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Abstract: The construction and demolition sector is one of the biggest consumers of natural resources in
the world and consequently, one of the biggest waste producers worldwide. The proper management
of construction and demolition waste (CDW) can provide major benefits for the construction
and recycling industry. However, the recycling rate of CDW is relatively low, as there is still a
lack of confidence in the quality of recycled CDW materials. Therefore, new research projects
are looking for innovative solutions within recycling of CDW in order to overcome uncertainties
currently associated with the use of construction products made from recycled or re-used CDW.
In this paper, a “cradle-to-cradle” life cycle assessment (LCA) study has been conducted to investigate
the environmental performance of the prefabricated geopolymeric façade cladding panels made from
large fractions of CDW. The LCA results indicate that the majority of the environmental burden
arises within the manufacturing stage; however, the environmental burden can be reduced with
simple optimisation of the manufacturing process. Furthermore, the environmental impact of the
prefabricated geopolymeric façade cladding panels is generally lower than the environmental burden
associated with the façade cladding panels made from virgin materials.

Keywords: life cycle assessment (LCA); construction and demolition waste (CDW); façade cladding
panel; geopolymer; alkali-activated material (AAM)

1. Introduction

The construction and demolition sector is one of the biggest consumers of natural resources,
which consumes 25% of virgin wood, 17% of fresh water and 40% of all raw materials (e.g., stone,
gravel and sand) extracted worldwide, and is responsible for around 40% of all of global greenhouse gas
emissions [1,2]. Consequently, it is also one of the biggest waste producers in the world, which annually
generates around 35% of all global waste [3]. For example, the construction and demolition sector
generates 40% of total urban waste in mainland China, around 30% of total solid waste in the USA and
approximately 46% of the total waste in Europe [4,5].
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Construction and demolition waste (CDW) can be defined as a solid waste that is generated
during the construction, maintenance, demolition and deconstruction of buildings and civil works.
CDW mainly consist of mineral components, such as crushed concrete, bricks, tiles and asphalt, as well
as plastics, wood, metals, glass and cardboard [6]. Even though there is a high potential for recycling
and re-use of CDW, there is still a lack of confidence in the quality of CDW recycled materials [7].
This is primarily a result of inadequate information on recycled or re-used CDW products, negative
perception associated with these products, unexpectedly high cost of CDW materials when compared
to virgin materials and considerably conflicting information on availability, durability, qualities and
functionality of CDW materials and products [8].

Therefore, further research is needed in order to develop innovative materials and solutions that
would aim at overcoming uncertainties that are currently associated with the use of construction
products made from recycled or re-used CDW. One of research projects that are looking for innovative
solutions within recycling of CDW is also the InnoWEE project (H2020 InnoWEE: Innovative
pre-fabricated components including different waste construction materials reducing building energy
and minimising environmental impacts). The main objective of the InnoWEE project is the development
of new high-performing prefabricated geopolymeric façade panels made from large fractions of recycled
CDW, which would have a low environmental impact, low embodied energy, low CO2 emissions and
high thermal performance.

Geopolymers or alkali-activated materials (AAM) are an environmentally friendly and technically
promising alternative to cement, concrete and ceramics. In order to produce geopolymeric products,
two main components are needed: (i) SiO2 and Al2O3 in sufficient quantities and reactive form-glassy
state, and (ii) alkaline activators in a solution (e.g., NaOH, KOH, Na-water glass, K-water glass).
When these two components are mixed, first, dissolution and transport of aluminium and silicate
components in the alkaline activators takes place, and then an aluminosilicate network is formed
through poly-condensation of the Al and Si components. Many naturally occurring materials, such as
thermally activated clay or natural pozzolan (e.g., volcanic ash), as well as industrial waste (e.g., fly ash,
bottom ash, and various slags), can serve for these purposes [9].

Life cycle assessment (LCA) is a standardized technique that addresses the environmental impacts
associated with different stages of a product’s life cycle, such as raw material extraction, material
processing and manufacturing of the product, product use, repair and maintenance, and finally, product
re-use, recycling or final disposal [10,11]. Even though façade represents a key factor in the overall
energy efficiency of a building, a limited number of studies have employed LCA to evaluate the
environmental performance of façade cladding panels or façade systems. The majority of available
studies are focused on traditional virgin materials (e.g., such as glass, stone or aluminium), where studies
address a single product or compare different types of solutions made from the same material.

For example, LCA has been employed to evaluate energy consumption and CO2 emissions of a
glass curtain wall system [12], or to compare the environmental performance of different glass window
materials [13]. Traverso and co-authors [14] have analysed a typical Sicilian marble and determined that
tile manufacturing has higher values of embodied energy and environmental performance indicators
when compared to the slabs. Gazi and co-authors [15] have compared six impact categories for
marble tiles, with the highest impact being observed in terms of acidification and global warming.
Ioannidou and co-authors [16] have compared the most commonly used stoned wall systems, where the
analysis has shown that the use of thicker stone and the change in the structural system can present
environmental benefits. On the other hand, there are no independent LCA studies focusing exclusively
on aluminium panels [17].

There are only few studies that directly compared different façade systems of façade materials.
Taborianski and Prado [18] have compared the entire life cycle CO2 emission of five different office
building façades and found that the structural glazing façades with colourless glass had the highest
CO2 emissions when compared to the ceramic brick façades and façades built using brick and covered
with mortar. Han and co-authors [17] have evaluated the environmental performance of ceramic façade
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panels and compared it to three other façade materials (i.e., marble, glass and aluminium), with the
ceramic panels generally being more environmentally friendly than the other three materials.

In the field of CDW management, LCA has been applied to investigate the performance of general
CDW management strategies and CDW recycling plants, compare natural material to recycled material
from CDW, analyse different end-of-life scenarios for buildings and evaluate electricity production from
CDW [19]. In addition, LCA has also been applied to investigate the performance of alkali-activated
materials, with the results suggesting that AAM products are generally more environmentally friendly
than other technically competitive products, [20]. However, as far as the authors are aware, there is no
LCA study that evaluates the entire life cycle of façade panels made from geopolymer or alkali-activated
material. As no other material can be considered as an adequate substitute to evaluate an environmental
impact of geopolymeric façade panels, a complete LCA study is needed.

Therefore, the objective of this study was to investigate the environmental performance
of prefabricated geopolymeric façade cladding panels made from large fractions of recycled
CDW. The environmental performance has been evaluated by means of a “cradle-to-cradle” LCA
analysis, which has considered the entire life cycle of the geopolymeric façade panels. In addition,
the environmental performance of the geopolymeric panels has been compared to the environmental
performance of façade cladding panels made from virgin materials (i.e., marble, aluminium, glass and
ceramic). This comparison has been based on a ”cradle-to-gate” LCA, as there was a lack of data to
develop a full life cycle scenario for considered virgin materials.

2. Materials

The objective of the InnoWEE project is to use the geopolymeric technology to produce a
system of panels able to incorporate high amounts of CDW. Two types of geopolymer mixtures have
been developed within the InnoWEE project: (i) high-density geopolymer (HDG), which embeds
approximately 50% by weight of inorganic CDW aggregates (from fired clay, mortar and concrete
rubble), and (ii) wood geopolymer (WG), which incorporates at least 40% of CDW wood particles.

The geopolymer binder was based on commercial solid precursors, i.e., metakaolin (MK: M1000
from Imerys, France), ground granulated blast furnace slag (SL: LV 425 supplied by Minerali Industriali,
Italy) and class F fly ash (FA: type EFA Füller HP supplied by BauMineral GmbH, Germany),
with the latter being used in HDG only. The activation was achieved through aqueous solutions
of either potassium silicate (HDG) or sodium silicate (WG), which were commercially available as
well. Aggregates used in the HDG production came from inorganic non-hazardous CDW, classified
either as 17.01.01 (concrete), 17.01.07 (mixtures of concrete, brick, tile and other ceramics) or 17.09.04
(mixed construction and demolition wastes), according to the European List of Wastes [21], which were
ground to obtain recycled sands with a maximum nominal size of 2 mm. Organic particles for the WG
production consisted in softwood from untreated construction waste (e.g., pallets, carpentry boards,
etc.), which was shredded to obtain a suitable mix of flakes and chips, mostly less than 3 cm long with
an aspect ratio lower than 8.

The development of the inorganic HDG mixture, carried out through an extensive experimental
research, basically involved two phases. The first, described in detail in Panizza et al. [22], was devoted
to identifying the main parameters affecting mechanical, physical and technological properties related
to a possible industrial exploitation, whereas the second was focused on the optimisation of the mixture
to comply with the requirements set by the pilot plant and by the prototype panels’ features, especially
in terms of viscosity and setting time of the fresh paste, curing parameters and adequate strength
and limited drying shrinkage of the hardened material. The final HDG formulation delivered the
following properties: Brookfield viscosity (spindle n 5 at 1 rpm) in the range 120–150 Pa·s and setting
time greater than 70 min at 23 ◦C, compressive strength of about 37 MPa and splitting tensile strength
of about 3 MPa at 28 days of age, apparent density of 1.89 g/cm3, open porosity of about 30% and
drying shrinkage lower than 0.25% after 6 months.
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The WG is a material similar to cement-bonded particleboard, but with the wood aggregates kept
together by a geopolymer binder able to set at ambient temperature. The WG for façade cladding
panels, owing to the envisaged exterior application, embedded 40% by weight of wood particles,
resulting in an apparent density of about 1.0 g/cm3 in dry conditions and comprised between 1.1 and
1.2 g/cm3 in environmental conditions (interior ambient). Strength and elastic modulus measured in
3-point bending were about 5.6 and 2.02 × 103 MPa, respectively.

The prefabricated façade cladding panel has a square size with an edge 595 mm long. It was
designed as a plate of HDG stiffened by a frame made by two horizontal main ribs (with cross-section
30 × 30 mm2) and four vertical thinner ribs with a tapered cross-section 10 to 15 mm thick. Three WG
panels 7 mm thick were applied to the backside of the HDG plate, which were sized to fit the space
among the ribs. Thanks to the design features and to the presence of the WG elements, which improves
the resistance (especially the impact strength), the thickness of the HDG layer could be limited to 7 mm.
Consequently, the cladding panel, with a mass of about 25 kg/m2, is generally lighter than similar
items made with concrete or natural stone. Additionally, the HDG layer acts both as a protective shield
from natural elements (e.g., wind, rain, snow, etc.) and as an aesthetic finishing.

The upscale production of the ventilated facade panels took place in the Technology Upscaling
Pilot Plant (TUPP) in AMSolutions facilities. The upscale production includes the production
of the high-density geopolymer (HDG) paste as well as the casting of the paste, the moulding,
curing, demoulding, drying, painting, assembling of HDG with the WG in order to form the final
panels and finally, packing of the final panels. For each one of the aforementioned production
steps, the appropriate equipment and machinery was used, which includes mixers, electric pumps,
electric motors, electromagnetic valves, storage silos, premixing buffers, weighting systems and many
others. Eighty ventilated façade panels were produced in the TUPP in the framework of the InnoWEE
project. The prefabricated geopolymeric façade cladding panel can be seen in Figure 1.
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3. Application of the LCA Methodology

The LCA has been conducted in accordance with the principles and framework for LCA, which are
defined in the international standard for LCA ISO 14040 and ISO 14044, and the European standard
for Environmental Product Declarations (EPD) EN 15804. The LCA consists of four distinct phases:
the goal and scope definition, the inventory analysis, the impact assessment and the interpretation of
results [10,11]. The GaBi modelling software has been used to conduct the LCA study [23], which is
one the most commonly used software programs in the field of LCA modelling [24].

3.1. Goal and Scope of the LCA

3.1.1. Goal of the Study

The goal of the study is to investigate the environmental performance of the prefabricated
geopolymeric façade cladding panels made from large fractions of CDW.

First, a “cradle-to-cradle” LCA will be conducted to identify the life cycle stage that contributes
the most to the environmental footprint of the considered geopolymeric panels.

Second, a detailed contribution analysis will be conducted for the life cycle stage that will be
identified as the main contributor to the overall environmental burden, with the goal being to identify
the main hotspot.

Third, a scenario analysis will be performed to test different life cycle configurations in order to
reduce the impact of the processes with the largest environmental impact.

Finally, the environmental impacts of five different façade cladding materials will be compared
based on a ”cradle-to-gate” LCA in order to determine the most environmentally friendly façade
cladding material.

3.1.2. Functional Unit

The functional unit for all types of LCA analyses considered in this study is 1 m2 of façade
cladding panel.

3.1.3. System Boundaries

The “cradle-to-cradle” LCA considers the entire life cycle of the prefabricated geopolymeric panels:
product stage, construction process stage, use stage and end-of-life stage. The schematic representation
of the system boundaries is presented in Figure 2.

The product stage consists of (i) production of materials, including extraction of raw materials,
(ii) transport of materials to the panel production plant and (iii) the production of the prefabricated
geopolymeric panels, which includes mixing of the constituent materials, casting, curing, demoulding,
drying, assembling and finally, packaging and storing of the produced prefabricated geopolymeric
panels. The energy (e.g., mixing, casting, curing, transport inside the plant, etc.) and water (e.g., water
for cleaning, etc.) consumption in the overall production process is also taken into consideration.

The construction process stage consists of transport of the panels to the construction site (i.e.,
module A4) and installation of the panels (i.e., module A5). A transport distance of 200 km has been
selected and all supporting materials used within the installation process (e.g., fasteners, mortar,
body anchors, etc.) have been included in the LCA model.

Once the panels are installed, there is generally no need for any maintenance or refurbishment,
as well as operational energy or water use. Therefore, there are no impacts associated with the use
stage of the prefabricated geopolymeric panels.

At the end-of-life stage, the geopolymer part of the panel (i.e., HDG) could be recycled and used as
a replacement of virgin aggregate in roadbed, while non-recyclable parts of the panel would be disposed
at landfill [25]. There are no impacts associated with the demolition of the panels (i.e., module C1),
since the demolition is done manually. The non-recyclable parts have been transported to landfill
(i.e., module C4), with the transport distance being set to 50 km. The geopolymer recycling rate has
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been set to 70%, which means that 70% of the geopolymer obtained after the demolition process has
been transported to the recycling plant (i.e., module C3), while 30% has been transported to the landfill
(i.e., module C4). The transport distance to the recycling plant (i.e., module C2) has been also set to
50 km. In the recycling plant, the geopolymer is crushed to the required particle size (i.e., module C3).

When the end-of-waste state is reached, it is assumed that the crushed geopolymer is going to
be used in road base, which would avoid the use of virgin material for road construction. Therefore,
the benefits and loads beyond the system boundary stage (i.e., module D), includes the impacts of the
transport to the road construction site and the benefits (negative sign) due to the replacement of virgin
material in the road construction. The transport distance to the road construction site has been set to
50 km, see Reference [25]. The secondary material (i.e., recycled geopolymer) does not have the same
quality as the virgin material. Therefore, a value-correction factor has been applied in order to consider
the difference in the material quality. A value of 0.5 has been applied for the value-correction factor,
see Reference [25], which means that calculated benefits due to the replacement of virgin material are
multiplied with the value-correction factor of 0.5.
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3.1.4. Allocation

As there are no by-products in the system, no allocation procedure has been performed.

3.2. Life Cycle Inventory (LCI)

The Ecoinvent cut-off system model has been used to model the recycled content (i.e., inorganic
and organic CDW), which is compliant with the European standard EN 15804 [26]. The cut-off system
model approach is based on the premise that primary (first) production of materials is always allocated
to the primary user of a material. This means that secondary or recycled materials bear only the
impacts of the recycling processes. For example, recycled inorganic CDW (e.g., brick) bears the impacts
of CDW collection and the recycling process of CDW into a secondary material, while it is free of any
burdens associated with the resource-extraction activities and processing required for the primary
production of construction material (e.g., bricks).

Most of the considered raw material processing and secondary/auxiliary material production
has been evaluated based on the LCI data given in the GaBi Professional database [23]. In addition,
the delivery of all materials, the production of electricity and water supply have also been modelled
based on the LCI data given in the GaBi Professional database. The GaBi Professional database
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considers only the emissions that are related to the operation of vehicles, power plants and wastewater
treatment plants, whereas the emissions related to the construction of vehicles and/or the infrastructure
are not included. For example, only burdens related to the production of fuel and its combustion in the
truck’s engine are thus evaluated by the dataset in the GaBi Professional database [27]. The data on the
electricity and water consumption has been provided by the operator of the panel pilot production plant.

Not all of the data for materials used in the production of panels are available in the existing
databases. Therefore, upstream modelling for three input materials/production processes has been
conducted: metakaolin, potassium silicate and specific CDW processing. Metakaolin is produced from
kaolin, which is first crushed and dried and then calcined in a blast furnace. The upstream modelling of
metakaolin thus considered raw material and energy (i.e., natural gas, electricity, biogas and sawdust)
and is based on the specific plant production located in Italy. Potassium silicate is produced from a
mixture of potassium hydroxide, silicon dioxide and water. The upstream modelling of potassium
silicate thus considered raw material and energy (i.e., electricity and biogas) and is based on the specific
plant production located in Italy. The CDW consists of a mixture of different building materials, such as
brick, concrete, wood, steel, plaster, etc. The processing of CDW included sieving, crushing and milling
of the material obtained from demolition, which consumed diesel, as a fuel for trucks, loaders and
excavators, as well as electricity and water for mills and crushers. All these materials, processes and
energy requirements have been considered, with CDW processing being based on specific processing
located in Italy.

3.3. Life Cycle Impact Assessment (LCIA)

The environmental impact assessment has been calculated at the midpoint level with the CML
2001 (version January 2016) impact assessment method. The CML 2001 (version January 2016) is an
impact assessment method that restricts quantitative modelling to early stages in the cause–effect
chain to limit uncertainties, with results being grouped in midpoint categories according to common
mechanisms (e.g., climate change) or commonly accepted groupings (e.g., ecotoxicity) [28].

The main principles behind the methodology are based on ISO 14040 and 14044 standards, and the
characterisation factors are updated when new knowledge on substance level is available (e.g., the last
update dates to January 2016) [23]. The results of the CML 2001 impact assessment method can be
presented in terms of different impact potentials, which are summarised in Table 1.

Table 1. CML 2001 midpoint impact categories.

Impact Category Abbreviation Unit

Global warming potential GWP (kg CO2 eq.)
Global warming potential excluding biogenic carbon GWP excl. biog. carbon (kg CO2 eq.)

Acidification potential AP (kg SO2 eq.)
Eutrophication potential EP (kg PO4

−3 eq.)
Human toxicity potential HTP (kg DCB eq.)

Ozone layer depletion potential ODP (kg R11 eq.)
Photochemical ozone potential creation POCP (kg Ethene eq.)
Freshwater aquatic ecotoxicity potential FAETP (kg DCB eq.)

Marine aquatic ecotoxicity potential MAETP (kg DCB eq.)
Terrestrial ecotoxicity potential FAETP (kg DCB eq.)

Abiotic depletion (elements) ADP el. (kg Sb eq.)
Abiotic depletion (fossil) ADP fos. (MJ)

The CML 2001 impact assessment method does not evaluate the primary energy demand
(i.e., primary energy from renewable and non-renewable resources) and the total use of freshwater
(i.e., freshwater consumption). Therefore, primary energy demand and total use of freshwater have
been evaluated separately within the GaBi modelling software. The primary energy demand and the
total use of freshwater potentials are summarised in Table 2.
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Table 2. The primary energy demand and the total use of freshwater potentials.

Impact Category Abbreviation Unit

Primary energy from non-renewable resources PENRT (MJ)

Primary energy from renewable resources PERT (MJ)

Freshwater consumption WATER (kg)

The general structure of the CML 2001 life cycle impact assessment method is presented in Figure 3.
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3.4. Life Cycle Interpretation

The interpretation phase of an LCA study generally consists of two types of interpretation
steps: (i) procedural steps, which analyse data and results in relation to other sources of information,
such as expert judgements and reports on similar products, and (ii) numerical steps, which analyse
results without referencing to other sources of information [29]. The numerical approach of the
interpretation phase generally consists of different types of analysis, such as contribution, scenario and
comparative analysis.

The contribution analysis is used to decompose LCA results into number of constituent elements
or contributions, which provide an overview of specific contributing factors. The contribution analysis
is used in majority of LCA studies and is a self-evident method, which is the main reason why a clear
exposition is often not written [29]. The results of a contribution analysis are usually expressed in
percentages that add up to 100, which can be visualised with a pie chart or stacked bar diagram.

The scenario analysis is used to test various different configurations of the main modelling process
and to observe the effect of these changes on the final model results [30]. The analysis can consist of
comparing different case-specific downstream scenarios or comparing different variations of the same
modelling process. The obtained results can be used to rank between different downstream scenarios
or to find alternatives in the case of production hotspots.

The comparative analysis is used to simultaneously look at different product alternatives.
It provides a very simple way to systematically look at model results of different scenarios in a
way of a tabular list or a bar chart. However, the analysis has to be done with caution, since the user
can be easily induced to make conclusions without any proper evaluation of the uncertainty of the
analysis results [29].
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4. Results and Discussion

4.1. Contribution Analysis

Figure 4 shows the environmental impacts associated with different life cycle stages of the
prefabricated geopolymeric façade cladding panel. It can be seen from Figure 4 that the product
stage (i.e., modules A1–A3) contributes the most to the environmental footprint of the considered
prefabricated geopolymeric panel. The other life cycle stage that has a more significant environmental
impact is the construction process stage (i.e., module A5) in terms of ADP el., HTP and POCP. Finally,
Figure 4 shows that all other life cycle stages have minimal impact on the environmental performance
of the prefabricated geopolymeric panels.
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The results presented in Figure 4 have shown that the product stage (i.e., modules A1–A3)
contributes the most to the environmental footprint of the prefabricated geopolymeric façade cladding
panel. Therefore, a contribution analysis of the model results for the product stage of the considered
prefabricated geopolymeric panels has been conducted in order to identify the main production hotspots.
The hotspots can be defined as the processes that contribute the most to the total environmental
footprint of the considered product. Therefore, if the main polluters within the production process are
identified, more eco-friendly materials or processes can be considered as an alternative in order to
reduce the environmental burden.

Figure 5 shows the relative contributions of the constituent materials, supporting processes and
energy and water requirements to the environmental footprint of the product stage of the prefabricated
geopolymeric façade cladding panel. It can be seen from Figure 5 that the electricity requirements
present the main production hotspot. For example, the electricity requirements represent 85% of the
total impact in terms of the global warming potential (GWP), 52% of the total impact in terms of the
acidification potential (AP) and 47% of the total impact in the terms of the marine aquatic ecotoxicity
potential (MAETP).
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This is mainly due to the fact that nearly 50% of the produced electricity in the EU comes from
thermal power plants [31]. For example, the environmental impacts from thermal electricity based on
lignite are roughly one to two orders of magnitude higher than those of nuclear power and renewable
energy [32]. Therefore, the electricity requirements present negative impacts on climate, human health
and the environment, mainly due to the greenhouse gas, particulate matter and other toxic emissions
associated with the combustion of fossil fuels, such as coal or lignite.

The materials/processes that also contribute more significantly to the environmental performance
of the product stage are the production of the sodium silicate, packaging and transport. All other
materials/processes generally have minimal environmental impact, or they contribute more significantly
only in terms of an individual impact category, such as metakaolin in terms of photochemical ozone
potential creation (POCP) or glass fibre mesh in terms of the abiotic depletion (ADP el.).

Figure 5 also shows that some processes can have a positive environmental impact, such as
packaging in terms of GWP and transport in terms of the photochemical ozone creation potential (POCP).
The GWP is calculated by including the biogenic carbon, which can be found in biomaterials such as
wood. The main component in the packaging process is the wooden pallet. The use of wood reduces
the life cycle GHG emissions and temporarily stores the biogenic carbon in the anthroposphere [33].
This leads to the lower levels of embodied and operational carbon and thus to the positive impact in
terms of GWP.

The photochemical ozone is generated by sunlight-initiated oxidation of volatile organic
compounds (VOC) and carbon monoxide (CO) in the presence of nitrogen oxides (NOx) [34]. The volatile
organic compounds react differently with different oxidants (e.g., ozone, NO2, etc.) and therefore can
either have negative or positive effects on the ozone formation. The negative value of the transport in
terms of the POCP is related to the separation of the NOx emissions in the NO2 and NO emissions,
with NO and O3 (ozone) reacting to NO2 and O2 during the night time and thus leading to the reduction
of the POCP [35].
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4.2. Scenario Analysis

The results presented in Figure 5 have shown that the electricity requirements within the product
stage contribute the most to the environmental footprint of the considered prefabricated geopolymeric
façade cladding panels. The vast majority of the electricity consumed within the product stage is used
to generate heat for curing of panels and heating of cleaning water. Therefore, the potential reduction
of the electricity consumption could be achieved by considering a more environmentally friendly
source of energy that is used for generation of heat.

Three different heat generation scenarios have been considered: (i) Option 1, where heat is
generated from natural gas, (ii) Option 2, where heat is generated by using a heat pump and (iii) Option
3, where heat is generated by using solar panels. Figure 6 shows the reduction in the environmental
burden associated with the product stage of the considered heat generation scenarios when compared
to the basic prefabricated geopolymeric panel production process.
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It can be seen from Figure 6 that all three scenarios lead to the reduction in the environmental
burden, with the most beneficial scenario being Option 3 (i.e., heath generation by using solar panels).
Namely, Option 3 leads to the largest or second-largest reduction in the environmental burden in
terms of all considered impact categories. Option 2 (i.e., heath generation by using heat pump) is
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slightly better than Option 1 (i.e., heath generation from natural gas). This is mainly due to the
better performance in terms of primary energy demand from non-renewable resources (PENRT) and
depletion of abiotic resources (ADP fos.), as well as in terms of global warming potential (GWP) and
human toxicity potential (HTP).

4.3. Comparative Analysis

The environmental performance of the prefabricated geopolymeric façade cladding panels has
been compared to the environmental performance of façade cladding panels made from virgin materials,
i.e., marble, aluminium, glass and ceramic. The data on environmental performance of cladding
panels made from virgin materials has been obtained from Reference [17], with the data being based
on the industrial manufacturing processes and surveys. The functional unit for the purposes of the
comparative analysis is 1 m2 of the façade cladding panel. The comparative analysis has been conducted
only for the product stage (i.e., modules A1–A3) of the considered façade cladding panels. This is due
to the lack of data to develop a full life cycle scenario for considered virgin materials. As mentioned,
the results suggest that the product stage generally contributes the most to the environmental footprint
(see Figure 4). Therefore, a comparative analysis of the considered cladding materials based only
on the “cradle-to-gate” LCA results should be indicative enough to evaluate the performance of the
considered panels with relatively high confidence in the analysis results.

Figure 7 shows the comparison of the environmental performance of the considered façade
cladding materials. It can be seen in Figure 7 that marble and aluminium are the least environmentally
friendly materials, since they have the largest or second-largest impact in terms of all seven considered
impact categories. This is related to the high environmental burden associated with the raw material
extraction (e.g., quarrying and mining, etc.) and manufacturing process (e.g., cutting, forging and
pressing, etc.) of the marble and aluminium panel production [17]. The environmental performance of
glass is generally better when compared to marble and aluminium, but on average still worse than
ceramic and geopolymer. The ceramic and geopolymer generally have the lowest environmental
impact, although the ceramic poses greater environmental burden in terms of HTP when compared to
glass, and the geopolymer in terms of GWP when compared to glass and ceramic.

In terms of AP, EP and POCP impact categories, the geopolymer falls behind ceramic,
while in terms of the GWP impact category, it falls behind ceramic and glass. This is mainly
due to the high environmental burden associated with the electricity requirements in the product
stage of the prefabricated geopolymeric façade cladding panel. However, when an alternative
heat generation scenario is considered (e.g., Geopolymer—Option 1, Geopolymer—Option 2 and
Geopolymer—Option 3), the geopolymer performs the best in all seven considered impact categories.
All in all, the geopolymer can be considered as an environmentally friendly cladding material.
Furthermore, with relatively simple modification of the production process, the prefabricated
geopolymeric cladding panels generally have a noticeably lower environmental impact than cladding
panels made from virgin material.
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5. Conclusions

In this paper, we have investigated the environmental performance of the prefabricated
geopolymeric façade cladding panels made from large fractions of construction and demolition
waste. The study included: (i) contribution analysis of the product’s life cycle and identification of
production hotspots, (ii) evaluation of alternative production process scenarios and (iii) a comparative
analysis between geopolymeric façade cladding panels and façade cladding panels made from virgin
materials, i.e., marble, aluminium, glass and ceramic.

The “cradle-to-cradle” LCA results have shown that the product stage (i.e., modules A1–A3)
contributes the most to the environmental footprint of the considered prefabricated geopolymeric
panels. The contribution analysis has highlighted that the electricity requirements present the main
production hotspot and thus act as the main contributor to the overall environmental footprint of the
considered geopolymeric façade panels.

Within the product stage, the majority of electricity is consumed to generate heat. Therefore,
different production scenarios have been considered, where the heat has been generated from an
alternative source of energy (i.e., natural gas, heat pump and solar panels). The scenario analysis
has shown that the environmental burden has decreased in all three alternative scenarios, with the
environmental impact in terms of an individual impact category decreasing on average between 20%
and 40%.

The comparative analysis based on the “cradle-to-gate” LCA suggests that the prefabricated
geopolymeric façade cladding panels can be considered as an environmentally friendly construction
product. Furthermore, when an alternative heat generation scenario is considered, the environmental
impact of the panels made from geopolymer is up to 100% lower in terms of an individual impact
category when compared to the panels made from virgin materials (particularly to marble, glass and
aluminium).

It has been known that the use of waste material in the development of geopolymer or AAM
can significantly contribute to the reduction of the CO2 footprint when these materials are compared
to cement, concrete or ceramic [36]. The results presented in this paper have now also shown that
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not only is the material itself more environmentally friendly, but also that the final construction
products made from geopolymer (e.g., façade panels) are generally more environmentally friendly
than other technically competitive products. Furthermore, as the panels have been developed in
order to allow for simple deconstruction and recycling, there is a lot of potential to develop new
products that would incorporate large portions of recycled geopolymer and thus further minimise the
environmental burden.

Nonetheless, more research is needed that will further investigate the long-term technical
performance, durability and economic feasibility of construction products made from recycled or
re-used CDW. Such studies are needed in order to compile a pool of data that would show that
construction products made from recycled or re-used CDW are as reliable as traditional construction
products made from virgin materials. Only then would it be possible to fully exploit the environmental
benefits of construction products made from recycled or re-used CDW as the main component in
the promotion strategies to increase the social acceptability of these products. Namely, the wider
social acceptance of concepts of sustainability and circular economy cannot be achieved without the
participation of end-consumers that are willing to use the construction products made from recycled or
re-used CDW.
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