Korean Math. Soc. 48 (2011), 301-309, doi:10.4134/jkms.2011.48.2.301, https: / / doi . org/10. 4134/jkms.2011.48.2.301.
[14] A. Patil, B. N. Waphare and V. Joshi, Perfect zero-divisor graphs, Discrete Math. 340 (2017), 740-745, doi:10.1016/j.disc.2016.11.027, https://doi.org/10.1016/j. disc.2016.11.027.
[15] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings $\mathbf{1}$ (2002), 203-211.
[16] L. Wang, A note on automorphisms of the zero-divisor graph of upper triangular matrices., Linear Algebra Appl. 465 (2015), 214-220, doi:10.1016/j.laa.2014.09.035, https : / / doi. org/10.1016/j.laa.2014.09.035.
[17] L. Wang, Automorphisms of the zero-divisor graph of the ring of all $n \times n$ matrices over a finite field, Discrete Math. 339 (2016), 2036-2041, doi:10.1016/j.disc.2016.02.021, https : //doi.org/10.1016/j.disc.2016.02.021.
[18] D. Wong, X. Ma and J. Zhou, The group of automorphisms of a zero-divisor graph based on rank one upper triangular matrices, Linear Algebra Appl. 460 (2014), 242-258, doi:10.1016/j. laa.2014.07.041, https://doi.org/10.1016/j.laa.2014.07.041.
[19] S. Zhao and X.-p. Wang, Invertible matrices and semilinear spaces over commutative semirings, Inf. Sci. 180 (2010), 5115-5124, doi:10.1016/j.ins.2010.08.033, https://doi.org/10. 1016/j.ins.2010.08.033.
[20] J. Zhou, D. Wong and X. Ma, Automorphisms of the zero-divisor graph of the full matrix ring, Linear Multilinear Algebra 65 (2017), 991-1002, doi:10.1080/03081087.2016.1219302, https://doi.org/10.1080/03081087.2016.1219302.

[^0]: *Corresponding author. The author acknowledges the financial support from the Slovenian Research Agency (research core funding no. P1-0222).

 E-mail addresses: david.dolzan@fmf.uni-lj.si (David Dolžan), g.verret@auckland.ac.nz (Gabriel Verret)

