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We study the existence of solutions of mixed Riemann-Hilbert or Cherepanov 
boundary value problem with simply connected fibers on the unit disk Δ. Let L
be a closed arc on ∂Δ with the end points ω−1, ω1 and let a be a smooth function 
on L with no zeros. Let {γξ}ξ∈∂Δ\L̊ be a smooth family of smooth Jordan curves in 
C which all contain point 0 in their interiors and such that γω−1 , γω1 are strongly 
starshaped with respect to 0. Then under condition that for each w ∈ γω±1 the 
angle between w and the normal to γω±1 at w is less than π

10 , there exists a Hölder 
continuous function f on Δ, holomorphic on Δ, such that

Re(a(ξ)f(ξ)) = 0 on L and f(ξ) ∈ γξ on ∂Δ \ L̊.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let Δ = {z ∈ C; |z| < 1} be the open unit disc in the complex plane C and let ∂Δ = {ξ ∈ C; |ξ| = 1} be 
the unit circle. Let L be a closed arc on ∂Δ, let L̊ denote its interior with respect to ∂Δ, and let a : L → ∂Δ
be a smooth function.

Recall that the interior Int(γ) of a Jordan curve γ ⊂ C is the bounded component of C \ γ. We orient γ
positively with respect to Int(γ). Jordan curve γ ⊂ C is starshaped with respect to 0, if for any point w in 
the interior of γ the line segment which connects points 0 and w lies in the interior of γ, and it is strongly 
starshaped with respect to 0, [12], if there exists a positive continuous function R on the unit circle such 
that
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γ =
{
w ∈ C; |w| = R

(
w

|w|

)}
(1)

and

Int(γ) =
{
w ∈ C \ {0}; |w| < R

(
w

|w|

)}
∪ {0}. (2)

Let {γξ}ξ∈∂Δ\L̊ be a smooth family of smooth Jordan curves in C which all contain point 0 in their 
interiors. In this paper we study the existence and properties of holomorphic solutions of the nonlinear 
mixed Riemann-Hilbert problem, that is, the Cherepanov boundary value problem with simply connected 
fibers. The problem asks for a continuous function f on Δ, holomorphic on Δ, such that

Re(a(ξ)f(ξ)) = 0 for ξ ∈ L (3)

and

f(ξ) ∈ γξ for ξ ∈ ∂Δ \ L̊. (4)

That is, f solves a linear Riemann-Hilbert problem on L and a nonlinear Riemann-Hilbert problem with 
simply connected fibers on ∂Δ \ L̊. See also [1,2,13,14].

The problem with circular fibers γξ and L a finite union of disjoint arcs was considered by Obnosov and 
Zulkarnyaev in [14], and by the author in [5]. The structure of the family of solutions of problem (3)-(4)
is well known in the cases where either L = ∂Δ or L = ∅. If L = ∂Δ, we consider a homogeneous linear 
Riemann-Hilbert problem. In this case the essential information on the problem is given by the winding 
number W (a) of function a. It is well known [10,17,18] that if the winding number W (a) is nonnegative, 
the space of solutions of (3) is a vector subspace of Aα(Δ), 0 < α < 1, of real dimension 2W (a) + 1.

Remark 1.1. The linear Riemann-Hilbert problem can also be considered in the case of a nonorientable line 
bundle over ∂Δ, that is, in the case where at some point ξ0 ∈ ∂Δ we have a(ξ−0 ) = −a(ξ+

0 ). Then the 
winding number of function a2 or the Maslov index of the problem is an odd integer. In this case it holds 
that if W (a2) ≥ −1, or, with a little bit of abuse of notation, if W (a) ≥ −1

2 , then the space of solutions of 
(3) is a vector subspace of Aα(Δ) of real dimension 2W (a) + 1, see [3,4,15,18].

If L is empty, we have a nonlinear Riemann-Hilbert problem with smooth simply connected fibers which 
all contain 0 in their interiors. This problem was considered and solved in [8,16–18]. In particular, it was 
proved that the family of solutions with exactly m zeros on Δ, m ∈ N ∪ {0}, forms a manifold in space 
Aα(Δ) of dimension 2m + 1, and this manifold is compact if and only if m = 0. We assume from now on 
that neither L = ∅ nor L = ∂Δ.

Theorem 1.2. Let k ≥ 3. Let a : L → C \ {0} be a Ck+1 function and let {γξ}ξ∈∂Δ\L̊ be a Ck family of 
Jordan curves in C which all contain point 0 in their interiors. Let ω1 and ω−1 be the first and the last 
point of arc L with respect to the positive orientation of ∂Δ. Let Jordan curves γωj

, j = ±1, be strongly 
starshaped with respect to 0 and such that for each w ∈ γωj

the angle between w and the normal to γωj

at w is less than π
10 . Let wj, j = ±1, be the intersection of γωj

and the line Re(a(ωj)w) = 0 of the form 
λ(−ia(ωj)), λ > 0, and let πβj be the oriented angle of intersection of the line Re(a(ωj)w) = 0 with the 
fiber γωj

at point wj, where β1 ∈ (0, 1) and β−1 ∈ (−1, 0). Let

0 < β < min{β1, 1 − β1, |β−1|, 1 − |β−1|}. (5)
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Then there exists a unique f ∈ Aβ(Δ) with no zeros on Δ which solves (3)-(4) for which f(ω1) = w1 and 
f(ω−1) = w−1.

Remark 1.3. Here β1 > 0, if the tangent vector −ia(ω1) to Re(a(ω1)w) = 0 is rotated counterclockwise by 
angle πβ1 to get a positive tangent vector to γω1 at point w1, and β−1 < 0, if a positive tangent vector to 
γω−1 at w−1 is rotated clockwise by angle π|β1| to get tangent vector −ia(ω−1) to Re(a(ω−1)w) = 0.

Remark 1.4. Observe that conditions in Theorem 1.2 imply ||βj | − 1
2 | <

1
10 , j = ±1, and hence one could 

choose β = 2
5 .

Remark 1.5. In the cases considered in [5,14] all boundary curves were circles with center at point 0. Hence 
|βj | = 1

2 , j = ±1, and the maximal regularity we got was β < 1
2 .

Corollary 1.6. Let a1, . . . , an ∈ Δ be a finite set of points with given multiplicities. Then under the assump-
tions of Theorem 1.2 there exists β ∈ (0, 1) and f ∈ Aβ(Δ) which has zeros exactly at points a1, . . . , an ∈ Δ
with the given multiplicites and which solves (3)-(4).

2. Function spaces, Hilbert transform and defining functions

Let 0 < α < 1 and let G ⊂ C be a compact subset. We denote by Cα(G) the algebra over C of Hölder 
continuous complex functions on G and by Cα

R(G) the algebra over R of real Hölder continuous functions 
on G. Using the norm

‖f‖α = max
z∈G

|f(z)| + sup
z,w∈G,z �=w

|f(z) − f(w)|
|z − w|α (6)

the algebras Cα(G) and Cα
R(G) become Banach algebras. For G = Δ or G = ∂Δ and k ∈ N ∪ {0} we also 

define spaces Ck,α(G) and Ck,α
R (G) of k times continuously differentiable functions on G, whose all k-th 

derivatives belong to space Cα(G) or space Cα
R(G).

We also need some algebras of holomorphic functions on Δ. By A(Δ) we denote the disc algebra, that is, 
the algebra of continuous functions on Δ which are holomorphic on Δ, and by Aα(Δ) = A(Δ) ∩Cα(Δ) the 
algebra of Hölder continuous functions on the closed disc which are holomorphic on Δ. Using appropriate 
norms, that is, the maximum norm ‖ · ‖∞ for A(Δ) and the Hölder norm ‖ · ‖α for Aα(Δ), these algebras 
become Banach algebras. Similarly we define Ak,α(Δ) = A(Δ) ∩ Ck,α(Δ) (k ∈ N ∪ {0}, 0 < α < 1).

Recall that Hilbert transform H assigns to a real function u on ∂Δ a real function Hu on ∂Δ such that 
the harmonic extension of f = u + i Hu to Δ is holomorphic on Δ and real at 0. It is known that H is 
a bounded linear operator on Ck,α

R (∂Δ) (k ∈ N ∪ {0}, 0 < α < 1), [18, §1.6.11], and hence the harmonic 
extension of f = u + i Hu to Δ belongs to Ak,α(Δ). Also, [18, §1.6.11], the Hilbert transform is a bounded 
linear operator on the Sobolev space W k

p (∂Δ) of k times generalized differentiable functions with derivatives 
in Lp(∂Δ) (k ∈ N ∪ {0}, 1 < p < ∞) equipped with the norm

‖f‖Wk
p

=

⎛⎝ k∑
j=0

‖Djf‖p

⎞⎠
1
p

. (7)

Recall, [18, §1.6.14], that if ∂Δ = T1 ∪ T2 is a partition of ∂Δ in two subarcs T1 and T2 and if T0 ⊆ T1
is a compactly contained subarc of T1, then for k ∈ N ∪ {0}, 1 < p < ∞, 0 < α < 1 there exists a constant 
C = C(k, p, α) such that
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‖Hu‖Wk
p (T0) ≤ C(‖u‖Wk

p (T1) + ‖u‖L1(T2)) (8)

and

‖Hu‖Ck,α(T0) ≤ C(‖u‖Ck,α(T1) + ‖u‖L1(T2)). (9)

We will also need compact embedding result, [18, §1.1.8],

W 1
p (∂Δ) ↪→ Cβ(∂Δ) ↪→ Cα(∂Δ) (10)

for 0 < α < β < 1 − 1
p , 1 < p < ∞, which holds on arcs in ∂Δ as well.

Since L 
= ∂Δ we can extend a to ∂Δ as a nowhere zero function of class Ck+1 so that the winding 
number W (a) = 0. Therefore, [18, p. 25], we can write a in the form

a = reh, (11)

where r > 0 is a positive Ck,α function on ∂Δ and h ∈ Ak,α(Δ). Thus the original problem (3)-(4) is 
equivalent to the problem

Im(f∗(ξ)) = 0 for ξ ∈ L (12)

and

f∗(ξ) ∈ γ∗
ξ for ξ ∈ ∂Δ \ L̊, (13)

where f∗ = iehf and γ∗
ξ = ieh(ξ)γξ. Observe that the number of zeros of f∗ and f are the same and that 0

belongs to the interiors of all curves γ∗
ξ , ξ ∈ ∂Δ \ L̊. Also, since for each ξ ∈ ∂Δ the transformation

w �−→ ieh(ξ)w (14)

is a composition of a dilation and a rotation, the angle conditions from Theorem 1.2 stay the same.
Using a holomorphic automorphism of the unit disc we may even assume that L = {ξ ∈ ∂Δ; Im(ξ) ≤ 0}

is the lower semicircle. From now on we will consider problem (12)-(13) with the addition that L is the 
lower semicircle and instead of f∗ and {γ∗

ξ}ξ∈∂Δ\L̊ we will still write f and {γξ}ξ∈∂Δ\L̊.

Remark 2.1. One can also create the ‘double’ of the boundary value problem. Using a biholomorphism one 
can replace the unit disc Δ with the upper half-disk Δ+ = {ξ ∈ Δ; Im(ξ) > 0} and L by the interval [−1, 1].

By the reflection principle we see that problem (12)-(13) is equivalent to the nonlinear Riemann-Hilbert 
problem on Δ, where the boundary curves {γξ}ξ∈∂Δ+\L̊ are symmetrically extended and defined on the 
lower semicircle so that we have

γξ = γξ (15)

for every ξ ∈ ∂Δ \{1, −1}. In general this symmetrical extension of Jordan curves {γξ}ξ∈∂Δ+\L̊ to the lower 
semicircle produces boundary data which are not continuous at points 1 and −1. Because the biholomor-
phism from Δ to the upper semidisc is in A

1
2 (Δ), we get that the regularity of solutions of (12)-(13) is in 

general a half of the regularity of solutions of the symmetrical Riemann-Hilbert problem.

We will consider smooth families of smooth Jordan curves {γξ}ξ∈∂Δ\L̊ in C. Let k ∈ N. The family 

of Jordan curves {γξ} ˚ is a Ck family parametrized by ξ ∈ ∂Δ \ L̊ if there exists a function ρ ∈
ξ∈∂Δ\L
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Ck((∂Δ \ L̊) ×C) such that

γξ = {w ∈ C; ρ(ξ, w) = 0} and Int(γξ) = {w ∈ C; ρ(ξ, w) < 0}, (16)

and the gradient ∂ρ∂w (ξ, w) = ρw(ξ, w) 
= 0 for every ξ ∈ ∂Δ \ L̊ and w ∈ γξ. We call ρ a defining function for 
Ck family of Jordan curves {γξ}ξ∈∂Δ\L̊. We will consider only bounded families of Jordan curves which all 
lie in some fixed disc Δ(0, R), R > 0, and the space Ck((∂Δ \ L̊) × Δ(0, R)) is equipped with the standard 
Ck norm.

Since we assume that γ±1 are strongly starshaped Jordan curves, we also assume that for ρ, the defining 
function for Jordan curves {γξ}ξ∈∂Δ\L̊, and j = ±1 we have

ρ(j, w) = |w|2 −R2
j

(
w

|w|

)
(17)

for some positive Ck functions Rj(z) on C.
Using parametrization θ �→ eiθ of the unit circle we will also use the notation γθ, ρ(θ, w) and ρθ(θ, w)

instead of γξ, ρ(ξ, w) and ρξ(ξ, w). Also, for a function h on ∂Δ, we will write either h(ξ) or h(θ), where 
ξ = eiθ. Observe that if h is holomorphic on Δ with well defined derivative on ∂Δ, then ∂h∂θ (θ) = iξh′(ξ) for 
ξ = eiθ.

Remark 2.2. The reflection principle and the symmetric extension to the lower semicircle mentioned in 
Remark 2.1 is in terms of defining function ρ given as

ρ(ξ, w) = ρ(ξ, w) (18)

for every ξ ∈ ∂Δ \ {1, −1} and every w ∈ C.

3. Regularity of solutions

In this section we prove regularity of continuous solutions of a specific form of problem (12)-(13), where 
the defining function ρ ∈ Ck((∂Δ \ L̊) ×C) (k ≥ 3).

Let f ∈ A(Δ) be a solution of (12)-(13). It is well known [6–8,18] that f restricted to ∂Δ \ {−1, 1} is 
in Ck−1,α for any 0 < α < 1. Hence we need information on the regularity of f near points ξ = ±1. For 
j = ±1 we denote f(j) = wj ∈ R ∩ γj .

Using Möbius transformation from the unit disc Δ to the upper half-plane H = {z ∈ C; Im(z) > 0} we 
consider the case where f is bounded and continuous on H and holomorphic on H. Also, point ξ = 1 is 
mapped into t = 0 and point ξ = −1 into ∞. Now f solves the problem

Im(f(t)) = 0 for t ≤ 0 (19)

and

f(t) ∈ γt for t ≥ 0. (20)

Also, using translation, we will assume that f(0) = 0 ∈ R ∩ γ0.
Let πβ1 (β1 ∈ (−1, 1) \ {0}) be the oriented angle of intersection of the real axis Im(w) = 0 and γ0 at 

w = f(0) = 0. The orientation of the real axis is positive with respect to the upper half-plane and the 
orientation of γ0 is positive with respect to the interior of γ0. Hence β1 > 0, if the tangent vector to the 
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real axis is rotated counterclockwise by angle πβ1 to get a tangent vector to γ0 at point 0, and β1 < 0, if 
the tangent vector to the real axis is rotated clockwise by angle π|β1| to get a tangent vector to γ0 at 0.

The defining function ρ can near (0, 0) for t ≥ 0 be written as

ρ(t, w) = ρ(0, 0) + ρt(0, 0)t + 2Re(ρw(0, 0)w) + 1
2ρtt(0, 0)t2+ (21)

+ ρww(0, 0)|w|2 + Re(ρww(0, 0)w2 + ρtw(0, 0)tw) +
√

t2 + |w|2 g(t, w), (22)

where g ∈ C1(R ×C) such that g(0, 0) = gt(0, 0) = gw(0, 0) = gw(0, 0) = 0.
Recall that ρ(0, 0) = 0 and that ρw(0, 0) represents an outer normal to γ0 at point w = 0. So we have

ρw(0, 0) = −iλeiπβ1 (23)

for some real λ > 0. We may assume λ = 1
2 .

Because

Re(ie−iπβ1w) = −Im(e−iπβ1w) = Im(eiπ(1−β1)w) (24)

we have

ρ(t, w) = At + Im(eiπ(1−β1)w) + Bt2 + C|w|2+ (25)

+ Re(Dw2) + tRe(Ew) +
√
t2 + |w|2 g(t, w) (26)

for some A, B, C ∈ R and D, E ∈ C.
Let us assume that we have a solution f of the problem (19)-(20) of the form

f(t) = tsκ(t), (27)

where κ is bounded and continuous on H, holomorphic on H, and 0 < s < 1 to be determined.
For t ≤ 0 we have t = (−1)|t| and from (19) we get

Im(eiπsκ(t)) = −Im(eiπ(1+s)κ(t)) = 0. (28)

On the other hand for t > 0 we have

1
ts
ρ(t, tsκ(s)) = At1−s + Im(eiπ(1−β1)κ(t)) + Bt2−s + Cts|κ(t)|2+ (29)

+tsRe(Dκ(t)2) + tRe(Eκ(t)) +
√

t2−2s + |κ(t)|2 g(t, tsκ(t)) = 0. (30)

We choose 0 < s < 1 so that κ solves boundary value problem with continuous boundary data. That is, we 
choose s = 1 − β1, if β1 > 0, and s = −β1 = |β1|, if β1 < 0.

Thus κ solves the following Riemann-Hilbert problem

Im(eiπ(1−β1)κ(t)) = 0 for t ≤ 0 (31)

and

ρ̃(t, κ(t)) = 0 for t ≥ 0, (32)

where, if β1 > 0,
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ρ̃(t, w) = Atβ1 + Im(eiπ(1−β1)w) + Bt1+β1 + Ct1−β1 |w|2+ (33)

+ t1−β1Re(Dw2) + tRe(Ew) +
√

t2β1 + |w|2 g(t, t1−β1w), (34)

and, if β1 < 0,

ρ̃(t, w) = At1−|β1| + Im(eiπ(1−β1)w) + Bt2−|β1| + Ct|β1||w|2+ (35)

+ t|β1|Re(Dw2) + tRe(Ew) +
√
t2−2|β1| + |w|2 g(t, t|β1|w). (36)

For such choice of s are the defining function for problem (31)-(32)

(t, w) �−→
{

ρ̃(t, w) = 1
ts ρ(t, t

sw); t ≥ 0, w ∈ C

Im(eiπ(1−β1)w); t ≤ 0, w ∈ C
(37)

and its partial w-derivative

(t, w) �−→
{

ρ̃w(t, w) = ρw(t, tsw); t ≥ 0, w ∈ C
1
2ie

iπ(1−β1); t ≤ 0, w ∈ C
(38)

continuous on R ×C.
On the other hand, the partial derivative of defining function (37) with respect to the t variable is not 

continuous at t = 0, but, as we will see, it still has certain Lp regularity properties, which will imply 
regularity conditions on κ and f .

We know that κ is Ck−1,α on R \ {0} and we can differentiate (31)-(32) on R \ {0} to get

Im(eiπ(1−β1)κ′(t)) = 0 for t < 0 (39)

and

ρ̃t(t, κ(t)) + 2Re(ρ̃w(t, κ(t))κ′(t)) = 0 for t > 0. (40)

For t > 0 and β1 > 0 we have

ρ̃t(t, w) = Aβ1t
β1−1 + B(1 + β1)tβ1 + (1 − β1)Ct−β1 |w|2+ (41)

+(1 − β1)t−β1Re(Dw2) + Re(Ew) + β1 t
2β1−1√

t2β1 + |w|2
g(t, t1−β1w)+ (42)

+
√
t2β1 + |w|2 (gt(t, t1−β1w) + 2Re(gw(t, t1−β1w)(1 − β1)t−β1w)) (43)

and for t > 0 and β1 < 0 we have

ρ̃t(t, w) = A(1 − |β1|)t−|β1| + B(2 − |β1|)t1−|β1| + |β1|Ct|β1|−1|w|2 (44)

+|β1|t|β1|−1Re(Dw2) + Re(Ew) + (1 − |β1|) t1−2|β1|√
t2−2|β1| + |w|2

g(t, t|β1|w)+ (45)

+
√

t2−2|β1| + |w|2 (gt(t, t|β1|w) + 2Re(gw(t, t|β1|w)|β1|t|β1|−1w)). (46)

The t-derivative of defining function (37) is 0 for t < 0.
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Since β1 ∈ (−1, 1) \ {0} and κ is bounded, we have that ρ̃t(t, κ(t)) is in Lp
loc(R) for

1 ≤ p < min
{

1
|β1|

,
1

1 − |β1|

}
. (47)

A similar argument can be used for point ξ = −1 ∈ ∂Δ. Let πβ−1 (β−1 ∈ (−1, 1) \ {0}) be the orientied 
angle of intersection of γ−1 and the real axis Im(w) = 0 at point f(−1). Now β−1 is positive, if a positive 
tangent vector to γ−1 at f(−1) is rotated counterclockwise to get a positive tangent vector to the real axis 
and negative otherwise. For j = ±1 we define δj = 1 − βj , if βj ∈ (0, 1), and δj = |βj |, if βj ∈ (−1, 0).

To transfer our observations to the boundary value problem (12)-(13) on the unit disc, let Ψ ∈ A
1
2 (Δ) be 

a biholomorphic map from Δ to the upper half-disc Δ+, which maps the lower semicircle L on [−1, 1] so that 
Ψ(±1) = ±1. Let F (x) = 1

2x(3 −x2). Then F (x) −1 = −1
2(x −1)2(x +2) and F (x) +1 = −1

2 (x +1)2(x −2). 
Hence function ψ(ξ) = F (Ψ(ξ)) is real on L, ψ(±1) = ±1, and C1 on ∂Δ.

Recall that wj is the positive intersection of γj and the real axis, j = ±1. Now we consider only those 
solutions f of the Cherepanov problem (12)-(13), which are of the form

f(ξ) = (ξ − 1)δ1(ξ + 1)δ−1κ(ξ) + w1
1 + ψ(ξ)

2 + w−1
1 − ψ(ξ)

2 , (48)

where κ is in A(Δ).
We will define two (local) defining functions ρ̃1(ξ, w) for ξ 
= −1 and ρ̃−1(ξ, w) for ξ 
= 1. Let

T1(ξ) = (ξ − 1)
i(ξ + 1) and T−1(ξ) = 1

T1(ξ)
= i(ξ + 1)

(ξ − 1) . (49)

Then T1(−i) = T−1(−i) = −1, and T1, T−1 map the upper semicircle to the positive real axis and the lower 
semicircle to the negative real axis. For j = ±1 and Im(ξ) > 0 we define

ρ̃j(ξ, w) = 1
Tj(ξ)δj

ρ

(
ξ, (ξ − 1)δ1(ξ + 1)δ−1w + w1

1 + ψ(ξ)
2 + w−1

1 − ψ(ξ)
2

)
(50)

and for Im(ξ) < 0 we set

ρ̃j(ξ, w) = Im
(
eiπ(1−βj) (ξ − 1)δ1(ξ + 1)δ−1

Tj(ξ)δj
w

)
. (51)

As before one can check that ρ̃j and ρ̃jw are continuous on ∂Δ \ {−j}, j = ±1. Since f solves the original 
boundary value problem, we have that ρ̃j(ξ, κ(ξ)) = 0, j = ±1.

Let χ : ∂Δ \ {−i} → [0, 1] be a smooth function such that χ(ξ) = 1 for ξ = eiθ, −π
2 ≤ θ ≤ π

3 , and 
χ(ξ) = 0 for ξ = eiθ, 2π

3 ≤ θ ≤ 3π
2 .

We define a new (global) defining function as ρ̃(ξ, w) = χ(ξ)ρ̃1(ξ, w) +(1 −χ(ξ))ρ̃−1(ξ, w). Then ρ̃ and ρ̃w
are well defined continuous function on (∂Δ \ {−i}) ×C. If β1, β−1 have the same sign, then both functions 
are also continuous at ξ = −i, but if β1, β−1 have the opposite signs, then

ρ̃(−i−, w) = −ρ̃(−i+, w) and ρ̃w(−i−, w) = −ρ̃w(−i+, w), (52)

which means that we have a nonorientable bundle as the boundary value data for κ.
Now locally considered problem (39)-(40) for κ(t) and κ′(t) becomes global boundary value problem for 

κ(θ) and ∂κ∂θ (ξ = eiθ). Hence ∂κ∂θ solves the linear Riemann-Hilbert problem

2Re
(
ρ̃w(θ, κ(θ))∂κ

)
= −ρ̃θ(θ, κ(θ)), (53)
∂θ
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where ρ̃w(θ, κ(θ)) is either a nonzero continuous function on ∂Δ or

ρ̃w(−i−, κ(−i)) = −ρ̃w(−i+, κ(−i)) (54)

and ρ̃θ(θ, κ(θ)) belongs to the appropriate Lp(∂Δ) space

1 ≤ p < min
{

1
|β1|

,
1

1 − |β1|
,

1
|β−1|

,
1

1 − |β−1|

}
. (55)

Remark 3.1. In fact ρ̃θ(θ, κ(θ)) belongs to Lp
loc for

1 ≤ p < min
{

1
|β1|

,
1

1 − |β1|

}
(56)

near ξ = 1 and to Lp
loc near ξ = −1 for

1 ≤ p < min
{

1
|β−1|

,
1

1 − |β−1|

}
. (57)

Let N be the winding number of function ρ̃w(θ, κ(θ)), that is, 2N is the Maslov index of the associated 
linear Riemann-Hilbert problem. If ρ̃w(θ, κ(θ)) is a continuous function on ∂Δ, Maslov index is an even 
integer and hence N is an integer. On the other hand, if ρ̃w(−i−, κ(−i)) = −ρ̃w(−i+, κ(−i)), Maslov index 
is an odd integer and N is a half of an odd integer.

Let r(ξ) be the square root function, where we take the branch where C is cut along the negative 
imaginary axis. Then function ρ̃w(θ, κ(θ)) can be written in the form

ρ̃w(θ, κ(θ)) = ξ−Neu+iv(θ), (58)

where u and v are real continuous functions on ∂Δ, [18, p. 25]. In the case N = 2M+1
2 , M ∈ Z, is a half of 

an odd integer, we define ξN = ξMr(ξ), which corresponds to the sign changing of ρ̃w at ξ = −i. See also 
[3,4,15]. Hence e±Hv belongs to Lp′(∂Δ) for any p′ ≥ 1, [18, p. 23] and thus

e±i(v+iHv) (59)

belongs to Lp′(∂Δ) for any p′ ≥ 1.
Therefore

Re
(
ξ−Nei(v+iHv) ∂κ

∂θ

)
= −e−ue−(Hv)ρ̃θ(θ, κ). (60)

We conclude that the right-hand side belongs to the same Lp(∂Δ) space as function ρ̃θ(θ, κ). Since Hilbert 
transform is bounded in Lp(∂Δ) spaces, 1 < p < ∞, [18, p. 23], we get that ∂κ∂θ is in Lp(∂Δ) for the same 
set (55) of values of p as function ρ̃θ(θ, κ). Therefore κ belongs to L1,p(∂Δ) for all such values of p and this 
implies that κ ∈ Cβ(∂Δ), [18, p. 10], where

0 < β < min{|β1|, 1 − |β1|, |β−1|, 1 − |β−1|}. (61)

Remark 3.2. Observe that regularity of κ and f could also be expressed locally, that is, near j = ±1 functions 
κ and f belong to Hölder space Cβ, where 0 < β < min{|βj |, 1 − |βj |}.
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Proposition 3.3. Let k ≥ 3. Let {γξ}ξ∈∂Δ\L̊ be a Ck family of Jordan curves in C. Let wj, j = ±1, be an 
intersection of γj and the real axis and let πβj, βj ∈ (−1, 1) \ {0}, be the oriented angle of intersection of 
γj with the real axis at point wj. Let

0 < β < min{|β1|, 1 − |β1|, |β−1|, 1 − |β−1|}. (62)

Then for every solution f of (12)-(13) of the form

f(ξ) = (ξ − 1)δ1(ξ + 1)δ−1κ(ξ) + w1
1 + ψ(ξ)

2 + w−1
1 − ψ(ξ)

2 , (63)

where κ ∈ A(Δ), we have f, κ ∈ Aβ(Δ).

Remark 3.4. Observe that in cases where β1, β−1 ∈ (0, 1), the regularity conditions we get for solutions 
of the Cherepanov/mixed Riemann-Hilbert problem (3)-(4) are consistent with results on the regularity 
of Riemann maps from the unit disc into simply connected domains bounded by Jordan curves which 
satisfy so called wedge condition, [11]. If the defining function ρ is independent of ξ and βj ∈ (0, 1), we get 
(1 − βj)-regularity. The βj-regularity comes from ξ-dependence.

Similarly, the expected regularity and the ‘order’ of zeros of Riemann maps in the cases where βj ∈ (−1, 0)
and which are ξ independent, would be 1 +|βj |, but ξ-dependence of the defining function ρ changes regularity 
conditions.

On the other hand, results in [9] show that in the case of nontransversal intersection of the real axis 
with either γ1 or γ−1 solutions might not be of the form (ξ − 1)δ1κ(ξ) or (ξ + 1)δ−1κ(ξ) for some function 
κ ∈ A(Δ).

4. Linear Cherepanov boundary value problem

In this section we consider the linear version of problem (12)-(13), that is, a linear Riemann-Hilbert 
problem with piecewise continuous boundary data, [19, p. 169], and L the lower semicircle. First we consider 
homogeneous linear problem with piecewise continuous boundary data

Im(f(ξ)) = 0 for ξ ∈ L (64)

and

Re(B(ξ)f(ξ)) = 0 for ξ ∈ ∂Δ \ L̊, (65)

where B is a complex nonzero function of class Cβ on the upper semicircle. The regularity exponent β ∈ (0, 1)
is bounded by conditions given in Proposition 3.3. We may assume without loss of generality that |B(ξ)| = 1
for all ξ ∈ ∂Δ \ L̊.

Let πβ1, β1 ∈ (−1, 1) \ {0}, be the oriented angle of intersection of the real axis Im(w) = 0 and 
Re(B(1)w) = 0 at point 0, that is, B(1) = −ieiπβ1 . Similarly, let πβ−1, β−1 ∈ (−1, 1) \ {0}, be the oriented 
angle of intersection of Re(B(−1)w) = 0 and the real axis Im(w) = 0 at point 0, that is, B(−1) = −ie−iπβ−1 .

We search for solutions f ∈ A(Δ) of (64)-(65) of the form f(ξ) = (ξ − 1)δ1(ξ + 1)δ−1κ(ξ) for some 
κ ∈ Aβ(Δ). Recall that for j = ±1 we defined δj = 1 − βj , if βj ∈ (0, 1), and δj = |βj |, if βj ∈ (−1, 0). 
Hence we also have f ∈ Aβ(Δ).

To define noninteger powers of (ξ−1) and (ξ+1) we take appropriate branches of the complex logarithm. 
For (ξ−1)δ1 the complex plane is cut along positive real numbers so that the argument of (ξ−1) for ξ ∈ ∂Δ
lies on interval (π2 , 

3π
2 ), and for (ξ + 1)δ−1 the complex plane is cut along negative real numbers and the 

argument of (ξ + 1) for ξ ∈ ∂Δ lies on interval (−π , π ).
2 2
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An argument similar to the argument in Section 3 shows that κ solves homogeneous linear Riemann-
Hilbert problem

Re(B̃(ξ)κ(ξ)) = 0 for all ξ ∈ ∂Δ, (66)

where B̃ ∈ Cβ(∂D \ {1}) is defined as

B̃(ξ) =

⎧⎪⎨⎪⎩
B(ξ)

(
ξ−1
|ξ−1|

)δ1 (
ξ+1
|ξ+1|

)δ−1
, if Im(ξ) > 0

±i
(

ξ−1
|ξ−1|

)δ1 (
ξ+1
|ξ+1|

)δ−1
, if Im(ξ) < 0

(67)

with the left and the right limits at ξ = ±1. The sign for Im(ξ) < 0 is chosen so that B̃ is continuous at 
−1, that is, we have plus sign, if β−1 < 0, and minus sign, if β−1 > 0. At point ξ = 1 function B might not 
be continuous. In general we have B̃(1+) = ±B̃(1−). See [19, p. 169-170] for more.

Each factor

ξ − 1
|ξ − 1| ,

ξ + 1
|ξ + 1| (68)

changes the argument by π when ξ passes ∂Δ once in the positive direction. Hence possible widing number 
of B̃ is either an integer (Maslov index of problem (66) is even) or a half of an odd integer (Maslov index 
of problem (66) is odd).

Example 4.1. Consider the case B(eiθ) = eiθ for θ ∈ [0, π]. In particular we have β1 = β−1 = 1
2 . Then we 

get

B̃(ξ) =
{

e−iπ
4 B(ξ) ξ

1
2 = ei

2θ−π
4 , if 0 ≤ θ ≤ π

e−i 5π
4 ξ

1
2 = ei

3π−2θ
4 , if π < θ < 2π.

(69)

Hence the winding number W (B̃) = 0. Using identification of the boundary problem (64)-(65) with the 
problem on the unit disc with reflected boundary conditions (15), this example corresponds to the lineariza-
tion of the boundary value problem, where all boundary curves are unit circles and we linearize at f(z) = z. 
The family of (nearby) solutions which are real on the real axis is one-dimensional fa(z) = z−a

1−az , where 
a ∈ (−1, 1) is a real number.

Example 4.2. Consider the case B(eiθ) = 1 for θ ∈ [0, π]. In particular we have β1 = −β−1 = 1
2 . Then we 

get

B̃(ξ) = e−iπ+2θ
4 (70)

and the winding number W (B̃) = −1
2 . Using identification of the boundary problem (64)-(65) with the 

problem on the unit disc with reflected boundary conditions (15), this example corresponds to the lineariza-
tion of the problem where all boundary curves are unit circles and we linearize at function f(z) = 1. The 
family of (nearby) solutions which are real on the real axis is zero-dimensional.

The dimension of the space of solutions in Aβ(Δ) depends on the winding number W (B̃) of function B̃. 
It equals 2W (B̃) + 1 if W (B̃) ≥ −1

2 , see [18, p. 25, p. 59] and [3,4,15]. We define the winding number of 
B ∈ Cα(∂Δ \ L̊) as the winding number of B̃.
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Now we can solve appropriate nonhomogeneous linear Riemann-Hilbert problem with piecewise contin-
uous boundary data

Im(f(ξ)) = 0 for ξ ∈ L (71)

and

Re(B(ξ)f(ξ)) = b(ξ) for ξ ∈ ∂Δ \ L̊, (72)

where B is as above and b a real function on ∂Δ of the form

b(ξ) = |ξ − 1|δ1 |ξ + 1|δ−1 b̃(ξ) (73)

for some function b̃ ∈ Cβ
R(∂Δ) which equals 0 on L.

To solve (71)-(72) in the space of functions f ∈ Aβ(D) of the form f(ξ) = (ξ − 1)δ1(ξ + 1)δ−1κ(ξ) for 
some κ ∈ Aβ(Δ) is equivalent to solve the problem

Re(B̃(ξ)κ(ξ)) = b̃(ξ) for all ξ ∈ ∂Δ. (74)

It is well known that if W (B) = W (B̃) ≥ −1
2 , then the equation is solvable for any b̃ ∈ Cβ

R(∂Δ), see [18, p. 
25, p. 59] and [3,4,15].

Remark 4.3. If the winding number W (B) = W (B̃) is an odd integer, the function on the right-hand side of 
(74) needs to belong to a special space of Hölder continuous real functions on ∂Δ \ {1} of the form b0(r(ξ)), 
where r(ξ) is the principal branch of the square root and b0 ∈ Cβ

R(∂Δ) is an odd function. Hence we need 
condition b̃(1−) + b̃(1+) = 0, which is satisfied because in our case we have b̃(1−) = b̃(1+) = 0. See [3,4] for 
more information.

Proposition 4.4. Let 0 < β < 1. Let B : ∂Δ \L̊ → C\{0} be a non-vanishing complex function in Cβ(∂Δ \L̊)
and let W (B) ≥ −1

2 . Then for every real function b on ∂Δ of the form

b(ξ) = |ξ − 1|δ1 |ξ + 1|δ−1 b̃(ξ) (75)

for some b̃ ∈ Cβ
R(∂Δ) which equals 0 on L, there exists a solution f of the linear Cherepanov problem

Im(f(ξ)) = 0 for ξ ∈ L (76)

and

Re(B(ξ)f(ξ)) = b(ξ) for ξ ∈ ∂Δ \ L̊ (77)

of the form

f(ξ) = (ξ − 1)δ1(ξ + 1)δ−1κ(ξ), (78)

where κ ∈ Aβ(Δ). Moreover, the space of solutions of this form is 2W (B) + 1 dimensional real subspace of 
Aβ(Δ).
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Proposition 4.5. Let {γξ}ξ∈∂Δ\L̊ be a Ck (k ≥ 3) family of Jordan curves in C and let ρ0 ∈ Ck((∂Δ \L̊) ×C)
be its defining function. Let β1, β−1 and β be as in Proposition 3.3. Let f0 be a solution of the Cherepanov 
problem (12), (13) of the form

f0(ξ) = (ξ − 1)δ1(ξ + 1)δ−1κ0(ξ) + w1
1 + ψ(ξ)

2 + w−1
1 − ψ(ξ)

2 , (79)

where κ0 ∈ Aβ(Δ). Then the mapping Φ(κ) : Aβ(Δ) → Cβ
R(∂Δ), for each κ evaluated at point ξ ∈ ∂Δ as{

ρ0(ξ, (ξ − 1)δ1(ξ + 1)δ−1κ(ξ) + w1
1+ψ(ξ)

2 + w−1
1−ψ(ξ)

2 ), if Im(ξ) ≥ 0,
±Im((ξ − 1)δ1(ξ + 1)δ−1κ(ξ) + w1

1+ψ(ξ)
2 + w−1

1−ψ(ξ)
2 ), if Im(ξ) < 0

(80)

is differentiable at κ0 with the derivative (DΦ)(κ0) acting on κ ∈ Aβ(Δ) as{
2Re(∂ρ0w(ξ, f0(ξ))(ξ − 1)δ1(ξ + 1)δ−1κ(ξ)), if Im(ξ) ≥ 0,
±Im((ξ − 1)δ1(ξ + 1)δ−1κ(ξ)), if Im(ξ) < 0.

(81)

The sign for Im(ξ) < 0 is chosen as in (66)-(67).

Remark 4.6. Let Ω ⊂ Ck+1((∂Δ \ L̊) × C) be an open subset of defining functions ρ of the families of 
Jordan curves over ∂Δ \ L̊ such that the intersection of the corresponding γ1 and γ−1 with the real axis 
at some points w1 ∈ γ1 and w−1 ∈ γ−1 are transversal with the oriented angles of intersection given by 
β1, β−1 ∈ (−1, 1) \ {0}. Then, at least locally, w1, w−1 and β1, β−1 smoothly depend on ρ. Let

X = {(κ, ρ) ∈ Aβ(Δ) × Ω; Im((ξ − 1)δ1(ξ + 1)δ−1κ(ξ)) = 0, if Im(ξ) < 0} (82)

which is a Banach submanifold of Aβ(Δ) × Ω. Also, let

Y = {b(ξ) = |ξ − 1|δ1 |ξ + 1|δ−1 b̃(ξ); b̃ ∈ Cβ
R(Δ), b̃(ξ) = 0, if Im(ξ) < 0}. (83)

The mapping Φ : X → Y defined as in (80) has partial derivative with respect to κ as a map from

Xρ = {κ ∈ Aβ(Δ); Im((ξ − 1)δ1(ξ + 1)δ−1κ(ξ)) = 0, if Im(ξ) < 0} (84)

to Y of the form (81). If the winding number W (B) of the Cherepanov problem defined by (81) is greater 
or equal to −1

2 , then the partial derivative is surjective with 2W (B) + 1 dimensional kernel. Hence implicit 
function theorem applies and there is a neighborhood of ρ0 in Ω and a neighborhood of κ0 in Aβ(Δ) such 
that for every ρ ∈ Ω close to ρ0 there is a 2W (B) + 1 dimensional family of solutions of (12)-(13) near κ0.

5. A priori estimates

5.1. A priori estimates on function f

To get existence results using continuity method we need a priori estimates on solutions of (3)-(4). It is 
well known that such a priori estimates can only be achieved for the family of solutions with no zeros on 
Δ, [8,16,18]. We follow the approach in [8].

By assumption all Jordan curves {γξ}ξ∈∂Δ\L̊ contain point 0 in their interiors. Hence the function

(θ, w) �−→ wρw(θ, w), (85)
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defined for (θ, w) such that w ∈ γθ, is homotopic to 0 in C \ {0} and it can be written in the form

wρw(θ, w) = ec(θ,w)+id(θ,w) (86)

for some Ck−1 functions c and d, defined for (θ, w) such that θ ∈ [0, π] and w ∈ γθ. Observe that for each 
w ∈ γθ function d(θ, w) represents the angle between w and the normal to γθ at point w.

Remark 5.1. There exists a Ck isotopy ρt, t ∈ [0, 1], where ρ0 = ρ and ρ1(ξ, w) = |w|2 −R2 for R > 0 large 
enough, such that the gradient ρtw is nonzero on ρt = 0 for each t, [8]. Then one can find Ck−1 functions 
c(t, θ, w) and d(t, θ, w) such that (86) holds for each t ∈ [0, 1] and w ∈ γt

θ. In addition, the isotopy can be 
made such that for every t ∈ [0, 1], j = ±1, Jordan curves γt

j are strongly starshaped with respect to 0 and 
that for each w ∈ γt

ωj
the angle between w and the normal to γt

ωj
at w is less than π

10 .

Instead of solving (12)-(13) on the unit disc we consider equivalent problem on the upper semidisc 
Δ+ = {z ∈ Δ; Im(z) > 0}, where the role of the lower semicircle L is replaced by the interval [−1, 1]. Using 
the reflection principle f(ξ) = f(ξ)) we can holomorphically extend every solution f of (12)-(13) to the unit 
disc such that it solves nonlinear Riemann-Hilbert problem defined by the function ρ which we get as an 
extension of the original function ρ using the reflection to the lower semicircle as

ρ(ξ, w) = ρ(ξ, w) for ξ 
= ±1. (87)

For ξ = ±1 function ρ(ξ, w) has well defined limits as ξ approaches ±1 from above and below. Then we 
have

ρw(ξ, w) = ρw(ξ, w) = ρw(ξ, w) for ξ 
= ±1 (88)

and hence

ρw(ξ, w)w = ρw(ξ, w)w = ρw(ξ, w)w. (89)

Therefore c(ξ, w) = c(ξ, w) and d(ξ, w) = −d(ξ, w). Also, observe that for w, an intersection of γ1 with the 
real axis, we have

ρw(1+, w) = ρw(1−, w) = ρw(1−, w) (90)

and similarly for an intersection of γ−1 with the real axis.
Thus for every solution f of (12)-(13) the absolute value of f(θ)ρw(θ, f(θ)) is well defined and continuous 

on ∂Δ, whereas

d(0+, f(0+)) = −d(2π−, f(2π−)) (91)

and similarly at θ = π.
Let f be a solution of the symmetrized boundary value problem with no zeros. Hence f can be written 

in the exponential form

f = eg. (92)

Remark 5.2. Since the biholomorphic map ψ from Δ to the upper half-disc Δ+ is of class C 1
2 , a Cβ estimate 

on solutions of the symmetrized boundary value problem gives C β
2 estimate on solutions of (12)-(13).
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Let us differentiate function ρ(θ, f(θ)) to get

ρθ(θ, f(θ)) + 2Re(ρw(θ, f(θ))∂f
∂θ

(θ)) = 0. (93)

Since f = eg, we get

ρθ(θ, f(θ)) + 2Re(ρw(θ, f(θ))f(θ)∂g
∂θ

(θ)) = 0 (94)

and so

ρθ(θ, f(θ)) + 2Re(ec(θ,f(θ))+id(θ,f(θ))∂g

∂θ
(θ)) = 0. (95)

From here we get

2Re(ei(d(θ,f(θ))+iHd(θ,f(θ)))∂g

∂θ
(θ)) = −ρθ(θ, f(θ))e−c(θ,f(θ))−Hd(θ,f(θ)). (96)

Observe that function

θ �−→ ei(d(θ,f(θ))+iHd(θ,f(θ)))∂g

∂θ
(θ) (97)

extends holomorphically to the unit disc with value 0 at 0.
We will get Cβ a priori estimates on g and hence on f by getting Cβ a priori estimates on function (97). 

Using Hilbert transform it is enough to get Cβ a priori estimates on its real part. Hence we need a priori 
estimates on the right hand side of (96).

Function

θ �−→ −ρθ(θ, f(θ))e−c(θ,f(θ)) (98)

is bounded with the bound which does not depend on function f but only on the data γξ∈∂Δ\L̊ and defining 
function ρ. The bound can also be found to be independent of the Ck isotopy ρt, t ∈ [0, 1]. Hence one needs 
a priori bound on function

θ �−→ e±Hd(θ,f(θ)). (99)

Recall that, [18, p. 23], for u ∈ L∞(∂Δ), such that ‖u‖∞ < π
2p (1 ≤ p < ∞) we have the estimate

‖eHu‖p ≤
(

2π
cos(p‖u‖∞)

) 1
p

. (100)

Let a ∈ (0, π5 ) and let χ0, χπ be smooth functions on [0, π] with values in [0, 1] such that χ0(t) = 1 on 
[0, a], χπ(t) = 1 on [π − a, π], χ0(t) = 0 on [2a, π], and χπ(t) = 0 on [0, π − 2a].

Let us consider the function

d̃(θ, w) = d(θ, w) − χ0(θ)d0(w) − χπ(θ)dπ(w) (101)

for θ ∈ [0, π] and d̃(θ, w) = −d̃(2π − θ, w) for θ ∈ [π, 2π]. Here we used notation d0(w) = d(0+, w) and 
dπ(w) = d(π−, w).

We see that d̃(0, w) = d̃(π, w) = 0 and so d̃(θ, w) is a continuous function on ∂Δ × C. Let 1 < p̃ < ∞
be given. By results from [8, p. 881] we can write d̃ = Re(q) + ẽ, where p̃‖ẽ‖∞ < π and q is a finite sum 
2
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of terms of the form eijθwm, j ∈ Z, m ∈ N ∪ {0}, on which Hilbert transform acts as a bounded nonlinear 
operator from A(∂Δ) into C(∂Δ).

Therefore for a given solution f of (12)-(13) with no zeros we can write continuous function d̃(θ, f(θ))
on ∂Δ in the form

d̃(θ, f(θ)) = Re(q(θ, f(θ))) + ẽ(θ, f(θ)) (102)

and so

H(d̃) = H(Re(q)) + H(ẽ) (103)

where the first term is uniformly bounded and for the second we have ‖ẽ‖∞ < π
2p̃ . Hence

e±Hd̃ = e±HRe(q)e±Hẽ (104)

where the first factor is uniformly bounded and the second factor is bounded in Lp̃(∂Δ) for a given 1 < p̃ <

∞.
Since for a given p̃ ∈ (1, ∞) we can get Lp̃(∂Δ) bounds on (104), the boundedness of e±Hd in some 

Lp(∂Δ) is determined by Hilbert transform of the extension of function χ0(θ)d0(f(θ)) + χπ(θ)dπ(f(θ)) to 
[0, 2π].

Recall that γ±1 are strongly starshaped Jordan curves with respect to 0 and we may assume that for 
j = ±1 we have

ρ(j, w) = |w|2 −R2
j

(
w

|w|

)
(105)

for some positive Ck function Rj(z) on C. A short calculation gives

ρw(j, w) = w − 2Rj

(
−1

2
w2

|w|3 (Rj)z + 1
2

1
|w| (Rj)z

)
(106)

and so

wρw(j, w) = |w|2 − 2i Rj

|w| Im(w(Rj)z) (107)

which has strictly positive real part on {γξ}ξ∈∂Δ\L̊. Functions d0 and dπ represent the argument of (107). 
By compactness it follows that there exists 0 < β0 < 1, such that |d0(w)| ≤ π

2β0 and |dπ(w)| ≤ π
2β0 on 

{γξ}ξ∈∂Δ\L̊ and therefore

|χ0(θ)d0(f(θ)) + χπ(θ)dπ(f(θ))| ≤ π

2 β0 (108)

for every θ. Also, if there is an open condition on the size of djπ on γj , such as |diπ(w)| < π
2β0, j = ±1, 

we can, by choosing the supports of functions χ0 and χπ small enough, that is, by choosing a > 0 small 
enough, assume that the same condition on the size holds for function χ0(θ)d0(f(θ)) + χπ(θ)dπ(f(θ)) for 
all θ. Observe also that |d0(f(0))| = π|β1 − 1

2 | and |dπ(f(π))| = π||β−1| − 1
2 |. and so

∣∣∣∣|βj | −
1
∣∣∣∣ < β0

, j = ±1. (109)
2 2
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By (100) and (104) we get that for every fixed 1 < p < ∞ such that pβ0 < 1 the estimate

‖e±Hd‖p ≤ C (110)

holds. Hence we also have a priori Lp estimate on function (97).
Since

∂f

∂θ
= f

∂g

∂θ
, (111)

an estimate on ∂g∂θ will give an estimate on ∂f∂θ . We can write

∂g

∂θ
=

(
e−i(d+iHd)

)(
ei(d+iHd) ∂g

∂θ

)
. (112)

By assumptions of Theorem 1.2 we have β0 ≤ 1
5 < 1

2 and we can choose p > 2. By Cauchy-Schwarz inequality 
we then have ∥∥∥∥∂g∂θ

∥∥∥∥
p
2

≤
∥∥∥e−i(d+iHd)

∥∥∥
p

∥∥∥∥ei(d+iHd) ∂g

∂θ

∥∥∥∥
p

. (113)

From here we get L p
2 a priori estimates on ∂g∂θ which imply a priori estimates on g and f in Hölder space 

Cβ(∂Δ) for 0 < β < 1 − 2
p < 2(1

2 − β0). Recall (Remark 5.2) that this gives Hölder space a priori estimates 
on solutions with no zeros of the nonsymmetrical problem (12)-(13) for β ∈ (0, 12 − β0).

5.2. A priori estimates on function κ

We also need a priori estimates on function κ for which it holds

f(ξ) = (ξ − 1)δ1(ξ + 1)δ−1κ(ξ) + f(1)1 + ψ(ξ)
2 + f(−1)1 − ψ(ξ)

2 . (114)

In this subsection we again consider the nonsymmetrical case (12)-(13). We denote by C a universal constant, 
which depends on the data but does not depend on the particular function we consider.

We know that f and hence κ are Ck−1,α smooth on ∂Δ \{−1, 1} and on compact subsets of ∂Δ \{1, −1}
we get a priori estimates on κ by expressing it in terms of f . Hence we need a priori estimates on κ near 
points ±1. Also, we know from Section 3 that if κ is continuous on Δ, then both functions belong to Aβ(Δ)
for

0 < β < min{|β1|, 1 − |β1|, |β−1|, 1 − |β−1|}. (115)

Let us fix 0 < β < 1
2 − β0 that we have a priori estimates on function f .

Recall (38) and that tsκ(t) = f(t). Hence ρ̃w(θ, κ) is a Cβ function with a priori bounds. As in (60) we 
can globally write

Re
(
rei(v+iHv) ∂κ

∂θ

)
= −e−ue−(Hv)ρ̃θ(θ, κ), (116)

where u and v are real Cβ functions with a priori bounds. To get Lp′ a priori bounds on ∂κ
∂θ for some 

p′ > 1 we will get Lp′ bounds on the right-hand side function ρ̃θ(θ, κ(θ)), that it, on ρ̃t(t, κ(t)) near t = 0. 
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Considering (41)-(42)-(43) termwise we get that tβ1−1, t−β1 , κ(t) = tβ1−1f(t), and all terms with function 
g are Lp′ bounded for any p′ > 1 such that

p′(1 − β1) < 1 and p′β1 < 1. (117)

Let us consider terms which are bounded by t−β1 |κ(t)2| = tβ1−2|f(t)2|. Since we have β ∈ (0, 12 − β0) a 
priori bounds on f , we have

|f(t)| ≤ C|t|β (118)

for some universal constant C. Hence

t−β1 |κ(t)2| ≤ C|t|2β+β1−2 (119)

and this function is in some Lp′ , p′ > 1, if 1 < 2β + β1. The bound 0 < β < 1
2 − β0 implies that this will be 

the case for some such β if 2β0 < β1. Similar argument near ξ = −1 gives 2β0 < 1 − |β−1|.
If these two conditions are satisfied, we get Lp′ a priori estimates on ρ̃θ(θ, κ(θ)) for some p′ > 1. This 

implies Cβ′ a priori estimate on κ for β′ < 1 − 1
p′ .

There are natural bounds on βj , j = ±1, in terms of β0, that is,

1
2 − β0

2 < |βj | <
1
2 + β0

2 . (120)

Hence, if 2β0 ≤ 1
2 − β0

2 and 1
2 + β0

2 ≤ 1 − 2β0 both inequalities needed for Lp′ a priori estimates will be 
satisfied. These two inequalities are equivalent to the condition β0 ≤ 1

5 , that is, the angle between w and 
the normal to γωj

at w is less than π
10 .

6. Final remarks

If arc L is the lower semicircle, we can state Theorem 1.2 in an equivalent simplified form.

Theorem 6.1. Let {γξ}ξ∈∂Δ\L̊ be a Ck (k ≥ 3) family of Jordan curves in C which all contain point 0 in 
their interiors. Let Jordan curves γj, j = ±1, be strongly starshaped with respect to 0 and such that for 
each w ∈ γωj

the angle between w and the normal to γωj
at w is less than π

10 . Let wj, j = ±1, be the 
positive intersection of γj and the real axis with the oriented angle of intersection πβj, where β1 ∈ (0, 1)
and β−1 ∈ (−1, 0). Let

0 < β < min{β1, 1 − β1, |β−1|, 1 − |β−1|}. (121)

Then there exists a unique f ∈ Aβ(Δ) with no zeros on Δ which solves (3)-(4) for which f(1) = w1 and 
f(−1) = w−1.

To prove Theorem 6.1 one uses continuity method (see also [8]). The starting boundary value problem 
(3)-(4) can be, using an isotopy from Jordan curves {γξ}ξ∂Δ\L̊ to circles with center at 0 and fixed radius 
R > 0, embedded in a one parameter family of boundary value problems which all satisfy assumptions of 
Theorem 6.1. Here, for t = 0 we have the starting boundary value problem and for t = 1 circles as the 
boundary data.

Results in Section 4 (Proposition 4.4, Proposition 4.5) imply that a solution of the boundary value 
problem (3)-(4) for curves {γt

ξ}ξ∂Δ\L̊ can be locally perturbed into a solution for the nearby perturbed 
boundary data. Hence the set of parameters t for which there is a solution of (3)-(4) is open. On the 



M. Černe / J. Math. Anal. Appl. 529 (2024) 127557 19
other hand, a priori estimates from Section 5 together with compact embeddings (10) imply that the set 
of parameters t ∈ [0, 1] for which there is a solution of (3)-(4) is closed. Since there is an obvious solution 
for the case t = 1, where all Jordan curves are circles with center at 0 and fixed radius R > 0, we get that 
there is a solution of (3)-(4) for t = 0.

Corollary 6.2. Let a1, . . . , an ∈ Δ be a finite set of points with given multiplicities. Then under the assump-
tions of Theorem 6.1 there exists β ∈ (0, 1) and f ∈ Aβ(Δ) which has zeros exactly at points a1, . . . , an ∈ Δ
with the given multiplicites and which solves (12)-(13).

To prove the corollary we search for solutions f of the symmetric problem on the unit disc of the form

f(z) = z − a

1 − az

z − a

1 − az
f̃(z), (122)

where a is a point in the upper half-disc. Then f̃ has to solve a modified problem, where the boundary 
curves are given by

γ̃ξ = 1 − aξ

ξ − a

1 − aξ

ξ − a
γξ. (123)

Observe that γ̃ξ = γξ for ξ = ±1.

Remark 6.3. In a similar way one can create a zero at a point a ∈ (−1, 1), that is, on L̊ in the original 
problem. Jordan curves for the modified problem are

γ̃ξ = 1 − aξ

ξ − a
γξ. (124)

Then γ̃1 = γ1 and γ̃−1 = −γ−1 but conditions of Theorem 1.2 are still satisfied.
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