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Resolvability and Convexity Properties in
the Sierpiński Product of Graphs
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Abstract. Let G and H be graphs and let f : V (G) → V (H) be a func-
tion. The Sierpiński product of G and H with respect to f , denoted
by G ⊗f H, is defined as the graph on the vertex set V (G) × V (H),
consisting of |V (G)| copies of H; for every edge gg′ of G there is an edge
between copies gH and g′H of H associated with the vertices g and g′

of G, respectively, of the form (g, f(g′))(g′, f(g)). The Sierpiński metric
dimension and the upper Sierpiński metric dimension of two graphs are
determined. Closed formulas are determined for Sierpiński products of
trees, and for Sierpiński products of two cycles where the second factor
is a triangle. We also prove that the layers with respect to the second
factor in a Sierpiński product graph are convex.
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1. Introduction

Sierpiński graphs represent a very interesting and widely studied family of
graphs. They were introduced in 1997 in the paper [21], where the pri-
mary motivation for their introduction was the intrinsic link to the Tower
of Hanoi problem, for the latter problem see the book [16]. Intensive research
of Sierpiński graphs led to a review article [15] in which state of the art up to
2017 is summarized and unified approach to Sierpiński-type graph families is
also proposed. Later research on Sierpiński graphs includes [3,7–9,19,25,32].

In this paper, we study a recent generalization of Sierpiński graphs
proposed by Kovič, Pisanski, Zemljič, and Žitnik in [23]. Let G and H be
graphs and let f : V (G) → V (H) be an arbitrary function. The Sierpiński
product of graphs G and H with respect to f , denoted by G ⊗f H, is defined
as the graph on the vertex set V (G) × V (H) with edges of two types:

• Type-1 edge: (g, h)(g, h′) is an edge of G⊗f H for every vertex g ∈ V (G)
and every edge hh′ ∈ E(H),
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• Type-2 edge: (g, f(g′))(g′, f(g)) is an edge of G ⊗f H for every edge
gg′ ∈ E(G).

We observe that the edges of Type-1 induce n(G) = |V (G)| copies of
the graph H in the Sierpiński product G⊗f H. For each vertex g ∈ V (G), we
let gH be the copy of H corresponding to the vertex g. A Type-2 edge joins
vertices from different copies of H in G⊗f H, and is called a connecting edge
of G ⊗f H. A vertex incident with a connecting edge is called a connecting
vertex. We observe that two different copies of H in G ⊗f H are joined by
at most one edge. We denote by HG the family of functions from V (G) to
V (H).

It might be readily observed that the Sierpiński product is closely related
to other graph products. For instance, by considering a constant function f
in the product, we obtain graphs which are indeed the same as the so-called
rooted product graphs (see [12] for its definition). Also, selecting the identity
function id ∈ GG, the Sierpiński product G ⊗id G is the (first iteration of
the) generalized Sierpiński graph in the sense of [13]. Moreover, a Sierpiński
product can also be considered as a subgraph of the (Cartesian, strong or
lexicographic) product. Consequently, any contribution to the study of the
Sierpiński product could give some more knowledge on these related products.

In the next two subsections, we give motivation, basic terminology, and
notation concerning the classical metric dimension of graphs, and introduce
the study of the Sierpiński metric dimension and the upper Sierpiński metric
dimension. Thereafter in Sect. 2, we determine the upper Sierpiński metric
dimension for Sierpiński products of arbitrary trees. A general lower bound is
established for the Sierpiński metric dimension for products of two trees, and
an exact formula when the first factor is a path. In Sect. 3, a closed formula
is determined for both dimensions when the first factor in the product is an
arbitrary cycle and the second factor a triangle. In Sect. 4, we prove that the
layers with respect to the second factor in a Sierpiński product graph are
convex. In Sect. 5, we pose several open problems.

1.1. The Metric Dimension of Graphs

The distance between two vertices u and v in a connected graph G, denoted
by dG(u, v), is the number of edges in a shortest path from u to v, that is,
dG(u, v) is the minimum length of a u, v-path in G. Given an ordered subset
S = {v1, . . . , vk} of vertices in G, the metric S-representation of a vertex v
in G is the k-tuple vector

rG(v|S) = (dG(v, v1), . . . , dG(v, vk)).

If every two distinct vertices of G have different metric S-representations,
then the set S is called a resolving set of G (also called a metric genera-
tor). The metric dimension of G, denoted by dim(G), is the cardinality of a
smallest possible resolving set in G. A metric basis of G is a resolving set of
cardinality dim(G). A vertex v in a graph G is said to distinguish (or resolve)
two vertices x and y if dG(v, x) �= dG(v, y).

The concept of the metric dimension of a graph was birthed indepen-
dently by Harary and Melter [14] in 1976 and by Slater [29] in 1975, and is
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now well studied in graph theory. To date, MathSciNet lists over 380 papers
on metric dimension in graphs, covering a large number of different investi-
gations dealing with theoretical and applied results on such parameter.

According to the structural properties of resolving sets in graphs, they
can easily be used to model several practical situations in which uniquely
recognizing points or locations is required. That was precisely one of the
motivations of the seminal works [14,29], where resolving sets appeared to
be used for the location of intruders in networks. Further on, some other
related models and applications have appeared here and there. Among them,
we remark the recent work [30], where the authors presented a connection
between some metric dimension parameter and the representation of genomic
sequences. Among the theoretical studies on this topic, the literature contains
a wide range of different contributions, some recent and remarkable articles
are for instance [6,11,28]. For more information on investigations on the
classical version, we suggest the fairly complete survey [31].

With respect to the theoretical studies, the metric dimension of graph
products and graph operations has attracted the attention of several inves-
tigations. In this sense, we mention a few interesting contributions related
with this exposition due to the relationship between the Sierpiński prod-
uct and some other products previously mentioned. The metric dimension of
Cartesian product graphs has been considered in several works like [4], for the
general case, and among other ones, in [5,18,20] for some particular examples
of Cartesian products. The lexicographic product of graphs has been studied
with respect to its metric dimension in [17,27], while the strong product has
been considered in [1,26]. On the other hand, the metric dimension of the
rooted product has been dealt with in [10,24].

1.2. Sierpiński Metric Dimension

Let G and H be graphs and HG be the family of functions from V (G) to
V (H). We introduce new types of metric dimension, the Sierpiński metric
dimension, denoted by dimS(G,H), as the minimum over all functions f from
HG of the metric dimension of the Sierpiński product with respect to f , and
upper Sierpiński metric dimension, denoted by DimS(G,H), as the maximum
over all functions f ∈ HG of the metric dimension of the Sierpiński product
with respect to f . That is,

dimS(G,H)=: min
f∈HG

{dim(G ⊗f H)}

and

DimS(G,H)=: max
f∈HG

{dim(G ⊗f H)}.

We might remark that the classical metric dimension of Sierpiński graphs
was already studied in [22], as well as, that of the generalized Sierpiński
graphs over stars was considered in [2].
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2. Sierpiński Products of Trees

A vertex of degree at least 3 in a tree T is called a branch vertex (also called
a major vertex in the literature). A leaf u of T is called a terminal leaf of
a branch vertex v of T if dT (u, v) < dT (u,w) for every other branch vertex
w of T . The terminal degree of a branch vertex v is the number of terminal
leaves associated with v. A branch vertex v of T is an exterior branch vertex
of T if it has positive terminal degree. The path from a terminal leaf to the
vertex immediately preceding the branch vertex that it is closest to is called
a terminal path. Thus, every vertex on a terminal path in T is either a leaf of
T or has degree 2 in T . A vertex on a terminal path that has degree 2 in T is
called an internal terminal vertex. Equivalently, every vertex on a terminal
path that is not a terminal leaf, is an internal terminal vertex. Thus, if u is
an internal terminal vertex in T , then the vertex u is an internal vertex of a
path P that joins a leaf and a branch vertex closest to that leaf in T where
every internal vertex of P has degree 2 in T .

Let n1(T ) denote the number of leaves of T , and let ex(T ) denote the
number of exterior branch vertices of T . The formula for the metric dimension
of a tree reads as follows.

Theorem 2.1. [14,29] If T is a tree that is not a path, then

dim(T ) = n1(T ) − ex(T ). (1)

It is clear that dim(Pn) = 1. Combining this fact with Theorem 2.1
yields the following consequence.

Corollary 2.2. If T is a tree, then dim(T ) = 1 if T is a path and dim(T ) ≥ 2
if T is not a path.

Let T be a tree that is not a path, and let v1, . . . , vk be the exterior
branch vertices in T that have terminal degree at least 2. If the exterior
branch vertex vi has terminal degree �i ≥ 2 and if Li is a set consisting of
all terminal leaves but one associated with vi for all i ∈ [k] = {1, . . . , k},
then (1) can be equivalently stated as:

dim(T ) =
k∑

i=1

(�i − 1),

and the set

B(T ) =
k⋃

i=1

Li

is a metric basis of T (of cardinality dim(T )). We call the basis B(T ) a
standard metric basis of T . Thus, every vertex in a standard metric basis of
a tree T is a leaf, and such a basis contains all but one selected fixed leaf
associated with the exterior branch vertex of terminal degree at least 2 in T .



MJOM Resolvability and Convexity Properties Page 5 of 17     3 

2.1. Upper Sierpiński Metric Dimension in Trees

In this section, we determine the upper Sierpiński metric dimension of the
Sierpiński product of trees. Notice that for arbitrary trees T1 and T2 and any
function f ∈ HG, the Sierpiński product T1 ⊗f T2 is a tree.

Theorem 2.3. If T1 and T2 are trees with n(T2) ≥ 3, then

DimS(T1, T2) = n(T1) dim(T2).

Proof. Let w be a branch vertex of T2, and let fw : V (T1) → V (T2) be the
constant function defined by fw(v) = w for every vertex v ∈ V (T1). The
exterior branch vertices in T1⊗fw T2 are precisely the exterior branch vertices
in each of the copies of T2, and so ex(T1 ⊗fw T2) = n(T1)ex(T2). Moreover,
the leaves in T1 ⊗fw T2 are precisely the leaves in each of the copies of T2,
and so n1(T1 ⊗fw T2) = n(T1)n1(T2). Therefore, as T1 ⊗fw T2 is a tree, by (1)
we have

dim(T1 ⊗fw T2) = n1(T1 ⊗fw T2) − ex(T1 ⊗fw T2)
= n(T1)n1(T2) − n(T1)ex(T2)
= n(T1)(n1(T2) − ex(T2))
= n(T1) dim(T2),

implying that

DimS(T1, T2) ≥ dim(T1 ⊗fw T2) = n(T1) dim(T2). (2)

We next show that DimS(T1, T2) ≤ n(T1) dim(T2). Let f : V (T1) →
V (T2) be an arbitrary function. It suffices for us to show that

dim(T1 ⊗f T2) ≤ n(T1) dim(T2).

Let us first consider that T2 is a path Pn with n ≥ 3. Hence, we here indeed
need to prove that dim(T1 ⊗f Pn) ≤ n(T1) since dim(Pn) = 1. Suppose to
the contrary that dim(T1 ⊗f Pn) > n(T1). Thus, from (1), we have that
n1(T1 ⊗f Pn) − ex(T1 ⊗f Pn) = dim(T1 ⊗f Pn) > n(T1). Hence,

ex(T1 ⊗f Pn) < n1(T1 ⊗f Pn) − n(T1) ≤ 2n(T1) − n(T1) = n(T1),

which means there is a positive integer k such that ex(T1 ⊗f Pn) = n(T1)−k.
Now, notice that if T1 ⊗f Pn has n(T1) − k exterior branch vertices, then
there must be at least k copies of Pn in T1 ⊗f Pn not containing any exterior
branch vertex. This situation can only happen when the connecting edges
of T1 ⊗f Pn in such copies of Pn are incident with at least one leaf of each
of these copies. Consequently, we deduce that n1(T1 ⊗f Pn) ≤ 2n(T1) − k.
Therefore, by (1), we have

dim(T1 ⊗f Pn) = n1(T1 ⊗f Pn) − ex(T1 ⊗f Pn)
≤ 2n(T1) − k − (n(T1) − k)
= n(T1),

which is a contradiction with our assumption, and so dim(T1 ⊗f Pn) ≤ n(T1)
as required.

We next consider the case when T2 is not a path. Let Ec = {e1, e2, . . . ,
em(T1)} be the set of connecting edges in T1⊗f T2. We order these connecting
edges and define ei as the ith connecting edge of T1 ⊗f T2 for i ∈ [m(T1)]. We
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next define forests X0,X1, . . . , Xm(T1) as follows. Let X0 be obtained from
the tree T1 ⊗f T2 by removing the connecting edges in Ec. We note that
X0 is the disjoint union of n(T1) copies of the tree T2. Applying (1) to each
component of the forest X0, we have

dim(X0) = n1(X0) − ex(X0)
= n(T1)n1(T2) − n(T1)ex(T2)
= n(T1)(n1(T2) − ex(T2))
= n(T1) dim(T2).

We now define the forests X1, . . . , Xm(T1) as follows. For i ∈ [m(T1)],
let Xi be the forest obtained from Xi−1 by adding the ith connecting edge,
that is, Xi = Xi−1 ∪ {ei}. We note that

T1 ⊗f T2 = Xm(T1).

Applying (1) to each component of the forest Xi, we have

dim(Xi) = n1(Xi) − ex(Xi)

for all i ∈ {0, 1, . . . ,m(T1)}. Let

Φ1(Xi) = n1(Xi−1) − n1(Xi),

which represents the number of vertices of degree 1 in Xi−1 which are of
degree at least 2 in Xi. Roughly speaking, Φ1(Xi) is the number of degree 1
vertices in Xi−1 “destroyed” by adding the ith connecting edges ei to Xi−1

when constructing Xi. Set further

Φ2(Xi) = −[ex(Xi−1) − ex(Xi)],

where ex(Xi−1) − ex(Xi) is the difference between the number of exterior
branch vertices in Xi−1 and the number of exterior branch vertices in Xi.
We note that

dim(Xi) = n1(Xi) − ex(Xi)
= (n1(Xi−1) − Φ1(Xi)) − (Φ2(Xi) + ex(Xi−1))
= dim(Xi−1) − (Φ1(Xi) + Φ2(Xi))

for all i ∈ [m(T1)]. We would like to show that

Φ1(Xi) + Φ2(Xi) ≥ 0 (3)

for all i ∈ [m(T1)], which would imply that dim(Xi) ≤ dim(Xi−1) ≤ dim(X0) =
n(T1) dim(T2), from which we deduce that

dim(T1 ⊗f T2) = dim(Xm(T1)) ≤ n(T1) dim(T2).

Hence, to prove the theorem, it remains to show that (3) holds. For this
purpose, let the ith connecting edge ei joins two vertices xi and yi in Xi−1

when constructing Xi.
Suppose that xi is neither an internal terminal vertex nor a leaf in Xi−1.

In this case, the vertex xi contributes 0 to both terms Φ1(Xi) and Φ2(Xi).
Suppose that xi is an internal terminal vertex in Xi−1. Let wi be the

exterior branch vertex associated with the vertex xi in Xi−1. In this case,
when ei is added to Xi−1, the vertex xi becomes an exterior branch vertex in
Xi, while the vertex wi may no longer be an exterior branch vertex, implying
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that the vertex xi contributes 0 to the term Φ1(Xi), and contributes at
least 1 − 1 = 0 to the term Φ2(Xi).

Suppose that xi is a leaf in Xi−1. As before, let wi be the exterior
branch vertex associated with the vertex xi in Xi−1. In this case, when ei
is added to Xi−1, the leaf xi in Xi−1 is not a leaf in Xi, and therefore the
vertex xi contributes 1 to the term Φ1(Xi). Moreover, the effect of adding ei
is that the vertex wi may no longer be an exterior branch vertex, implying
that the vertex xi contributes at least −1 to the term Φ2(Xi). In all of the
above three cases, the contribution of xi to Φ1(Xi) + Φ2(Xi) is at least 0.
Analogous arguments hold for the vertex yi, showing that the contribution
of yi to Φ1(Xi) + Φ2(Xi) is at least 0. Therefore, (3) holds. This completes
the proof of Theorem 2.3. �

2.2. Sierpiński Metric Dimension in Trees

In this section, we study the Sierpiński metric dimension of the Sierpiński
product of trees. The Sierpiński metric dimension of two paths is given by
the following result.

Proposition 2.4. If T1 and T2 are both paths, then dimS(T1, T2) = 1.

Proof. Let T1 = Pn and let T2 = Pm. If n = 1 or m = 1, then T1 ⊗f T2 is a
path, and so by Corollary 2.2, dimS(T1, T2) = 1. Hence, we may assume that
n ≥ 2 and m ≥ 2, for otherwise the result is immediate. Let the path T2 be
an x, y-path that starts at vertex x and ends at vertex y, and let T1 be the
path v1v2 . . . vn. Let f : V (T1) → V (T2) be the function defined by

f(vi) =
{

x; i (mod 4) ∈ {1, 2},
y; otherwise.

for all i ∈ [n]. In this case, the Sierpiński product T1 ⊗f T2 is a path Pnm,
and so by Corollary 2.2, dimS(T1, T2) ≤ dim(T1 ⊗f T2) = 1. Consequently,
dimS(T1, T2) = 1. �

In view of Proposition 2.4, it is only of interest to study the Sierpiński
product of two trees which at least one of them is not a path. In this case, we
shall establish the following lower bound on the Sierpiński metric dimension,
where we use the notation dT (v) to represent the degree of a vertex v in T .

Lemma 2.5. If T1 and T2 are trees, where T2 is not a path, then

dimS(T1, T2) ≥
∑

v∈V (T1)

max{0,dim(T2) − dT1(v)}.

Proof. Let f : V (T1) → V (T2) be an arbitrary function. Recall that for each
vertex v ∈ V (T1), vT2 denotes the copy of the tree T2 in T1 ⊗f T2 corre-
sponding to the vertex v. We let Cv be the set of vertices in vT2 that are
connecting vertices in T1 ⊗f T2. Thus, each vertex in Cv is incident with a
connecting edge in T1 ⊗f T2 that joins that vertex to a vertex in a copy of T2

different from vT2. We note that

|Cv| ≤ dT1(v)
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since every edge incident with v in the tree T1 is associated with a connecting
edge in T1 ⊗f T2 that is incident with a vertex in vT2. Let B be a standard
metric basis of T1⊗f T2, and so dim(T1⊗f T2) = |B| and the basis B contains
all but one leaf associated with the exterior branch vertices of degree at least 2
in T1 ⊗f T2. Let Bv be the restriction of B to vT2, that is,

Bv = B ∩ V (vT2)

for every vertex v ∈ V (T1). The set Bv ∪Cv is a resolving set in the tree vT2,
and so

dim(T2) = dim(vT2) ≤ |Bv| + |Cv| ≤ |Bv| + dT1(v),

and so |Bv| ≥ dim(T2) − dT1(v). As clearly |Bv| ≥ 0, we get

|Bv| ≥ max{0,dim(T2) − dT1(v)}
for every vertex v ∈ V (T1). Therefore,

dimS(T1, T2) = |B| =
∑

v∈V (T1)

|Bv| ≥
∑

v∈V (T1)

max{0,dim(T2) − dT1(v)}.

This establishes the desired lower bound in the statement of the theorem.
�

Using Lemma 2.5, we have the following result.

Theorem 2.6. For n ≥ 2, if T1 = Pn and T2 is a tree that is not a path, then

dimS(T1, T2) = n(dim(T2) − 2) + 2.

Proof. Let T1 = Pn and let T2 be a tree that is not a path. By Corollary 2.2,
dim(T2) ≥ 2. By Lemma 2.5,

dimS(T1, T2) ≥ n(dim(T2) − 2) + 2

noting that T1 contains two vertices of degree 1 and n−2 vertices of degree 2.
Hence, it suffices for us to show that

dimS(T1, T2) ≤ n(dim(T2) − 2) + 2.

By assumption, T2 is not a path. Hence, T2 contains at least one exterior
branch vertex with terminal degree at least 2. If T2 contains two distinct
exterior branch vertices both with terminal degree at least 2, then let u1 and
u2 be two selected (terminal) leaves associated with these two exterior branch
vertices. If T2 contains only one exterior branch vertex, then T2 is a star or
a subdivided star with terminal degree at least 3. In this case, let u1 and u2

be two arbitrary leaves in T2. Let T1 be the path v1v2 . . . vn, and define the
function f : V (T1) → V (T2) by

f(vi) =
{

u1; i (mod 4) ∈ {1, 2},
u2; otherwise.

for all i ∈ [n]. For notational simplicity, instead of viT2 we simply write iT2

for the copy of T2 in the Sierpiński product T1 ⊗f T2 that corresponds to the
vertex vi for all i ∈ [n]. We note that the copy 1T2 and nT2 both contain one
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less leaf in the product T1 ⊗f T2, while every copy iT2 where i ∈ [n − 1]\{1}
contains two fewer leaves in the product T1 ⊗f T2, implying that

n1(T1 ⊗f T2) = n(T1)(n1(T2) − 2) + 2 = n(n1(T2) − 2) + 2.

On the other hand, by our choice of the vertices u1 and u2, the number
of exterior branch vertices in each copy iT2 where i ∈ [n] remains unchanged
in the product T1 ⊗f T2, that is,

ex(T1 ⊗f T2) = n(T1)ex(T2) = n × ex(T2).

Therefore,

dim(T1 ⊗f T2) = n1(T1 ⊗f T2) − ex(T1 ⊗f T2)
= (n(n1(T2) − 2) + 2) − n × ex(T2)
= n(n1(T2) − ex(T2) − 2) + 2
= n(dim(T2) − 2) + 2,

completing the proof of Theorem 2.6. �

3. Sierpiński Products of Cycles

In this section, we study the Sierpiński metric dimension of the Sierpiński
product of cycles, and proved closed formulas for the cases in which at least
one of the factors is a triangle.

Theorem 3.1. If n ≥ 3, then DimS(Cn, C3) = n.

Proof. Let H = C3 and G = Cn. Let V (H) = [3], and let the vertices of the
cycle G be g1, g2, . . . , gn in the natural order of adjacencies. Let f : V (G) →
V (H) be an arbitrary function and consider G ⊗f H.

For notational simplicity, let iH denote giH for all i ∈ [n], that is,
iH is the ith copy of H corresponding to the vertex gi of G. Let xiyi+1 be
the connecting edge between iH and (i + 1)H, i ∈ [n], where the sum is
made mod n. Thus, xi = (gi, f(gi+1)) and yi+1 = (gi+1, f(gi)). Set further
wi be a vertex in iH different from xi and yi. Note that if xi �= yi, then
V (iH) = {xi, yi, wi}. In case xi = yi, then let w′

i be the third vertex of
V (iH), that is, in this case we have V (iH) = {xi, wi, w

′
i}.

Let Z = {z1, z2, . . . , zn} ⊆ V (G ⊗f H) be defined as follows. Consider
an arbitrary iH, i ∈ [n]. If xi �= yi, then let zi = yi, and if xi = yi, then let
zi = wi. Since the vertices zi are pairwise different, |Z| = n. We claim that
Z is a resolving set of G ⊗f H.

Consider first two vertices from a given iH. If zi = wi, then the vertices
xi and w′

i are distinguished by all the vertices of Z\{zi}. If zi = yi, then
d(wi, zi+1) = d(xi, zi+1) + 1 and, therefore, xi and wi are distinguished.
Consider now two vertices u ∈ V (iH) and v ∈ V (jH), where i �= j. Assume
first that zi = wi. Then, d(u, zi) ≤ 1 while d(v, zi) > 1 and so u and v
are distinguished by zi. The case when zj = wj is treated exactly the same.
Hence, it remains to consider the case when zi = yi and zj = yj . If |i−j| > 1,
then as before d(u, zi) < d(v, zi). Assume finally that j = i + 1. But then
d(v, zi) > d(u, zi) and so again u and v are distinguished.
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We have thus proved that Z is a resolving set and hence DimS(Cn, C3) ≤
|Z| = n. To prove that DimS(Cn, C3) ≥ n, consider the constant function
f1(gi) = 1 for every i ∈ [n]. Then, in every iH, the vertices corresponding to
2 and 3 are twins and hence at least one of them must be included in every
resolving set. Then, dim(G ⊗f1 H) ≥ n and, therefore, DimS(Cn, C3) ≥ n.

�
We remark that, in the proof above, the situation in which we consider

the constant function f1(gi) = 1 for every i ∈ [n], leads to a graph which
indeed represents a rooted product graph, and so, the value of its metric
dimension can be also deduced from results appearing in [10,24].

For a given integer k ≥ 3, let Fk be the graph obtained as follows. We
begin with a cycle v0v1 . . . v2k−1v0 and do all computations modulo 2k. Next,
we add k isolated vertices u0, u2, u4, . . . , u2(k−1) and the edges u2iv2i−1, u2iv2i
for every 0 ≤ i ≤ k − 1.

Lemma 3.2. If k ≥ 3, then dim(Fk) = 2.

Proof. We claim that the set S = {u0, u2(�k/2�−1)} is a metric basis for Fk.
Let x, y be any two distinct vertices of Fk with x, y /∈ S (if x ∈ S or y ∈ S,
then they are clearly identified by S). If d(x, u0) = d(y, u0), then we have
either one of the following situations.

Case 1: x, y ∈ A1 = {v0, v1, . . . , vk−1} ∪ {u0, u2, . . . , u2�k/2�}.
In such situation, it must happen that (w.l.g.) x = v2i and y = u2i for some
i ∈ {1, 2, . . . , �k/2�}. If i = �k/2� − 1, then y ∈ S and the conclusion is
clear. In all the other cases we notice that v2i belongs to the u2i, u2(�k/2�−1)-
geodesic, which means u2(�k/2�−1) identifies x = v2i and y = u2i.
Case 2: x, y ∈ A2 = V (Fk)\A1.
A similar conclusion as in Case 1 can be deduced, but taking into account
that x = v2i−1 and y = u2i for some i ∈ {�k/2� + 1, . . . , k − 1}.
Case 3: x ∈ A1 and y ∈ A2.
Hence, x = ui or x = vi, and y = v2k−i−1 or y = u2k−i, for some i ∈
{0, 1, . . . , k−1}, where if x = ui, then i is even. We consider now the distances
between x, y and u2(�k/2�−1). That is:

d(vi, u2(�k/2�−1)) = 2(�k/2� − 1) − i = 2�k/2� − i − 2,
d(ui, u2(�k/2�−1)) = 2(�k/2� − 1) − i + 1 = 2�k/2� − i − 1,
d(v2k−i−1, u2(�k/2�−1)) = 2k − i − 2(�k/2� − 1) = 2k/2� − i + 2,
d(u2k−i, u2(�k/2�−1)) = 2k − i − 2(�k/2� − 1) + 1 = 2k/2� − i + 3.

Consequently, we now obtain a contradiction from each situation in which
we would suppose that d(x, u2(�k/2�−1)) = d(y, u2(�k/2�−1)), for any possible
assumption taken for x, y as considered before. Therefore, x, y are identified
by u2(�k/2�−1), and so, S is a resolving set. Since Fk is not a path, then S it
is indeed a metric basis, as claimed. �
Theorem 3.3. If n ≥ 3, then dimS(Cn, C3) = 2.

Proof. Clearly, dimS(Cn, C3) ≥ 2, hence we only need to prove that dimS

(Cn, C3) ≤ 2. We use the notation from the first two paragraphs of the proof
of Theorem 3.1. In particular, G = Cn and H = C3.
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Figure 1. C5 ⊗f5 C3, where f5 = (1, 2, 3, 3, 1)

For each n ≥ 3 we define a function fn : V (G) → V (H) as follows.
To do so, let us represent a function f : V (G) → V (H) as the vector
(f(g1), f(g2), . . . , f(gn)). Then, set f3 = (1, 2, 3) and f4 = (1, 1, 2, 2). Let
then n ≥ 5.
Case 1: n is odd.
Let B be the sequence 3, 1, 2, 3. Let fn be defined as follows.

• If n = 4(k + 1) + 1, k ≥ 0, then fn = (1, 2, 3, B, . . . , B, 3, 1), where B
appears k times.

• If n = 4(k+1)+3, k ≥ 0, then fn = (1, 2, 3, B, . . . , B), where B appears
k + 1 times.

Case 2: n is even.
Let C be the sequence 2, 2, 3, 3. Let fn be defined as follows.

• If n = 4(k + 1), k ≥ 0, then fn = (1, 1, C, . . . , C, 2, 2), where C appears
k times.

• If n = 4(k + 1) + 2, k ≥ 0, then fn = (1, 1, C, . . . , C), where C appears
k + 1 times.

It is straightforward to verify that for every n ≥ 3, the Sierpiński prod-
uct G ⊗fn H has the following structure. For each i we have xi �= yi, and
hence wi is the third vertex from V (iH), see Fig. 1 where G⊗f5 H is drawn in
two different ways. It is now clear that G ⊗fn H ∼= Fn and hence Lemma 3.2
completes the argument. �

4. Convexity Property of Sierpiński Products

In this section, we establish a distance convex property of the Sierpiński
product of two graphs. Recall that a subgraph H of a graph G is convex
if whenever u, v ∈ V (H) and P is a shortest u, v-path in G, then P lies
completely in H.

Theorem 4.1. If G and H be connected graphs, f : V (G) → V (H), and g ∈
V (G), then gH is a convex subgraph of G ⊗f H.
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Figure 2. The shape of P

Proof. Throughout the proof, let X = G ⊗f H. Suppose on the contrary
that there exists vertices u, v ∈ V (gH) such that dX(u, v) < dgH(u, v). Note
that this does not happen in trees, hence, in the rest, we may assume that
G contains cycles. Suppose now that u, v, and gH are selected such that
dX(u, v) is as small as possible among all such counterexamples. Let u =
(g, h), v = (g, h′), and let P be a shortest u, v-path in X. Set further g1 = g.

Claim. The shape of the path P is as follows. Let g1, . . . , gk, k ≥ 2, be the
vertices of G ordered such that P passes through g1H, . . . , gkH in that order.
Then P starts with the connecting edge (g1, f(g2))(g2, f(g1)), proceeds with a
geodesic P2 in g2H between (g2, f(g1)) and (g2, f(g3)), then continuing with
the connecting edge (g2, f(g3))(g3, f(g2)), and so on. Finally, P arrives at
gkH, proceeds along a geodesic in Gk between (gk, f(gk−1)) and (gk, f(g1)),
and ends with the connecting edge (gk, f(g1))(g1, f(gk)), where f(gk) = h′.
See Fig. 2.

Note first that k ≥ 3 because k = 2 would imply that there are two
connecting edges between g1H and g2H.

We next show that the vertices g1, . . . , gk are pairwise different. Sup-
pose on the contrary that there exist i and j, such that 2 ≤ i < j < k and
gj+1 = gi. Let P ′ be the subpath of P between the vertices u′ = (gi, f(gi+1))
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and v′ = (gj+1, f(gj)) = (gi, f(gj)). As P is a geodesic in X, Bellman’s
principle of optimality implies that P ′ is also a geodesic. In addition to its
connecting edges, P ′ contains geodesics Pi, Pi+1, . . . , Pj , which are, respec-
tively, projected onto H, geodesics

• between f(gi−1) and f(gi+1),
• between f(gi) and f(gi+2),

...
• between f(gj−2) and f(gj), and
• between f(gj−1) and f(gi).

Suppose first that j − i is odd. Then, we have

|P ′| > dH(f(gi−1), f(gi+1)) + dH(f(gi+1), f(gi+3)) + · · · + dH((gj−2), f(gj))

≥ dH(f(gi−1), f(gj))

= dgiH(u′, v′) .

This is a contradiction with the selection of u and v as a minimal counterex-
ample. Suppose second that j − i is even. Then, we have

|P ′| > [dH(f(gi−1), f(gi+1)) + dH(f(gi+1), f(gi+3)) + · · · + dH((gj−1), f(gi))]

+ [dH(f(gi), f(gi+2)) + dH(f(gi+2), f(gi+4)) + · · · + dH((gj−2), f(gj))]

≥ dH(f(gi−1), f(gi)) + dH(f(gi), f(gj))

≥ dH(f(gi−1), f(gj))

= dgiH(u′, v′) .

Hence, we get the same contradiction as in the previous case.
We have thus proved that the vertices g1, . . . , gk are pairwise different.

To complete the proof of the claim, we need to verify that P starts and
ends with a connecting edge. Suppose on the contrary that P starts with a
subpath in g1H from u to w and then proceed along the connecting edge
between g1H and g2H. By the minimality assumption on u and v, we have
dX(u,w) = dg1H(u,w). We now have:

dX(u,w) + dX(w, v) = dX(u, v)

< dg1H(u, v)

≤ dg1H(u,w) + dg1H(w, v)

= dX(u,w) + dg1H(w, v)

which yields dX(w, v) < dg1H(w, v). This contradiction proves that P indeed
starts with a connecting edge. A parallel argument yields that P also ends
with a connecting edge. This proves the claim.

To conclude the proof, let P2, P3, . . . , Pk be the sections of P restricted
to g2H, g3H, . . . , gkH, respectively. Then, we proceed similarly as we did for
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the subpath P ′ above. More precisely, if k − 1 is odd, then

|P | > dH(f(g2), f(g4)) + dH(f(g4), f(g6)) + · · · + dH((gk−2), f(gk))

≥ dH(f(g2), f(gk))

= dg1H(u, v) .

And if k − 1 is even, then

|P ′| > [dH(f(g1), f(g3)) + dH(f(g3), f(g5)) + · · · + dH((gk−2), f(gk))]

+ [dH(f(g2), f(g4)) + dH(f(g4), f(g6)) + · · · + dH((gk−1), f(g1))]

≥ dH(f(g1), f(gk)) + dH(f(g2), f(g1))

≥ dH(f(g2), f(gk))

= dg1H(u, v) .

This final contradiction proves the theorem. �

5. Concluding Remarks

In Theorem 2.6, we determined dimS(Pn, T ) where T is an arbitrary tree
different from a path. It remains to determine dimS(T ′, T ) where T ′ and T
are arbitrary trees.

In Theorems 3.1 and 3.3, we determined DimS(Cn, C3) and dimS(Cn, C3)
for all n ≥ 3. It remains to determine DimS(Cn, Cm) and dimS(Cn, Cm) for
all n ≥ 3 and m ≥ 4.

It would be interesting to determine DimS(G,H) and dimS(G,H) for
other classes of graphs G and H.
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20, 171–186 (2021)
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[22] Klavžar, S., Zemljič, S.S.: Connectivity and some other properties of general-
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