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Abstract: Pronounced tectonic and paleogeographic changes were detected in the Alpine–Pannonian
region during the Miocene at the interface between the Alps, the Dinarides, and the Pannonian
Basin. To understand the major tectonic, paleogeographic, and paleoclimatic changes during this
period, geochemical and mineralogical investigations were carried out on the fine-grained clastic
sedimentary rocks in the Tunjice Hills. The paleoweathering indicates a cold and/or arid to a warm
and humid period. The paleoclimate and the regional climatic conditions correspond well with the
Middle Miocene Climatic Optimum. The mineral composition shows an abundance of quartz and
calcite. Quartz is associated with detrital origin from volcanic and metamorphic rocks of the Eastern
and Southern Alps and with authigenic processes in sediments. Calcite is related to authigenic origin
formed in shallow marine environments and to detrital provenance from the Southern Alps. Not all
discriminant functions based on major oxides provided adequate results in determining the tectonic
setting. The source rocks were subjected to oceanic island arc and collision. Moreover, sedimentation
was influenced by both active and passive margin settings. The former is related to the Alpine
collision, which continued from the Cenozoic onward, and the latter is connected to the processes
associated with the formation of the Pannonian Basin System, which began in the late Early Miocene.

Keywords: Central Paratethys; provenance; tectonic setting; paleoweathering; Miocene; Tunjice Hills

1. Introduction

The use of major oxides in geochemistry and mineralogical analyses to determine pa-
leoweathering, origin, and tectonic setting is one of the most effective and long-established
methods for studying of sedimentary basins for different rock types and sediment ages [1–13].
Over geological time, specific processes, such as tectonic activity, paleoweathering condi-
tions, and variations in drainage systems, changed. These changes are preserved in rocks,
and the use of mineralogical and geochemical methods allows us to distinguish differences
in paleogeography, climate and tectonic processes in a particular area at a particular time.
However, not all provenance determination diagrams are sufficiently precise, and they
do not provide compatible results. Caution is also required when using and interpreting
different discriminant functions [2,14,15]. In addition, caution should be exercised when in-
terpreting paleoweathering due to the influence of provenance, which itself can be negated
by utilizing different models and analyses [16].

The Pannonian Basin System (PBS) represents a large basin within the well-studied
Alpine, Carpathian, and Dinaric mountain ranges [17–22] (Figure 1a), with major tectonic,
climatic and paleogeographic changes during the Miocene [23,24]. Geochemical and
mineralogical approaches are not common in the sedimentary successions of the Miocene
sediments of the PBS, with only a few studies focusing on geochemical and mineralogical
analyses and the determination of paleoweathering, provenance, tectonic setting, and
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paleoenvironment [15,25–28]. The structurally extremely complex evolution and dynamic
area of the PBS may be the crux of the matter [21,29–33].

The basement of the PBS consists of two lithospheric blocks—Tisza and Dacia. The
movement and rotation of the blocks strongly influenced the evolution of the PBS [18,29,34].
In addition, various tectonic processes influenced the development of the studied area from
the Miocene onwards, starting with the collision of the Adriatic and European lithospheric
plates, which caused the Alpine orogen, the continental escape of the Eastern Alps, thrusting
and folding of the Dinarides, and the syn-rift and post-rift Miocene extensions [20,35,36].
These processes significantly influenced the evolution of faults and the fault system, which
in turn affected the evolution of the environment and sediments [37–39].

The evolution of the southwestern PBS was also affected by climate change, especially
in the Early and Middle Miocene, which caused changes in depositional environments
and sedimentary style. In addition, the temporary isolation of the Central Paratethys
from the Mediterranean and Indian Ocean led to limited exchange of fauna from the
open ocean, resulting in the development of restricted fossil assemblages. Therefore, a
regional chronostratigraphic subdivision was established. It differed from the global stages
(Figure 1b), and was primarily based on paleontological criteria [23,24,40–44].

The main objective of this study is to determine the degree of paleoweathering, the
main source of sediments, and the main tectonic settings during the period from the
beginning of the Early Miocene (Egerian) to the end of the Middle Miocene (Sarmatian),
based on mineralogical and geochemical data from the sedimentary successions from the
Tunjice Hills (Western Pannonian Basin System, Western Central Paratethys). In addition,
we aim to evaluate the reliability of these methods on sediments located at the interface of
several tectonic units and possibly subjected to various tectonic processes. To achieve all
these objectives, the paper aims to unravel the impact of the main processes that contributed
to the changes in the paleogeography that influenced the early cessation of sedimentation
and uplift of the western margins of the PBS. Furthermore, the climatic conditions and
the relationship between the paleoclimate of the study area and the Miocene Climatic
Optimum are discussed.
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Figure 1. (a) Modified google image of the Alpine–Carpathian–Pannonian region; (b) area of Slove-
nia with geotectonic units, modified after [45,46], and the spatial distribution of the Miocene rocks; 
(c) simplified map of the Tunjice Hills, modified after [47,48]. Explanatory notes: SA—Southern 
Alps, EA—Eastern Alps, SF—Sava Fault, PF—Periadriatic Fault, LF—Labot Fault, ŽF—Žužemberk 
Fault, IF—Idrija Fault, PG—Paleogene, UM—Upper Miocene, OL—Oligocene, Eggenb—Eggen-
burgian, D. f.—Dol formation. 
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The Tunjice Hills are located in the central part of Slovenia (Figure 1a). Structurally, 

the area represents the western margin of the tectonic unit of the Neogene PBS and is 
surrounded by the tectonic units of the Southern Alps, Eastern Alps, and the Dinarides. 
The juncture of these tectonic units with the still-active Sava fault in the north [49] 

Figure 1. (a) Modified google image of the Alpine–Carpathian–Pannonian region; (b) area of Slovenia
with geotectonic units, modified after [45,46], and the spatial distribution of the Miocene rocks;
(c) simplified map of the Tunjice Hills, modified after [47,48]. Explanatory notes: SA—Southern Alps,
EA—Eastern Alps, SF—Sava Fault, PF—Periadriatic Fault, LF—Labot Fault, ŽF—Žužemberk Fault,
IF—Idrija Fault, PG—Paleogene, UM—Upper Miocene, OL—Oligocene, Eggenb—Eggenburgian, D.
f.—Dol formation.



Appl. Sci. 2024, 14, 537 4 of 25

2. Geological Setting

The Tunjice Hills are located in the central part of Slovenia (Figure 1a). Structurally,
the area represents the western margin of the tectonic unit of the Neogene PBS and is
surrounded by the tectonic units of the Southern Alps, Eastern Alps, and the Dinarides.
The juncture of these tectonic units with the still-active Sava fault in the north [49] represents
a structurally and geodynamically complex area. North of the Tunjice Hills, the Southern
Alps consist largely of Triassic carbonate rocks, mainly limestones, and also dolomites,
shales, and sandstones with tuffs [50,51]. North of the Southern Alps, the Upper and
Lower Austraoalpine units of the Eastern Alps occur, consisting of low- to ultrahigh-grade
metamorphic rocks [20,52,53]. The units are part of a large ALCAPA mega-unit [19]. The
Oligocene volcanic and volcaniclastic rocks of the Smrekovec volcanic complex are located
northeast of the Tunjice Hills [54]. To the south, the contact with the Dinarides is covered
by Quaternary sediments. The Dinaridic basement consists of clay stones, siltstones,
sandstones, and quartz conglomerates of the Carboniferous to the Permian [51], and is
overlain by a thick sequence of Mesozoic carbonates [55]. To the west, southwest and
southeast, the deeper marine rocks of the Mesozoic occur in the Tolmin nappe [45]. This
structural complexity is recorded in the Neogene strata.

The global regressive-transgressive cycles influenced sedimentation in the Tunjice
Basin as well, from the Oligocene to the end of the Middle Miocene [51,56]. The Oligocene
sedimentary rocks consist of conglomerates and clays [51] and indicate initial Cenozoic
sedimentation in the Tunjice Hills in a shallow marine environment [56,57] before the for-
mation of the PBS. Sedimentation continued with deposition of the Early Miocene (Egerian
and Eggenburgian stages) conglomerates, sandstones, and marlstones, known as Govce
beds, in a brackish and marine environment [51,58], and are rich in fossil remains [57].
The regional distribution of similar Early Miocene deposits indicates the development of
the western–southwestern part of a restricted shallow epicontinental sea in the Central
Paratethys [59]. Sedimentation is not determined in the late Early Miocene (Ottnangian and
Karpatian stages), when the evolution of the PBS started. The Badenian transgression [60]
also influenced the studied succession in the Middle Miocene, when the Badenian wide-rift
extension in the PBS was already in full progress [36]. Marls and sands were deposited,
known as the Laško formation [51]. The stable and warm paleoclimatic conditions during
the Badenian period led to an expansion of fauna and flora [23,40,61], resulting in the
preservation of many marine fossil remains. The Tunjice area share similar characteris-
tics [51,62]. At the end of the Middle Miocene, the Sarmatian strata were represented by
marlstone, mudstone, sandstone, and calcarenites, which reflect deposition in a marine
environment of reduced salinity, and are known as the Dol formation [51,56]. Younger
rocks (upper Miocene to Pleistocene) have not yet been determined in the Tunjice Hills.

The Miocene strata in the Tunjice Hills were deformed during the Miocene by syn-rift
and post-rift extensional and compressional processes, which led to the formation of the
overturned syncline of Tunjice, with the northern limb in an inverse position [51,56]. Thus,
the youngest layers of the Dol formation are located in the center of the syncline (in the
central part of the Tunjice Hills), the Middle Miocene layers of the Laško formation are
located north and south of the Dol formation and the lower Miocene layers of the Govce
formation at the edges of the syncline (north and south of the Tunjice Hills; Figure 2). In
addition, the Tunjice Hills are deformed by a dextral strike-slip fault, the so-called Tunjice
Fault, in the NNW–SSE direction [47].
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Figure 2. International and Central Paratethys chronostratigraphic chart, modified after [40,43] with
added formations in the study area (Tunjice Hills) with ocean temperature curve for Central Europe,
modified after [63].

3. Materials and Methods
3.1. Sampling

For the study, a total of 45 samples were collected from outcrops in the Tunjice Hills
(Figure 1c). They belong to the mudstones according to the grain size classification of
Udden–Wentworth and the marlstones and clay stones based on their CaCO3 content.
The first group of 16 samples were taken from the Early Miocene succession (Egerian
and Eggenburgian stages—Central Paratethys/Aquitanian and Burdigalian stages—global
time scale; Figure 2) and belong to the Govce formation (referred to in this paper as the
Early Miocene samples). The second group of 17 samples were taken from the Middle
Miocene succession (Badenian stage—Central Paratethys/Langhian stage—global time
scale; Figure 2) and belong to the Laško formation (referred to from this point on as the
Badenian samples). The third group of 12 samples were of Middle Miocene age succession
(Sarmatian stage—Central Paratethys/Serravallian stage global time scale; Figure 2) and
belong to the Dol formation (referred to from this point on as the Sarmatian samples).
The Early Miocene and partly Badenian samples were collected in advance in the area
of the sedimentological section (Figure 3a,b) of the Doblič stream [56,64], while the other
Badenian samples and all Sarmatian samples were collected in freshly exposed outcrops
for the purpose of this study. Due to the widespread soil and vegetation, the samples
were collected unevenly. Age determination was based on geological maps [48,51] and
nannoplankton age determinations [56]. The exact locations of the samples are given in
Table S1.
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Figure 3. (a) Simplified Early Miocene sedimentary succession of the Tunjice Hills with sample loca-
tions E1–E16; (b) simplified significant sequence of the Badenian sedimentary successions. Samples
B1–B17 were taken from the upper part of each sequence. Cl—claystone, Si—siltstone, S—sandstone,
C—conglomerate, f—fine, m—medium, c—coarse.

3.2. Methods
3.2.1. Mineralogical Analysis

The samples were pulverized and homogenized to the fraction 5 to 10 µm by hand
in an agate grinding mill and pressed into an aluminum holder. The mineral composition
of the samples was measured by X-ray powder diffraction using a Philips PW3710 X-ray
diffractometer with CuKα1 radiation and a secondary graphite monochromator. Data
were collected at 40 kV with a current of 30 mA at a rate of 3.4◦ 2θ per minute over a
range of 2 to 70◦ (2θ). Diffraction patterns were identified with X’Perth Highscore Plus 4.6
diffraction software using the PAN-ICSD database and the full-pattern fit method (Rietveld)
for quantitative mineral phase analysis. Values below 0.1 wt.% are not detected.
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3.2.2. Geochemical Analysis

Geochemical analysis was performed on all 45 samples, which were initially air-dried,
crushed, and homogenized before final pulverization. Samples for whole-rock analyses
of major oxides were performed by Activation Laboratories Ltd. (Ancaster, ON, Canada)
and carried out by ICP-OES. Major element fusion was performed by a flux of lithium
metaborate and lithium tetraborate and fused in and induction furnace. The molten melt
is immediately poured into a solution of 5% nitric acid containing an internal standard
and mixed continuously until completely dissolved. The samples are run for major oxides
and selected trace elements (4B) on an ICP. Calibration is performed using 14 prepared
USGS- and CANMET-certified reference materials. Standards used are: DNC-1, NOD-A-1.
NOD-P-1, SY-4, and BIR-1a (see details in Table S2). Total organic carbon (TOC) was deter-
mined using the infrared LECO method. Carbon is measured as carbon dioxide in the IR
cell as gases flow through the IR cells. The analysis is performed using ELTRA Instruments.
Standards used were GS311-4, GS316-3, and GS317-5 (see details in Table S2). The deter-
mination of paleoweathering is based on the triangular plots of Nesbitt and Young [65]
expressing the molar volumes of [Al2O3/(Al2O3 + Na2O + K2O + CaO*)]100 (A-CN-K dia-
gram) and the chemical index of alteration (CIA), where CaO* represents the CaO content
of the silicate minerals. The complete description of the calculation procedure can be found
in detail in Bahlburg and Dobrzinski [5]. Provenance is determined using discriminant
function diagrams by Roser and Korsch [66]. The diagrams divide the sedimentary rocks
into four different provenances (quartzose sedimentary provenance, felsic, intermediate,
and mafic igneous provenance) and are based on the major oxides and the ratio between the
major oxides, based on calculations given in Oni et al. [67]. Tectonic settings based on Bha-
tia [68] tectonic discriminant functions are founded on the ratios of TiO2 and Fe2O3 + MgO,
and of Al2O3/SiO2 and Fe2O3 + MgO and of SiO2 versus log (K2O/Na2O) after Roser
and Korsch [66]. Tectonic settings are based on discrimination diagrams of Verma and
Armstrong-Altrin [3] and differ according to low silica content (>35%–≤63%) and high
silica content (>63%–≤95%). The discriminant function of Verma and Armstrong-Altrin [2]
separates the active and passive margin settings. The entire procedure with the calculation
formulas is described by [2] and the supplementary files therein.

4. Results
4.1. Mineralogy

The quantitative mineral composition of the samples is shown in Figure 4; the values
can be found in Table S3. The quartz content of the Early Miocene samples varies up
to 35.4 wt.%, albite up to 33.1 wt.% and calcite up to 45.4 wt.%. Dolomite ranged up to
24.4 wt.%, illite from 0.2 to 32.5 wt.%, muscovite from 0.3 to 15.6 wt.%, and montmorillonite
from 0.2 to 29.6 wt.%. Kaolinite and pyrite content is low and varies up to 3.2 wt.% for
kaolinite and up to 1.2 wt.% for pyrite. Cristobalite content varies up to 13.8 wt.%, but it is
generally detected in lower amounts or not at all. The common content of clinochlore is up
to 5.5 wt.%, but in one sample, its content is 54.2 wt.%.

The majority of Badenian sediments contain quartz in amounts ranging from 12.5
to 55.3 wt.%, calcite in amounts ranging from up to 62.5 wt.%, and dolomite in amounts
ranging up to 44.4 wt.%. Muscovite content varies from 1.8 to 23.6 wt.% and clinochlore up
to 13.4 wt.%. Clay minerals occur frequently. Albite content varies from 0.9 to 12.9 wt.%,
illite up to 33.3 wt.%, montmorillonite up to 6.1 wt.%, and kaolinite up to 4.7 wt.%. Other
minerals (cristobalite, tridymite, microcline, anorthite, pyrite, hematite) commonly occur in
amounts lower than 2 wt.%.

The quartz content of the Sarmatian samples varies from 17.8 to 67.6 wt.%, calcite up
to 28.6 wt.% and dolomite up to 46.4 wt.%. Muscovite content varies from 2.6 to 26.7 wt.%,
clinochlore up to 9.1 wt.%, and albite from 1.4 to 9.7 wt.%. Clay minerals are common. Illite
content varies between 0.8 and 19.2 wt.%, kaolinite content between 0.6 and 7.5 wt.%, and
montmorillonite content up to 21.2 wt.%. Other minerals (tridymite, microcline, anorthite,
pyrite, hematite) occur rarely and generally in amounts below 1 wt.%.
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Figure 4. Quantitative mineral composition of samples in wt (%) in Tunjice Hills.

The XRD patterns show the presence of large amounts of quartz in all samples and
a slightly lower, but still very abundant, occurrence of calcite, muscovite, and albite.
The weight ratio of quartz and calcite is often inversely proportional, but in some cases,
their weight ratio is very similar, for example, in sample B13, where their weight ratio
is almost equal. Significantly less calcite and dolomite and higher amounts of quartz,
montmorillonite, kaolinite, and anorthite are determined in the Sarmatian samples than
in the Badenian samples. Cristobalite is detected only in the Early Miocene samples. The
amounts of other minerals in the Badenian and Sarmatian samples (see Figure 4) are similar.
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Significant differences can be observed in the amount of quartz and albite, which is
lowest in the samples from the early Miocene. There is a significant difference in sample
E3, in which no quartz and calcite were detected and in which clinochlore is abundant, and
in sample E1, in which no albite was detected. The highest quartz values are found in the
samples from the Sarmatian. There is generally very little calcite and dolomite in some
samples from the Sarmatian, while montmorillonite is only present in a few samples from
the early Miocene and the Sarmatian. The proportion of kaolinite, pyrite, muscovite, calcite
and dolomite varies from sample to sample and the value is not tied to a specific group
of samples.

4.2. Geochemistry Composition (Major Oxides)

The content of each major oxide varies considerably among the main groups of samples
(Early Miocene, Badenian, Sarmatian) and within each group (Table S4). The silica content
is inversely proportional to the CaO content (Figure 5). The lowest silica content is found in
the Early Miocene samples (from 24.41% to 57.47%), while the alumina content varies from
1.39% to 15.67% and the CaO content from 3.33% to 36.11% (Figure 5). Fe2O3 content varies
from 0.94% to 5.79%, MgO content from 0.51% to 5.04%, and Na oxides from 0.06% to 0.55%,
and K oxides from 0.19% to 2.93%. The silica content in Badenian samples varies from
20.18% to 71.46%, CaO from 0.67% to 34.84%, and alumina from 4.63% to 13.49%. Fe2O3
content varies from 1.09% to 4.84%, MgO from 1.27% to 8.1%, Na oxides from 0.44% to
2.38%, and K oxides from 0.44% to 2.38%. The youngest samples (those from the Sarmatian)
range from 44.26% to 82.75% in silica content, in CaO content from 0.09% to 15.96%, and in
alumina content from 4.55% to 13.43%. Fe oxides content in the samples varies from 1.37%
to 6.24%, Mg oxides from 0.45% to 4.76%, Na oxides from 0.13% to 0.91%, and K oxides
from 0.85% to 2.78%. Mn, Ti, and P oxides are represented with less than 1% in all samples.
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Based on the chemical classification diagram of Herron [69], the mudstones are classi-
fied mainly as shales, wackes, and litharenites (Figure 6).
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Figure 6. Geochemical classification of the Tunjice Hills sedimentary rocks using log (SiO2/Al2O3)
versus log (Fe2O3/K2O), after Herron [69].

4.3. Ternary and Discriminant Diagrams Based on Major Oxides

The samples from the Tunjice Hills are arranged on the left side of the A-CN-K triangu-
lar plot and show a linear trend subparallel to the A-CN junction (Figure 7). The Sarmatian
samples have the highest average of Al2O3 content, while the Early Miocene samples have
the lowest average of Al2O3 content. The samples were uniformly distributed subparallel
to the A-CN joint. The diagram shows the greatest agreement with the weathering trends
of tonalite and granodiorite. The average CIA (chemical index of alteration) value is 53.55
for the Early Miocene samples, 60.08 for the Badenian samples, and 78.03 for the Sarmatian
samples. The lowest and highest CIA values come from the Early Miocene samples, with
13.6 being the lowest and 94.8 the highest.
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According to the discriminant function diagrams of Roser and Korsch [66], the majority
of the Early Miocene samples in the first diagram (Figure 8a) can be assigned to the
intermediate field, two samples to the recycled, and one to the mafic field. In the second
diagram (Figure 8b), the majority of the samples plot into the recycled field—one to the
mafic field and one to the felsic one. The samples that plot into the mafic field are not
identical in both diagrams. The Badenian samples are in the recycled and intermediate
provenance fields in both diagrams, but in the second diagram (Figure 8b), many samples
lie on the border between intermediate and recycled fields. Most of the Sarmatian samples
fall into the recycled field in the first diagram and in the second diagram (Figure 8b), similar
to the Badenian samples, into the boundary between intermediate and recycled provenance.
Two samples from the Sarmatian fall into the mafic field. While the first diagram shows
a tendency to assign the younger sediments to the recycled field and the older ones to
the intermediate field (Figure 8a), the samples in the second diagram (Figure 8b) show no
characteristic contribution.
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rocks using major oxides (a) and the ratios between major oxides (b) after Roser and Korsch [66]. The
legend of the samples is shown in Figure 7.

The Al2O3/TiO2 ratio of the Early Miocene samples is 28.19. The Early Miocene sam-
ples contain two samples with ratios greater than 80, which increases the ratio. Excluding
these two samples, the Al2O3/TiO2 ratio is 21.79. The ratio of the Badenian samples is 18.26
and 16.41 for the Sarmatian samples.

The majority of Early Miocene and Badenian samples in the discriminant diagram
of SiO2 versus log (K2O/Na2O) after Roser and Korsch [66] plot into the oceanic island
arc setting, and the majority of Sarmatian samples plot into the field of active continental
margin setting (Figure 9).

Based on Bhatia’s [68] tectonic discriminant function of major elements, all three
sample groups are unevenly distributed, and based on the ratio of TiO2 and Fe2O3 + MgO
(Figure 10a), are predominantly placed in the active continental margin and continental
island arc region. Based on the ratio of Al2O3/SiO2 and Fe2O3 + MgO, most samples plot
in the field of the continental island arc and the active continental margin field (Figure 10b).
Individual samples lie within the oceanic island arc and passive margin. The majority of
samples in both diagrams plot outside of any field (Figure 10a,b).
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Figure 10. (a) Bivariate plot of TiO2 versus Fe2O3 + MgO diagram for the Tunjice Hills sedimentary
rocks after Bhatia [68]. (b) Bivariate plot of Al2O3/SiO2 and Fe2O3 + MgO diagrams for the Tunjice
Hills sedimentary rocks after Bhatia, [68]; a—oceanic island arc, b—continental island arc, c—active
continental margin, d—passive margin. The legend of the samples is shown in Figure 7.

Slightly different results in determining the tectonic setting are provided by the low-
and high-silica diagrams of Verma and Armstrong-Altrin [3]. In the low-silica diagram
(Figure 11a), most of the Early Miocene samples are assigned to the collision and rift zone,
and only one sample plot into the arc field. The majority of the Badenian samples and all
of the Sarmatian samples are assigned to the collisional field. In the high-silica diagram
(Figure 11b), all Early Miocene and Badenian samples and the majority of Sarmatian
samples are in the collisional field. Only two samples from the Sarmatian fall within the
rift field.

According to the Verma and Armstrong-Altrin [2] discriminant function (Figure 12),
all Badenian and Sarmatian samples and the majority of Early Miocene samples are in
the passive margin setting, and only two Early Miocene samples are in the active margin
setting. A single sample (the same as in the low-silica diagram) is plotted in the arc field.
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5. Discussion
5.1. Paleoweathering

According to the ternary diagram of molecular proportions (Figure 7), the samples
are arranged on the left side, with the weathering trend subparallel to the A-CN side. This
characterizes the initial weathering trends of igneous rocks with trends in the removal
rates of Na and Ca from plagioclase [65] and also suggests that the weathering process
had a greater influence on rock composition than diagenesis and metamorphism [70]. The
Sarmatian samples have the highest CIA value (78), and the Early Miocene samples have
the lowest CIA value (53.55). Some Early Miocene and Badenian samples have very low
CIA values (below 50). In contrast, two samples show strong weathering with CIA above 90.
The ACNK diagram, in our case, most clearly shows the tendency for older samples to be
less susceptible to chemical weathering, while the younger samples were more susceptible.
Considering that all samples are fine-grained and geochemically belong to shale, litharenite,
and wacke (Figure 6), the possibility of ordering the samples by grain size is minimized.

CIA values of about 50 are considered unweathered, and CIA near 60 indicates weak
weathering [70]. CIA values between 60 and 80 indicate moderate chemical weathering [71].
Values above 80 indicate extreme chemical weathering [71]. The reason for the rather high
value (78) of CIA in the Sarmatian samples is most likely to be the prevailing warm
and humid weathering conditions [5], while low-to-moderate weathering (53–60) reflects
cold and/or arid climatic conditions in the source area [11]. Alternating warmer and
cooler temperatures in the study area coincides well with global and regional temperature
changes [41,63,72].

The mineral composition does not indicate any significant paleoweathering trend
within the sample groups, as is in the case for the geochemical composition. Clay minerals
are the remains of feldspars and are the most common products of chemical weathering.
The significant difference is the proportion of albite, which is higher in the Lower Miocene
sediments. Its quantity has no influence on the amount of clay minerals, which are com-
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parable to the amount of the Badenian and Sarmatian samples. Montmorillonite belongs
to the smectite group and is formed during the weathering of volcanic ash. Its occurrence
in samples from the Early Miocene can be correlated with the weathering of volcanic rock
from the Oligocene. Illite clays are the main component of ancient mudstones and shales.
Kaolinite is less common than illite, which may be due to the higher salinity of the water.
Chlorite and illite originate from less weathered intrusive and metamorphic rocks. Chlorite,
on the other hand, is not resistant to chemical weathering and is an important detrital
component in areas with low chemical weathering. These areas are characterized by colder
climates [73]. The climate in the Central Paratethys changed significantly between the
Early and Middle Miocene [24,74]. While the Egerian and Eggenburgian flora indicate a
warm and humid climate in the western part of the Central Paratethys [24,73,75], the flora
in the Karpatian and the Ottnangian indicate milder temperatures [76]. In fact, even arid
climatic conditions are present locally in the Early Miocene [77]. This coincides with the
Middle Miocene Climatic Optimum (MMCO), when, due to low global ice volume, the
temperature of seawater rose slightly [63] and caused an expansion of bioproduction and
biodiversity [24,61]. During the Badenian, stable subtropical conditions prevailed in the
Central Paratethys [78]. Carbonate sequences in the Central Paratethys reflect warmer,
subtropical conditions in the Sarmatian [74], which is also confirmed by a negative peak in
the oxygen isotope curve [79].

It appears that despite the relatively similar sedimentary rocks, tectonic units or
geological time, the trend of paleoweathering is very specific and limited only to the
narrow local area [14,15,25,80,81].

5.2. Provenance
5.2.1. Mineralogical Approach

Quartz occurs in most sedimentary, metamorphic, and igneous rocks [82]. As a
detrital component, it is highly resistant to physical and chemical weathering, so it is
usually preserved in large quantities and is the most abundant terrigenous mineral in sand-
stones [83,84]. In the case of the Tunjice Hills, different types of quartz are present. Detrital
quartz in the form of monocrystalline or polycrystalline quartz grains and metamorphic
and igneous quartz are found in the sandstones [56]. The sandstones of the Tunjice Hills
also contain considerable amounts of authigenic quartz, formed by authigenic processes
during the cementation of sands [56]. Quartz is a common mineral in various hinterland
types and can be found in volcanic rocks (tonalite, granodiorite) and metamorphic rocks
(inclusions in eclogites, garnet, omphacite, and kyanite); therefore, its origin could be
related to the provenance from the Austroalpine units, from the Eisenkappel magmatic
zone [51,54,85,86] or the Smrekovec volcanic complex [54].

Carbonate minerals occur in almost all sedimentary rocks. The most common and
most stable polymorph of calcium carbonate mineral is calcite [87]. Calcite determined in
the studied samples is most likely of authigenic origin as calcite cement, formed in shallow
marine environments [56,88]. Additionally, detrital calcite and dolomite minerals may be
associated with grains from carbonate rocks of the Southern Alps. During the Miocene, the
transgressions of the Central Paratethys flooded the wider area several times [44,60,78,88],
which led to larger amounts of mainly calcite—also aragonite and dolomite—which is
excreted biogenically by marine organisms (skeletons, shells) [47]. The Sarmatian samples
contain less calcite and dolomite compared to the Badenian samples from the Tunjice Hills,
which could be attributed to variations in seawater salinity. Salinity began to decrease in
the Sarmatian [44,74], which most likely led to a decrease in calcite in the early Sarmatian
samples. Generally, the late Sarmatian is characterized by increased carbonate content [89];
however, the sedimentation in the Tunjice Hills most likely ended before that. Differences
in the amounts of dolomite and calcite may also indicate differences in the transport system
during the Badenian and Sarmatian. The presence of dolomite may be related to terrigenous
origin. Its presence in the form of dolomite cement is unlikely [56]. Dolomites may be
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associated with the influx of material [88] from the Southern Alps, where Triassic dolomites
occur. This suggests a local origin and a provenance from the north.

Feldspars pose a challenge for accurate source rock identification because they are
ubiquitous in metamorphic and igneous rocks [90] and are chemically and mechanically
unstable in the sedimentary environment [83]. In the Tunjice Hills, feldspars are represented
by plagioclase (Ca and Na feldspars) and alkali feldspars. Their origin could be related
to the low-grade metamorphic rocks of Mt. Kranjska Reber and/or to the Smrekovec
volcanic complex [54,91]. The possible hinterland of the feldspars might also represent the
Periadriatic magmatic zone or the Austroalpine units of the Eastern Alps [85,88,92].

Chlorites are commonly found in metamorphic rocks, particularly greenschists and
chlorite shales, as well as altered igneous rocks [83]. Clinochlore (Mg-chlorite) has been
detected in Badenian and Sarmatian samples from the Tunjice Hills. Mg-rich chlorite is
typically found in evaporite deposits. Furthermore, chlorite forms during burial diagenesis
and metamorphism [73]. Thick evaporite sediments were deposited in the Transcarpathian
Basin, Transylvanian Basin, and Carpathian Foredeep (PBS) during the middle Bade-
nian [78,93,94], which can be attributed to a salinity crisis. Evaporite sediments were not
detected in the Tunjice Hills nor in the SW Central Paratethys [37], but their remains may
have been washed away. The origin of the clinochlore in Badenian and Sarmatian rocks is
likely associated with detrital material from the metamorphic rocks of the Eastern Alps and
volcanic rocks of the Smrekovec area, as there is no objective difference in their amounts. It
is unlikely that they originated from evaporite deposits.

Illite and muscovite are frequently present in similar quantities in the samples of the
Tunjice Hills. Generally, illite has its origin in micas, usually muscovite, and forms through
chemical alterations or in metamorphic or peri-magmatic conditions [95]. Muscovite and
illite in the samples from the Tunjice Hills are most likely associated with metamorphic
and magmatic origin in the Austroalpine units and the Smrekovec area.

Pyrite is a common mineral in various rock types. Pyrite formation is more abundant
in marine environments than in non-marine ones because of the dissolution of sulfate and
iron minerals due to organic matter [96]. The presence of pyrite in the studied samples
is related to establishment of marine environments as a consequence of the Early and
Middle Miocene transgression of the Central Paratethys [24,44,97]. This resulted in the
precipitation of pyrite and other related minerals, such as glauconite [56].

5.2.2. Geochemical Approach

The presence of major elements and their ratios can provide reliable information
about the origin of the source area [98–100]. Of the major elements, Al2O3 and TiO2 are
considered immobile during weathering, transport, and diagenesis, so their ratio is used
to infer source rock composition [9,101–103]. Their ratio in the Early Miocene samples is
28.19 and corresponds to a felsic igneous source cf. [104]. The ratio in the Badenian samples
is 18.26 and 16.41 in the Sarmatian samples. Both correspond to an intermediate source
(values for granitic, igneous, and sedimentary rocks).

The discriminant diagram of Roser and Korsch [66] separates four major source areas.
Samples from the Tunjice Hills plot mostly into the recycled and intermediate fields in
diagram A (Figure 8a) and are at the boundary between the recycled and intermediate
fields in diagram B (Figure 8b). The differences in provenance according to the diagram by
Roser and Korsch [66] (Figure 8a) between the Early Miocene and Sarmatian samples of
studied rocks are clearly evident.

Samples that plot into the intermediate igneous provenance field have lower silica
content (below 50%). This suggests a higher amount of alumina and CaO [105], and their
origin may be associated with parts of the Eastern Alps. Quartzose sedimentary provenance
indicated that the sediments were subjected to recycling. Furthermore, the source material
was predominantly quartz-rich sedimentary rocks, and to a lesser extent igneous rocks.
The rocks are rich in silica and poor in alumina, and the CaO content is low.
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The origin from the recycled orogen fits well with the origin of the sediments in
the collision zone, which corresponds to the origin from the Alps. The active Europe
convergence throughout the Oligocene and Miocene [106] could lead to the sediments
originating from the uplifted Dinaric and Southern Alpine blocks such that most of the
sediments could be derived from the locally uplifted blocks of the Southern Alps [38,107] to
the north and the Dinarides to the south of the Tunjice Hills. Considering that the Central
Paratethys covered the area south of the Tunjice Hills in the Early and Middle Miocene [38]
and that the lowlands with Quaternary sediments to the east still exist [88,108], the origin
from the eastern side is minimal. Lowlands to the west enabled a marine gateway through
the so-called Trans-Tethyan Corridor during the Karpatian and the Badenian [38,44,109,110].
The intermediate origin points at the sediments originating from the Alps, more precisely
from the Karawanks [111,112], the Eastern Alps [85] or Triassic igneous rocks [113].

Since the A-CN-K diagram (Figure 4) shows the weathering tendency of granodiorite
and subordinately of tonalite (majority of Badenian samples only), it is possible to conclude
that the provenance of the sediments is also in the northeast, from the Eisenkappel magmatic
zone [114].

5.3. Tectonic Setting

As demonstrated, the use of several different diagrams to determine tectonic set-
ting turned out to be expedient. Six discriminant functions resulted in three different
tectonic settings, which is difficult to justify despite the complexity of the area in the given
environment at the transition between the Adriatic and European tectonic plates [45].

The multidimensional diagram based on the major oxides for low- and high-silica
content, according to Verma and Armstrong-Altrin [3] and the discriminant function based
on the major oxides, according to Verma and Armstrong-Altrin [2], gave rather unequal
results. The majority of the samples fall within the collision field in the low- and high-silica
diagram, and only a few samples plot into the rift field (Figure 11). In contrast, the samples
in the discriminant function were plotted into the field of the passive margin (Figure 9).
Such contradictory results were found in previous studies [15] in the western part of the
PBS and Central Paratethys.

This disunity coincides well with abovementioned tectonic processes that continued
from the Oligocene and were active during the Miocene [20]. Discriminant functions
(Figure 11) indicate a strong dominance of the collision field, which indicates the tectonic
setting in which the sediments were deposited in the basin. A distinct collision zone can
therefore be traced in the samples of Badenian and Sarmatian age, while the activity of the
major faults (Periadriatic and Sava Faults) can be detected throughout the whole period.

The discriminant function (Figure 12) shows a significant impact of the passive margin,
indicating a strong prevalence of extension processes. Unexpectedly, these stem from the
Lower Miocene onward. Since the formation of the PBS started in the late Early Miocene
(as discussed earlier in this chapter), it was expected that the diagram would show the
difference between the samples from the Govce formation and the other samples. It is
difficult to explain the subjection of the sediments to a specific tectonic setting that did
not yet exist at the time of sedimentation. However, the above findings stress that the
discriminant function after Verma and Armstrong Altrin [3] shows the tectonic setting of
the source rocks, while the discriminant function after Verma and Armstrong Altrin [2]
shows the tectonic setting during sedimentation; nonetheless, caution in interpreting the
results is advised.

The discriminant function after Roser and Korsch [66] (Figure 9) reveals another tec-
tonic setting. It indicates that the majority of the Early Miocene and early Middle Miocene
sediments were subjected to the oceanic island arc and the majority of the Sarmatian sam-
ples to the active continental margin. The study area is located at the triple junction of the
Alpine orogen, the Pannonian Basin System and Dinaric tectonic units [45] and the oceanic
island arc setting is not expected in this area [22,115,116]. However, it is more likely that
the diagram reflects the tectonic setting of the source rocks from the Eastern and Southern
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Alps. These rocks were transported to the study area in the Neogene with different trans-
port processes. Oceanic and more frequently continental island arcs have been defined in
the Karawanks [34], and constitute the Late Paleozoic–Mesozoic geodynamic evolution
in the Tethys area [117–119]. These differences between the results of the Badenian and
Sarmatian samples could be related to paleogeographic changes that allowed a different
sedimentary input.

Bhatia’s [68] diagrams proved to be very unreliable in this study because most of the
samples plot outside of any field (Figure 10). The reason for this could be the influence
of chemical weathering on the sediments. Therefore, an additional investigation was
carried out, excluding all samples with CIA above 80 (Figure 13a,c). The investigation
helped ascertain that these samples fell out of the margins of the diagram (Figure 13a),
but not in the case of the ratio of Fe and Mg oxides to Al and Si oxides (Figure 13c). In
addition, another inquiry was conducted excluding samples whose CIA was less than 30.
In the diagram (Figure 13b), the results show that the samples are less scattered, but in
the case of Fe and Mg oxides versus Al and Si oxides (Figure 13d), there is no obvious
difference. It bears emphasizing that chemical weathering does not play a significant
role in the tectonic discrimination functions. However, some Badenian samples from the
Tunjice Hills fall within the range of the continental island arc field (Figures 10a and 13a,b).
This may be related to active intra-plate calc-alkaline volcanism in the Middle Hungarian
Zone. Various processes, such as mantle plumes of hot rock from the Earth’s mantle or
thinning of the lithosphere resulting in the melting of the mantle [120], may also affect
sedimentation in the western part of the PBS. The inaccuracy of these diagrams has already
been discussed [121]; therefore, great caution should be exercised when using and relying
solely on these discriminant diagrams. However, the diagrams were found to be a good
indicator for determining the source material in the southwestern part of the PBS [25].
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Figure 13. (a,b) Bivariate plot of TiO2 versus Fe2O3 + MgO diagram for the Tunjice Hills sedimentary
rocks after Bhatia [68]; (c,d) bivariate plot of Al2O3/SiO2 and Fe2O3 + MgO diagrams for the
Tunjice Hills sedimentary rocks after Bhatia [68]; (a,c) diagrams exclude samples with CIA > 80;
(b,d) diagrams exclude samples with CIA > 80 and CIA < 30. The legend of the samples is shown in
Figure 7. Explanatory notes: a—oceanic island arc, b—continental island arc, c—active continental
margin, d—passive margin.
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Interpretation of Tectonic Setting of the Tunjice Hills (Western Central Paratethys)

Various tectonic processes influenced the development of the studied area from the
Miocene onwards, starting with the collision of the Adriatic and European lithospheric
plates [20,35,36]. Considering that the Tunjice Hills are located at the western margin of
the PBS at the conjunction of the Alps and the Dinarides, it can be emphasized that the
results suggest that both rifting and collision played an important role in sedimentation
in the Tunjice Hills during the Early and Middle Miocene. The basement of the PBS
consists of ALCAPA (Alpine–Carpathian–Pannonian) and Tisza–Dacia mega-units and a
Dinaridic tectonic unit [18,29,34]. The movement of the Adriatic–European plate, which
triggered the Alpine collision, caused the activity of several faults, folds, and overthrusts
in the area of the junction between the Alps and the Dinarides [122]. The collision caused
pronounced changes: dextral movement of the Pariadriatic Fault (PAF) over 100 km during
the Miocene [107,123,124], the thrusting of the External Dinarides, which is estimated to
be post-Eocene and Early Miocene in age [125,126], and the activation of the Sava fault,
resulting in the folding of the Late to Middle Miocene strata [106]. According to recent
studies [127], these faults are still active. The collision was one of the reasons for subduction,
subsidence and extension of the lithosphere that led to the evolution of the back-arc type
PBS in the late Early Miocene. Extension led to the thinning of the crust and subsidence
and formation of a back arc-type basin [32,61,128–132]. The influence of the passive margin,
connected with the formation of the PBS and the impact of arc setting were not expected in
the Early Miocene sedimentation in the Tunjice Hills. The explanation of the arc setting
is not certain. It is possible that volcanic activity in the Oligocene (Smrekovec complex)
influenced sedimentation at the beginning of the Early Miocene. However, sedimentation
in the Middle Miocene may be related to volcanic activity in intra-plate settings near
the Middle Hungarian Zone. These processes significantly influenced the sediments and
sedimentation in the PBS and its margins [15,38,78,124] that in our case can be traced in the
discriminant function (Figure 12). According to the sequence of the events and processes
described, it can be emphasized that Early Miocene sedimentation was more influenced by
the collision, and in the Middle Miocene, sedimentation was more influenced by rifting.

6. Conclusions

Sedimentation in the Tunjice Hills was subjected to pronounced tectonic, climatic, and
provenance changes in the Early and Middle Miocene that were defined by geochemical and
mineralogical analyses. From the data presented, geochemical and mineralogical analyses
allowed for the conclusion that detailed fingerprints of provenance and tectonic settings
may be traced in sediments from the different tectonic backgrounds and regions. In the
case of the relatively well-known Alpine–Pannonian region, the use of various geochemical
functions gave a unique insight into the purpose of each function.

- The heterogeneous mineral and chemical composition and alteration in their abun-
dance suggest a markedly wide area of origin of the sediments. The studied rocks
are rich in quartz and poor in feldspars and indicate quartzose sedimentary prove-
nance. Source areas of sediments were connected with an origin from the Southern
Alps, Austroalpine units of the Eastern Alps, Eisenkappel magmatic zone, and the
Smrekovec volcanic complex.

- The paleoweathering ternary diagram turned out to be very reliable. The Early
Miocene rocks of the Tunjice Hills have the lowest CIA, while the youngest rocks
(Badenian and Sarmatian) have the highest CIA value. Results are consistent with the
differences in paleoclimatic conditions during the Early and Middle Miocene, which
ranged from colder to warmer and more humid climates. The latter corresponds well
with the MMCO.

- The discriminant function of Roser and Korsch [66] and the discriminant function
of Verma and Armstrong Altrin [3] have proved to be very useful in determining
the tectonic setting of the source sediment. It appears that the source sediments in
the Tunjice Hills were subjected to oceanic island arc and collision setting, which
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corresponds well with the hinterland. However, the passive margin connected to the
evolution of the Pannonian Basin and the possible influence of the intra-plate settings
near the Middle Hungarian Zone was also identified.

- The discriminant functions of Bathia [68] are the only ones that were unreliable.
Additional analyses showed that the diagram did not include the samples in the
specific groups and the results could not be put into context, so the use of the diagram
is not recommended.

- Sedimentation in the Tunjice Hills, located south of the Southern Alps and representing
the western margin of the PBS, was strongly influenced by both active and passive
margin settings. This was demonstrated by multidimensional diagrams, as presented
by Verma and Armstrong Altrin [2,3]. However, the results did not allow for the
determination of the specific influence of each setting during a given period. Based
on the regional tectonic evolution of the PBS and Alpine orogen, it is important
to note that the collision zone had a stronger impact on sedimentation during the
Early Miocene and the rift setting during the Middle Miocene. Nevertheless, the
sedimentary input may have originated from a collision zone and had been deposited
in an area where the rift zone was already active.
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TOT/C, and CO2 abundance (%) in samples from the Tunjice Hills.

Author Contributions: Conceptualization, K.I., R.B. and M.V.; methodology and formal analysis, K.I.
and M.V.; investigation, K.I., R.B. and M.V.; writing—original draft; K.I.; writing—reviewing and
editing, K.I., R.B. and M.V., visualization, K.I.; project administration, K.I.; funding acquisition, K.I.
and R.B. All authors have read and agreed to the published version of the manuscript.

Funding: The research was founded by the IAS Postdoctoral Research Grant Scheme, to which we
express our deep gratitude. In addition, the authors gratefully acknowledge financial support from the
Slovenian Research and Innovation Agency (Research Core Funding P1-0025—“Mineral Resources”).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article and its supplementary materials.

Acknowledgments: Many thanks to Miha Marinšek for the ostracod analyses he used to confirm the
age of some Sarmatian samples.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviation is used in this manuscript:
PBS Pannonian Basin System
CIA Chemical index of alteration
TOC Total organic carbon
MMCO Middle Miocene Climatic Optimum

References
1. Zakir, H.M. Major, Trace, and REE Geochemistry of the Meghna River Sediments, Bangladesh: Constraints on Weathering and

Provenance. Geol. J. 2020, 55, 3321–3343. [CrossRef]
2. Verma, S.P.; Armstrong-Altrin, J.S. Geochemical Discrimination of Siliciclastic Sediments from Active and Passive Margin Settings.

Sediment. Geol. 2016, 332, 1–12. [CrossRef]

https://www.mdpi.com/article/10.3390/app14020537/s1
https://www.mdpi.com/article/10.3390/app14020537/s1
https://doi.org/10.1002/gj.3595
https://doi.org/10.1016/j.sedgeo.2015.11.011


Appl. Sci. 2024, 14, 537 21 of 25

3. Verma, S.P.; Armstrong-Altrin, J.S. New Multi-Dimensional Diagrams for Tectonic Discrimination of Siliciclastic Sediments and
Their Application to Precambrian Basins. Chem. Geol. 2013, 355, 117–133. [CrossRef]

4. Nesbitt, H.W.; Young, G.M. Foramtion and Diagenesis of Weathering Profiles. J. Geol. 1989, 97, 129–147. [CrossRef]
5. Fralick, P.W.; Kronberg, B.I. Geochemical Discrimination of Clastic Sedimentary Rock Sources. Sediment. Geol. 1997, 113, 111–124.

[CrossRef]
6. Zimmermann, U.; Heinrich, B. Provenance Analysis and Tectonic Setting of the Ordovician Clastic Deposits in the Southern Puna

Basin, NW Argentina. Sedimentology 2003, 50, 1079–1104. [CrossRef]
7. Zhang, Y.; Pe-Piper, G.; Piper, D.J.W. Sediment geochemistry as a provenance indicator: Unravelling the cryptic signatures of

polycyclic sources, climate change, tectonism and volcanis. Sedimentology 2014, 61, 383–410. [CrossRef]
8. Armstrong-Altrin, J.S.; Nagarajan, R.; Balaram, V.; Natalhy-Pineda, O. Petrography and Geochemistry of Sands from the

Chachalacas and Veracruz Beach Areas, Western Gulf of Mexico, Mexico: Constraints on Provenance and Tectonic Setting. J. South
Am. Earth Sci. 2015, 64, 199–216. [CrossRef]

9. Baldermann, A.; Abdullayev, E.; Taghiyeva, Y.; Alasgarov, A.; Javad-Zada, Z. Sediment Petrography, Mineralogy and Geo-
chemistry of the Miocene Islam Da?G Section (Eastern Azerbaijan): Implications for the Evolution of Sediment Provenance,
Palaeo-Environment and (Post-)Depositional Alteration Patterns. Sedimentology 2020, 67, 152. [CrossRef]

10. Kan, W.; Yang, Z.; Yu, L.; Sun, M. Provenance and Tectonic Setting of Formation of Quaternary Sedimentary Successions from the
Songhua River, Northeast China. Appl. Sci. 2022, 12, 7356. [CrossRef]

11. Bahlburg, H.; Dobrzinski, N. A Review of the Chemical Index of Alteration (CIA) and Its Application to the Study of Neoprotero-
zoic Glacial Deposits and Climate Transitions. In The Geological Record of Neoproterozoic Glaciations; Arnaud, E., Halverson, G.P.,
Shields-Zhou, G., Eds.; Geological Society of London: London, UK, 2011; pp. 81–92.

12. Adeigbe, O.C.; Jimoh, Y.A. Geochemical Fingerprints; Implication for Provenance, Tectonic and Depositional Settings of Lower
Benue Trough Sequence, Southeastern Nigeria. J. Environ. Earth Sci. 2013, 3, 115–141.

13. Yan, Y.; Xia, B.; Lin, G.; Carter, A.; Hu, X.; Cui, X.; Liu, B.; Yan, P.; Song, Z. Geochemical and Nd Isotope Composition of Detrital
Sediments on the North Margin of the South China Sea: Provenance and Tectonic Implications. Sedimentology 2007, 54, 1–17.
[CrossRef]

14. Ofili, S.; Soesoo, A.; Panova, G.E.; Hints, R.; Hade, S.; Ainsaar, L. Geochemical Reconstruction of the Provenance, Tectonic Setting
and Paleoweathering of Lower Paleozoic Black Shales from Northern Europe. Minerals 2022, 12, 602. [CrossRef]
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Vučji Jarek and Čemernica Members of the Macelj Formation (NW Croatia). Geol. Croat. 2021, 74, 41–56. [CrossRef]
57. Haq, B.U.; Hardenbol, J.; Vail, P.R. Mesozoic and Cenozoic Chronostratigraphy and Cycles of Sea Level Changes. In Sea-Level

Changes—An Integrated Approach; Wilgus, C.K., Hastings, B.S., Kendall, C., Posamentie, H., Ross, C.A., Van Wagoner, J., Eds.;
SEPM Special Publications: Tulsa, OK, USA, 1988; Volume 42, pp. 71–108. [CrossRef]

58. Holcová, K.; Doláková, N.; Nehyba, S.; Vacek, F. Timing of Langhian Bioevents in the Carpathian Foredeep and North Ern
Pannonian Ba Sin in Re La Tion to Ocean o Graphic, Tec Tonic and Cli Ma Tic pro Cesses. Geol. Q. 2018, 62, 3–17.

59. Mikuž, V. Miocene Sea Mussels from Neighbourhood of Stolnik in Tunjiško Gričevje Tunjice Hills), Slovenia. Geologija 2009, 52,
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