
Introduction

The beginnings of the first animal model ap-
preciated for its macroscopic and histological
similarity to human colorectal carcinoma
(CRC) extend to 1963, when Laqueur discov-
ered that rats fed cycasin, a plant product,
developed intestinal cancer. The active sub-
stance was identified and soon a similar com-
pound, methylazoxymethanol acetate (MA-

MA) was synthesized that was more effective
than the natural product. In 1970 Druckrey
found that two chemicals structurally related
to MAMA, dimethylhydrazine (DMH) and
azoxymethane (AOM), were even more po-
tent intestinal carcinogens.1

Today, DMH and its metabolite AOM are
the agents widely used in experimental mod-
els of colorectal carcinogenesis in rodents.
They are highly specific indirect colorectal car-
cinogens that induce the initiation and promo-
tion steps of colorectal carcinogenesis yielding
colorectal tumour lesions in a dose-dependent
manner in rats, mice and hamsters.2-4 In rats
they can produce colorectal tumour lesions in
almost 100% of treated animals.4-8

Nevertheless, various strains of rats differ in
susceptibility to these carcinogens.8-10
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Decreased susceptibility was reported also in
female rats.11,12 In chemically induced colorec-
tal studies mostly 6-10 weeks old male rats are
used and most often-applied rat strains are
Fisher, Sprague-Dawely and Wistar (Table 1).

DMH metabolism

DMH is highly specific colorectal carcinogen
that is metabolically activated in liver by se-

ries of reactions through intermediates azo-
methane, AOM and methylazoxymethanol
(MAM) to the ultimate carcinogenic metabo-
lite, highly reactive methyldiazonium ion.13

MAM is excreted into the bile and transport-
ed to the colon or enter directly into epithelial
cells of the colon from the blood circula-
tion.2,13,14 Some studies have demonstrated
that rat colon epithelial cells are capable of
metabolising DMH into carcinogenic metabo-
lite without previous metabolism by other tis-
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Table 1. Protocols used for chemical induction of colorectal lesions
References C Strain, sex and Dose R N D

initial age or weight
Sprague-Dawley

Rubio et al. 1986 DMH (male, 200g) 21 mg/kg s.c. 1 32
Sprague-Dawley

McGarrity et al. 1988 DMH (male, 220-260g) 20 mg/kg s.c. 20 30 
Wistar

Park et al. 1997 DMH (male, 8-10 weeks) 15 mg/kg s.c. 19 24
Fischer 11

Onoue et al. 1997 DMH (male, 10 weeks) 20mg/kg i.p. 2 34
Fischer 6

Ghirardi et al. 1999 AOM (male, 6 weeks) 15 mg/kg s.c. 2 36
Sprague-Dawley

Rubio et al. 1999 DMH (male, female, 200g) 21 mg/kg s.c. 27 32
Sprague-Dawley

De Jong et al. 2000 DMH (male, 6 weeks) 30 mg/kg p.o. 5 24
Fischer

Bissonnette et al. 2000 AOM (male, 80-100g) 15 mg/kg i.p. 2 37
Wistar

Narahara et al. 2000 AOM (male, 6 weeks) 7,4 mg/kg s.c. 5 45 
Wistar

Ravnik-Glavac et al. 2000 DMH (male, 9 weeks) 20 mg/kg s.c. 15 25
Fischer

Yamada et al. 2000 AOM (male, 6 weeks) 15 mg/kg s.c. 3 10
Fischer

Takahashi et al. 2000 AOM (male, 6 weeks) 15 mg/kg s.c. 2 36
Fischer

Kishimoto et al. 2002 AOM (male, 6 weeks) 15 mg/kg s.c. 3 4
Wistar 4

Rodrigues et al. 2002 DMH (male, 6 weeks) 40 mg/kg s.c. 2 30
Wistar, Fischer

Veceric et al. 2004 DMH (male, 8-10 weeks) 25 mg/kg s.c. 20 25
Legend: C, carcinogen; R, route of application (s.c., subcutaneous; i.p., intra peritoneal; p.o., per oral); N, number
of applications; D, duration of experiment (weeks)



sues or colon bacteria.15,16 Although intestin-
al flora17,18 and bile acids19 have influence on
the incidence of tumours, the latter were in-
duced also in germ-free rats17 and function-
isolated segments of rat colon.14

The ultimate carcinogenic metabolite of
DMH is responsible for methylation of DNA
of various rat organs including epithelial cells
in the proliferative compartment of the intes-
tinal crypts.20 Metabolically activated DMH
modifies not only nucleic acids but also his-
tones and other DNA-binding proteins in the
target cells.21

Tumour lesions induced by DMH

DMH is highly specific for colonic epithelium
and induces tumours mostly in large bow-
el.14,20,22 Colon specific susceptibility for this
carcinogen is a result of a delayed or incom-
plete repair of damaged DNA in the colon
compared to other organs,20 leading to accu-
mulation of mutations, and in a small propor-
tion of cells giving rise to CRC. Higher sus-
ceptibility to colon versus small intestine has
been shown in experiment where segments
of colon that were transposed to the middle
part of small intestine developed tumours but
segments of small intestine that were trans-
posed to the colon did not.22 Tumours are dis-
tributed in all parts of the colon, but in a ma-
jority are observed in the distal part of
colon.4,8,23,24 Gross tumours are initially de-
tected in the distal colon at 16 weeks but in
proximal colon after 22 weeks.23 The tumour
incidence can be modulated by the amount of
carcinogen administered and the number of
applications. With increasing doses of the
carcinogen, the latency period decreases and
the tumour incidence increases.3,4 Usually
carcinogen at a dosage of 15-25 mg/kg body
weight per week is administered subcuta-
neously (Table 1). In our studies DMH at a
dosage of 15-25 mg/kg-body weight was in-
jected subcutaneously once a week, for 15-20

weeks consecutively.8,11,25,26

Besides the colorectal tumours, the small
bowel tumours are also induced but in much
lower incidence.5,8,11 However, small bowel
tumorigenesis is characteristic of high-dose
regimens of DMH.27 Small intestinal tumours
are mostly well or poorly differentiated ade-
nocarcinomas.5,8,11 Well-differentiated ade-
nocarcinomas only occasionally demonstrate
invasion through the intestinal wall and into
the adjacent tissues.5 On the other hand the
poorly differentiated type is more aggressive
and mostly metastasises to the mesenteric
lymph nodes and in advanced stages fre-
quently develops carcinosis of peritoneum or
conglomerate tumours in the area between
the duodenum, stomach, hilus of the liver
and affected small intestine.5,6

Extraintestinal tumours may also be in-
duced by DMH. Some rats develop tumours
of Zymbal’s gland (auditory sebaceous
glands), usually squamous cell carcino-
ma.5,11,28

Colorectal tumour lesions

Aberrant crypt foci 

The first specific morphologically identifiable
lesions for colonic carcinogenesis are aber-
rant crypt foci (ACF). They were first identi-
fied in the colon of carcinogen treated mice
by the light microscopic examination of the
mucosal surface of colons that had been
stained with methylene blue.29 ACF are
stereoscopically distinguished from normal
crypts by their darker staining and larger
size, elliptical shape, thicker epithelial lining,
and larger perycriptal zone.30-34 They appear
within two weeks after carcinogen injection
as single crypts that expand by crypt branch-
ing or multiplication. Sequential histologic
analysis of ACF revealed that with time the
number of ACF with increasing crypt multi-
plicity increases and a higher number of ACF
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exhibit dysplasia.30,32 It was observed that
ACF with increasing crypt multiplicity are
more resistant to apoptotic cell death.31

Hyperplastic ACF (Figure 1A) are composed
of mixture of goblet and absorptive cells with
enlarged or sometimes crowded nuclei with-
out stratification. The luminal opening of
ACF is slightly elevated from the surrounding
normal mucosa and the crypts are elongated
and occasionally branching with partial
mucin depletion. Mitotic figures are limited
to the lower two-thirds of the crypts and are
never observed on the surface of ACF.33,34

Dysplastic ACF (Figure 1B) are mostly com-
posed of absorptive cells that display an un-
ceasing proliferative activity.33 Histologically
these cells manifest cytoplasmic basophilia, a
high nuclear-cytoplasmic ratio, prominent
nucleoli and loss of cell polarity to variable
degrees. The number of goblet cells is de-
creased and mucin depleted. The dysplastic
crypt so formed tends to have an increased
diameter, relatively smooth contour and di-
lated cryptal lumen in the lower half, and
some irregularity and tortuosity with occa-
sional evagination of the lining epithelium in
the upper half.33,34

Adenomas and carcinomas

Two types of tumours can be distinguished
grossly: polypoid (pedunculated or with a
broad base) and non-polypoid (slightly elevat-
ed, flat or depressed).5,35 Histologically, col-
orectal epithelial tumours are divided into
adenomas and carcinomas.36

Adenomas are characterized by hypercel-
lularity with enlarged, hyperchromatic nu-
clei, varying degrees of nuclear stratification,
loss of polarity and decreased mucine excre-
tion. Depending on the degree of glandular
or villous complexity, extent of nuclear strat-
ification and severity of abnormal nuclear
morphology, dysplasia in adenomas can be
divided into mild, moderate and severe
(Figure 2A).

Tumours that penetrate through the mus-
cularis mucosa into the submucosa are classi-
fied as carcinomas.36 When no clear evidence
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Figure 1. A. Hyperplastic aberrant crypt focus of colorectal mucosa. The focus is composed of three elongated
crypts covered by slightly higher epithelium with nuclei at the base of cells. The luminal openings are elevated. B.
Dysplastic aberrant crypt focus of colorectal mucosa. The focus is composed of epithelial cells with stratified, hy-
perchromatic nuclei, and with a loss of cell polarity and mucin secretion Ė the signs of dysplasia. Displacement of
the surrounding normal crypts is evident.



of tumour growth through the muscularis
mucosa is found additional criteria like sharp
transition from unaltered epithelium to se-
vere dysplasia, the presence of necrosis on
the surface and desmoplastic stromal reac-
tion are used.37

Carcinomas are divided into well, moder-
ately and poorly differentiated adenocarcino-
mas (Figure 2B), mucinous adenocarcinomas
(Figure 3A) if more than 50% of the lesion is
composed of mucin and signet-ring cell carci-
nomas (Figure 3B) if more than 50% of tumour
cells with prominent intracytoplasmic mucin
are present.36 Most frequently observed carci-
nomas in rat colorectal model are well-differ-
entiated adenocarcinomas.8,25,26 Some inves-
tigators8,11,25 classify the stage of carcinomas

according to Dukes staging system: stage A if
tumour is limited to the intestinal wall, stage
B if tumour grows through the lamina muscu-
laris propria, stage C if tumour grows through
the lamina muscularis propria and dissemi-
nates into the lymph nodes and stage D when
carcinoma disseminates into distant organs. 

Metastases 

Metastases to the liver and lung are very un-
common in rats. The tumours that are capa-
ble of metastasis are almost exclusively the
mucinous and signet ring cells carcinomas of
the proximal colon. The adenocarcinomas of
the distal colon have not been shown to
metastasise. The metastases are generally
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Figure 2. A. Polypoid tubular adenoma of colorectal mucosa with moderate grade of dysplasia. Muscularis mucosa
is intact. B. A well-differentiated adenocarcinoma of colorectal mucosa. Submucosal invasion and accompanying
fibroplastic stromal reaction is evident. Stage Dukes A.

Figure 3. A. A mucinous carcinoma with a wide infiltration of submucosa. Note abundant extracellular mucin se-
cretion. B. Signet-ring cell carcinoma metastasis in regional lymph node. Stage Dukes C.



found in regional lymph nodes (Figure 3B) or
on the peritoneal surface.5,11

Tumour association with gut lymphoid tissue

Often, the earliest dysplastic mucosa is found
over a mucosal lymphoid aggregate.8,35,38,39

Significant association between tumour de-
velopment, particularly non-polipoid adeno-
mas35 and mucinous adenocarcinomas,38 and
the presence of lymphoid aggregate have
been observed. Hardman et al39 have demon-
strated that the association is due to higher
proliferative activity in colonic crypts over
the lymphoid aggregates. 

Adenoma-carcinoma sequence and de novo
formation of colorectal carcinoma

Several investigators3,7,24,32,40,41 have ob-
served differences in the histopathological
findings of the carcinomas between the distal
and the proximal colon in rats. The studies
suggest that chemically induced carcinogene-
sis in the rat colon follows two distinct path-
ways: adenoma-carcinoma sequence, where
histogenesis follows the ACF-adenoma-carci-
noma sequences and de novo sequence where
adenocarcinomas develop without passing
through ACF stage.3,7,24,40 The former is char-
acteristic for middle and distal colon whereas
the latter leads to the development of poorly
differentiated, mucin-secreting carcinomas in
the proximal colon.3,7,24

Molecular alterations

Mutations in the adenomatous polyposis coli
gene (Apc), the gene coding for β-catenin
(Ctnnb1) and K-ras gene were detected in col-
orectal tumours of rats administered DMH or
AOM.42 Alterations of specific oncogenes
and tumour suppressor genes play role at dif-
ferent stages of carcinogenesis process. In rat
carcinogenesis an extensive genomic instabil-

ity was found, that is the necessary step for
the generation of multiple mutations underly-
ing the occurrence of cancer.25,43

Mutations in Apc gene were detected ex-
clusively in the mutation cluster region of
Apc44 and were found only in 18% of tumours
and not in ACF, suggesting that mutations of
the Apc gene are associated with the transi-
tion from ACF to adenoma and adenocarci-
noma and not from normal mucosa to ACF.45

In rat tumorigenesis β-catenin mutations are
more frequent event than Apc mutations,44

suggesting that consequent alterations in the
stability and localisation of the protein may
play an important role in this colorectal car-
cinogenesis model.46 Mutation causes activa-
tion of the β-catenin-Tcf pathway resulting in
the accumulation of β-catenin in the cytosol
and nucleus. Most of the mutations occur as
single nucleotide substitution within func-
tionally significant phosphorylation sites on
exon 3. The most common mutation in the
early lesions is G:C to A:T transitions that is
recognised as the representative mutation in
rat colorectal tumours.46,47 β-catenin gene
mutations were detected in tumours and dys-
plastic ACF, none in hyperplastic ACF. Also
alteration in expression and cellular localiza-
tion of β-catenin and inducible nitric oxide
synthase were observed in all dysplastic ACF,
adenomas and adenocarcinomas, but not in
any hyperplastic ACF.48

K-ras mutations are important early event
in the progression of chemically induced col-
orectal carcinogenesis in rodents,49,50 fre-
quently detected in tumours, dysplastic
ACF51 and even in hyperplastic ACF.48 The
majority of K-ras mutations are identified in
codon 12 and 13.49,50 Constitutive activation
of K-ras by point mutation occurs with a fre-
quency of 40-60%. K-ras point mutations oc-
cur mostly as G to A transitions.49

In carcinogen induced tumours elevated
expression of c-myc,52 c-jun44 and c-fos30

were detected and increased expression of cy-
clin D1 were observed, particularly by muta-
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tions in either K-ras or β-catenin.42

In a subset of carcinogen induced rat col-
orectal tumours without detectable K-ras mu-
tations constitutively activated wild-type
p21ras have been observed, presumably due
to increased expression of c-erbB1 receptor
and decreased expression of GTPase activat-
ing protein. Mitogen-activated protein kinase
(MAPK) activation and cyclooxygenase-2 ex-
pression were increased in tumours with mu-
tated or activated wild-type p21ras. Colonic
tumours with activated wild type p21ras, like
those with mutated p21ras, have increased
activation of extracellular signal regulated ki-
nase-1 and extracellular signal regulated ki-
nase-2, presumably via the activation of Raf-1
and MAPK kinase.42

Long-term and short-term assays

Repeated injections of DMH are needed to
induce irreversible molecular and histological
alterations in rat colons leading to develop-
ment of ACF, adenomas and carcinomas.
Based on duration of experiment assays can
be divided into short-term and long-term.

Short-term assays require 4-11 weeks to
complete (Table 1). In that time only ACF are
induced, which are identified by light micro-
scopic examination of large bowel.29,30 They
are precancerous lesions that are used as in-
termediate biomarkers to predict the ability
of a test agent to affect tumour outcome.29-

34,53 Based on ability to retard or induce the
appearance of ACF, compounds are classified
as tumour inhibitors or tumour promot-
ers.29,30,53 However, it is important to take in-
to consideration that ACF are a heteroge-
neous group of lesions33,34,53 not equally dis-
tributed in colon. Ghirardi et al41 observed the
majority of ACF in the middle colon. Also
Rodrigues et al32 reported that majority of
ACF were observed in the middle and distal
colon and that induction of ACF by DMH in
the short-term assay was correlated with de-

velopment of well-differentiated adenocarci-
nomas. Park et al24 demonstrated, that ACF
are marker lesions for colorectal tumours, but
only in distal colon where tumours follow the
adenoma-carcinoma sequence. Therefore,
compounds, which appear to be effective in
the short-term, are usually examined in long-
term experiments.

In contrast to short-term assays, the long-
term usually take 20-40 weeks to complete
(Table 1). In that time ACF, adenomas and
adenocarcinomas are induced, which are fur-
ther examined to assess the effect of testing
substances on colorectal tumorigenesis. 

Conclusions

Studies on DMH model allow monitoring the
step-wise development of CRC by examining
the dissected colons of randomly selected an-
imals from a group, at different time inter-
vals, as the disease progresses and under de-
fined experimental conditions. They have al-
ready produced much important information
on histology and biochemistry of tumour de-
velopment as well as on factors that retard or
enhance tumorigenesis. Even today, DMH
model represents invaluable research tool for
studying the molecular events of CRC and for
developing and evaluating of a variety of nov-
el cancer chemopreventive agents.
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