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Brown spot needle blight (BSNB), caused by Lecanosticta acicola (Thüm.) Syd., is

an emerging forest disease of Pinus species originating from North America and

introduced to Europe and Asia. Severity and spread of the disease has increased

in the last two decades in North America and Europe as a response to climate

change. No modeling work on spread, severity, climatic suitability, or potential

distribution has been done for this important emerging pathogen. This study

utilizes a global dataset of 2,970 independent observations of L. acicola presence

and absence from the geodatabase, together with Pinus spp. distribution data and

44 independent climatic and environmental variables. The objectives were to (1)

identify which bioclimatic and environmental variables are most influential in the

distribution of L. acicola; (2) compare four modeling approaches to determine

which modeling method best fits the data; (3) examine the realized distribution

of the pathogen under climatic conditions in the reference period (1971–2000);

and (4) predict the potential future global distribution of the pathogen under

various climate change scenarios. These objectives were achieved using a species

distribution modeling. Four modeling approaches were tested: regression-based

model, individual classification trees, bagging with three different base learners,

and random forest. Altogether, eight models were developed. An ensemble

of the three best models was used to make predictions for the potential

distribution of L. acicola: bagging with random tree, bagging with logistic

model trees, and random forest. Performance of the model ensemble was

very good, with high precision (0.87) and very high AUC (0.94). The potential

distribution of L. acicola was computed for five global climate models (GCM)

and three combined pathways of Shared Socioeconomic Pathway (SSP) and

Representative Concentration Pathway (SSP-RCP): SSP1-RCP2.6, SSP2-RCP4.5,

and SSP5-RCP8.5. The results of the five GCMs were averaged on combined SSP-

RCP (median) per 30-year period. Eight of 44 studied factors determined as most

important in explaining L. acicola distribution were included in the models: mean

diurnal temperature range, mean temperature of wettest quarter, precipitation

of warmest quarter, precipitation seasonality, moisture in upper portion of

soil column of wettest quarter, surface downwelling longwave radiation of

driest quarter, surface downwelling shortwave radiation of warmest quarter and
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elevation. The actual distribution of L. acicola in the reference period 1971–

2000 covered 5.9% of Pinus spp. area globally. However, the model ensemble

predicted potential distribution of L. acicola to cover an average of 58.2% of

Pinus species global cover in the reference period. Different climate change

scenarios (five GCMs, three SSP-RCPs) showed a positive trend in possible range

expansion of L. acicola for the period 1971–2100. The average model predictions

toward the end of the century showed the potential distribution of L. acicola

rising to 62.2, 61.9, 60.3% of Pinus spp. area for SSP1-RCP2.6, SSP2-RCP4.5,

SSP5-RCP8.5, respectively. However, the 95% confidence interval encompassed

35.7–82.3% of global Pinus spp. area in the period 1971–2000 and 33.6–85.8% in

the period 2071–2100. It was found that SSP-RCPs had a little effect on variability

of BSNB potential distribution (60.3–62.2% in the period 2071–2100 for medium

prediction). In contrast, GCMs had vast impact on the potential distribution of

L. acicola (33.6–85.8% of global pines area). The maps of potential distribution

of BSNB will assist forest managers in considering the risk of BSNB. The results

will allow practitioners and policymakers to focus surveillance methods and

implement appropriate management plans.

KEYWORDS

brown spot needle blight (BSNB), pines, species distribution model, climate change,
biosecurity

1. Introduction

Lecanosticta acicola is a fungus that causes a foliar disease
of pines known as brown spot needle blight (BSNB) (van der
Nest et al., 2019a; Tubby et al., 2023). Symptoms of the disease
begin as small irregular shaped yellow dots which develop into
larger, dark orange to brown, sometimes resin soaked, spots often
surrounded by a yellow halo (van der Nest et al., 2019a; Tubby et al.,
2023). Needle tips above the point of infection die, turning orange-
brown, and needles are eventually shed prematurely (van der Nest
et al., 2019a; Tubby et al., 2023). Infection therefore results in a
loss of photosynthetic ability, reduced growth and eventually tree
mortality under high infection levels (van der Nest et al., 2019a;
Tubby et al., 2023).

The pathogen is known to infect at least 70 host taxa, primarily
Pinus species, but also Cedrus and Picea spp., with the known host
range continuously growing and likely to include most pine species
(Tubby et al., 2023). The global range and impact of L. acicola have
been steadily increasing since the 1990s and the pathogen is present
in 39 countries worldwide, in Europe, Asia, and North, Central,
and South America. In Europe a marked upsurge in the impact
and incidence of BSNB has occurred over the past decade, where
the disease is now present in 24 European countries (Mullett et al.,
2018; Tubby et al., 2023). The pathogen has been spread to Europe
from North America, with a number of distinct introductions
taking place (Janoušek et al., 2016; Laas et al., 2022). It is indeed
believed that L. acicola originates from Mexico or North America,
where it was first described, and has caused extensive damage to
Pinus species (van der Nest et al., 2019b).

Although anthropogenic spread of L. acicola occurs primarily
through plant movement, its subsequent establishment, spread, and
disease severity is strongly influenced by climate, known to be a

critical driver in the lifecycle of many fungal pathogens (Woods
et al., 2016; Mesanza et al., 2021; Tubby et al., 2023). The disease and
symptoms of BSNB are similar to Dothistroma needle blight (DNB)
caused by Dothistroma spp., the most damaging and significant
foliar disease of pines worldwide (Bulman et al., 2016; Drenkhan
et al., 2016; Adamson et al., 2018; Tubby et al., 2023). Climate
change has significantly influenced impacts of DNB on pine
forests in Britain and western Canada (Woods et al., 2005, 2016;
Archibald and Brown, 2007). Areas with large natural forests and
forest plantations in the Northern Hemisphere, including western
Canada, eastern Russia, and Fennoscandia, are at increased risk
from DNB, as several studies predict that DNB severity will increase
(Watt et al., 2011a; Drenkhan et al., 2016). Specifically, increased
temperature and moisture availability (precipitation and/or relative
humidity) seem to have the highest impact on DNB severity
(Woods et al., 2005, 2016; Watt et al., 2021).

Similarities and analogies in Dothistroma species and L. acicola
ecology, biology, behavior and host ranges raise concerns that
BSNB could also increase in range and impact (Laas et al., 2019;
Oskay et al., 2020; Raitelaitytė et al., 2023). Temperature and
moisture availability (precipitation and/or humidity) also appear
to strongly influence behavior of L. acicola and development of
BSNB (Wyka et al., 2018; Mesanza et al., 2021; Tubby et al.,
2023). Recent climatic changes appear to have caused considerable
increases in BSNB severity in the northern USA and Canada
(Broders et al., 2015; Wyka et al., 2017) and have been implicated
in the growing impact of the disease in Europe (Tubby et al., 2023).
As BSNB increases in incidence and severity, the number of studies
investigating the effects of weather on the pathogen have slowly
grown (e.g., Wyka et al., 2018; Mesanza et al., 2021) yet we still
know surprisingly little about the drivers of BSNB.
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Lecanosticta acicola has been far less intensively studied than
Dothistroma species, and no modeling work on spread, severity,
climatic suitability, or potential distribution specifically of L. acicola
has been done, even though it is recognized as an important
emerging pathogen by forest managers, forest pathologists and
policymakers. Addressing such evidence deficits will be critical to
predicting potential range expansion of the pathogen and allow
practitioners and policymakers to focus surveillance methods and
implement proactive management plans.

Species distribution models (SDMs) are mathematical tools that
combine observations of species occurrence with environmental
factors (Elith and Leathwick, 2009). They are used to deepen
ecological understanding and to predict species distributions
across regions, sometimes requiring extrapolation in space and
time. SDMs are now widely used across all ecosystems (Elith
and Leathwick, 2009) and can use a variety of different
modeling approaches.

This study utilizes a global dataset of 2,970 independent
observations of L. acicola presence and absence from the
geodatabase of Tubby et al. (2023), together with Pinus spp.
distribution data and 44 independent climatic and environmental
variables. Using these data the objectives were to (1) identify which
bioclimatic and environmental variables are most influential in the
distribution of L. acicola; (2) compare four modeling approaches to
determine which modeling method best fits the data; (3) examine
the realized distribution of the pathogen under climatic conditions
in the reference period (1971–2000); and (4) predict the potential
future global distribution of the pathogen under various climate
change scenarios (2001–2100). These objectives were achieved with
a species distribution modeling approach.

2. Materials and methods

This study used an ensemble of models to calculate the potential
global distribution of L. acicola under bioclimatic conditions in a
reference period (1971–2000) and projected future period (2001–
2100). The binary variable of L. acicola presence/absence was
selected as the principal target variable, and the global distribution
of all Pinus species was used as the spatial extent for which
predictions were made. Data for bioclimatic variables was collected,
selecting only those variables which were not autocorrelated for
further processing. A model’s performance was evaluated and
predictions for several climate change scenarios calculated as
follows (Figure 1).

2.1. Geodatabase of Lecanosticta acicola
distribution

The geodatabase described in Tubby et al. (2023), generated
following the approaches used for examinations of Dothistroma
species and Fusarium circinatum Nirenberg and O’Donnell
range and impact (Drenkhan et al., 2016, 2020), was used
to describe the current geographic distribution of L. acicola.
A global consortium of specialist researchers contributed to
data collection with the objective of collating records and
locations of L. acicola worldwide. Certain data entry fields were

mandatory, including pathogen presence/absence, identity of data
holder, host species, date of record, and forest type (urban,
natural, plantation). Voluntary fields allowed entry of more
detailed data on disease severity, presence of other pathogens,
local climate, soil type and management practices, among
other variables (see Tubby et al., 2023; Supplementary Table 1
for details).

The geodatabase is projected into the WGS 1984 coordinate
system. All data are publicly available on a web map application
hosted by Mendel University in Brno, Czechia.1 The geodatabase
is a live system with periodic additions. In the current study
the database version from the 16th of December 2022 was
used for model development. The geodatabase contained 3,081
records from Asia, Europe, North America, South America,
Oceania, and Africa. Only data from the wider environment
were used (n = 2,970), nursery records were omitted. The
database contained 896 confirmed reports of L. acicola and
2,074 negative records where L. acicola was marked as absent
(Tubby et al., 2023).

The majority of the presence/absence data were confirmed by
molecular methods (e.g., conventional PCR, qPCR, rtPCR), i.e.,
79.8% of the absence data and 48.9% of the presence data (Tubby
et al., 2023). In addition, 37.9% of the presence data and 6.0%
of the absence data were identified by morphological examination
with a compound microscope. A smaller proportion of data were
identified by visual inspection only, 14.2 and 13.2% of the absence
and presence data, respectively. Most presence/absence data came
from official systematic surveys and are therefore considered highly
reliable (Tubby et al., 2023).

2.2. Distribution of pines and model
spatial resolution

The gymnosperm database was used to establish a global
distribution of pines (Earle, 2021; accessed 24. July 2022). The
database contained 6,109 records from the BRAHMS database at
Conifers of the world (Farjon, 2021; accessed 11. November 2021),
and four GBIF Occurrence download (GBIF, 2022; accessed 12.
November 2021). The database considered 119 Pinus species. We
assumed that all Pinus species were equally susceptible to L. acicola
infection and that their distribution and susceptibility would not
change under climate change.

The worldwide distribution of Pinus spp. was generalized
to 1 × 1-degree cells taking into account the native range
of taxa and extralimital occurrences, e.g., agroforestry,
horticulture, or naturalized. In total 3,769 model cells with
pines occurred (Figure 2).

Therefore, the spatial resolution of the model was 1× 1-degree
cells. The geographical distribution of L. acicola was then matched
to the spatial resolution of the model. L. acicola was present in
222 and absent in 182 model cells (Figure 2). If a model cell
contained positive and negative records of L. acicola, the model
cell was marked as positive for L. acicola. The dataset contained
nearly balanced presence/absence data. However, sampling bias was
not investigated.

1 http://www.portalofforestpathology.com
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FIGURE 1

Flowchart showing the modeling process.

FIGURE 2

Global distribution of Lecanosticta acicola and Pinus spp. Data sources: L. acicola (Tubby et al., 2023), Pinus sp. (Earle, 2021).

2.3. Independent variables

Initially, data for 44 independent variables were collected
and converted into the model spatial resolution (Supplementary
Table 1). Elevation and 19 bioclimatic variables were acquired
from WorldClim version 2.1 climate data for 1970–2000
(Supplementary Table 1; Fick and Hijmans, 2017, 2020).

Four variables from the global high resolution soil water
balance dataset were included (Trabucco and Zomer, 2010, 2019;

average over 1950–2000 period): potential evapotranspiration
(PET), actual evapotranspiration (AET), monthly fraction of
soil water content available for evapotranspiration processes (as
percentage of maximum soil water content; a measure of soil stress),
and the Priestley-Taylor alpha coefficient (generalized as the ratio
of annual AET over annual PET; a description of overall aridity
stress on vegetation).

Furthermore, the global aridity index was obtained from
the global aridity index and PET database (Zomer et al., 2022)
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and expressed as a ratio of mean annual precipitation over
mean annual reference evapotranspiration for the averaged 1971–
2000 time period.

Four topsoil properties were included in the database: organic
carbon (% of weight), pH, reference bulk density (kg/dm3), and
base saturation (%). Soil data was acquired from the harmonized
world soil database (FAO et al., 2009).

Additionally, five variables were included from monthly global
climate historical data computed in the framework of the sixth
phase of the Coupled Model Intercomparison Project (CMIP6):
near-surface relative humidity (%), near-surface wind speed (m/s),
moisture in the upper portion of the soil column (MRSOS, vertical
sum per unit area from the surface down to the bottom of the
soil model of water in all phases contained in soil; kg/m2), surface
downwelling longwave radiation (RLDS, radiative longwave flux
of energy downward at the surface; W/m2), surface downwelling
shortwave radiation (RSDS, radiative shortwave flux of energy
downward at the surface; W/m2). All five variables were included
in three variants (altogether 15 variables), i.e., average values in the
period 1971–2000 for driest quarter, warmest quarter, and wettest
quarter where quarter is a period of 3 months.

Bioclimate and soil variables were available with a spatial
resolution of 30 s (approximately 1 km; Supplementary Table 2).
However, relative humidity, wind speed, MRSOS, RLDS and RSDS
were available at a much coarser scale, i.e., 0.5–2.8◦ (approximately
55.6–311.2 km). We decided to use a spatial resolution of 1-degree
to match the spatial resolution of the Pinus dataset. Finally, the data
with various spatial resolutions were resampled to a 1-degree model
grid using bilinear interpolation.

2.4. Selection of the model variables

Autocorrelation between variables was tested using the
FindCorr function from DescTools package version 0.99.45
(Signorell et al., 2022) in R statistical software (R Core Team,
2022) using 0.90 pair-wise absolute correlation cut-off threshold.
The FindCorr function automated a search for autocorrelated
independent variables. FindCorr is based on the correlation matrix
calculated using the "cor" function where Pearson’s correlation
coefficient was chosen as the measure of linear correlation between
two variables. Before using the "cor" function, it was checked
that the assumptions of the Pearson’s correlation coefficient were
met: (1) the variables are numerical and continuous, (2) there is
a linear relationship between the variables, (3) the variables are
normally distributed, and (4) the data are from a representative
sample. All variables were numeric, continuous, had a visible linear
relationship, and the data sample was representative. Variables that
were not normally distributed were log transformed to achieve
approximate normality (elevation, BIO3, all precipitation variables,
aridity index, ETP, topsoil organic carbon, topsoil base saturation).
Altogether ten highly autocorrelated variables were removed
from further model development (Supplementary Table 1 and
Supplementary Figure 1).

Further variable selection was done using random forests
with the VSURF package version 1.1.0 (Genuer et al., 2010,
2019). VSURF incorporates three steps for variable selection based
on random forests for supervised classification and regression

problems. The first "thresholding step" concentrates on eliminating
irrelevant variables from the dataset. The second "interpretation
step" selects all variables related to the response for interpretation
purposes. The third "prediction step" refines the selection by
eliminating redundancy in the set of variables selected by the
second step, for prediction purposes. A detailed description
of the individual steps can be found in the VSURF package
documentation (Genuer et al., 2010, 2019). One hundred random
forests were grown in each step and each random forest had 300
classification trees.

2.5. Model development and evaluation
of model performance

Four modeling approaches were used: (1) generalized linear
model (GLM) with binomial distribution with logit link function,
(2) individual classification trees (random tree, J48, LMT), (3)
bagging (with three different base learners: random tree, J48, LMT),
and (4) random forest (RF).

Generalized linear models (GLMs) are frequently used,
regression-based SDMs. GLMs can handle non-normal error
distributions, additive terms and non-linear fitted functions
(McCulloch et al., 2005). GLMs generalize "linear regression by
allowing the linear model to be related to the response variable via a
link function and by allowing the magnitude of the variance of each
measurement to be a function of its predicted value" (Zhao, 2013).
The GLM consists of three elements: (1) a probability distribution,
(2) a linear predictor, and (3) a link function. A binomial probability
distribution with logit link function is most commonly chosen for
presence/absence data.

Classification trees are decision trees which are among the most
popular tools for machine learning and data mining (Blockeel,
1998). "A decision tree is a hierarchical structure where each
internal node uses a test on an attribute, each branch corresponds
to an outcome of the test, and each leaf gives a prediction for
the value of the dependent class variable" (Džeroski, 2001). The
paths from root to leaf represent classification rules. A number of
classification trees have been developed since the 1990s including
J48, Random tree and LMT (logistic model tree). In our study we
used three methods: J48, Random tree and LMT. The J48 method
is used for generating a pruned or unpruned C4.5 decision tree
(Quinlan, 1993). Random tree constructs a classification tree that
considers a number of randomly chosen attributes at each node
and performs no pruning (Breiman, 2001). LMT builds logistic
model trees, which are classification trees with logistic regression
functions at the leaves (Landwehr et al., 2005; Sumner et al., 2005).

"Bagging is an ensemble method that constructs the different
classifiers by making bootstrap replicates of the training set and
using each of these replicates to construct one classifier. Each
bootstrap sample is obtained by randomly sampling training
instances, with replacement, from the original training set, until
an equal number of instances is obtained" (Breiman, 1996, 2001;
Kocev et al., 2007). Breiman (1996) has shown that bagging can
give substantial gains in predictive performance when applied to an
unstable learner such as classification and regression tree learners.
The classification tree learners J48, Random tree and LMT are also
available in the bagging method.
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A random forest is now widely used in SDMs (e.g., Mi et al.,
2017; Watt et al., 2021; Koldasbayeva et al., 2022). "A random
forest is an ensemble of trees, where diversity among the predictors
is obtained by bagging, and additionally by changing the feature
set during learning. More precisely, at each node in the decision
trees, a random subset of the input attributes is taken, and
the best feature is selected from this subset" (Breiman, 2001).
"Random forests are a combination of tree predictors such that
each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in the
forest" (Breiman, 2001; Kocev et al., 2007). It is an ensemble
method which is better than a single classification tree because
it reduces over-fitting by averaging the result (Jin et al., 2014;
Carvajal et al., 2018; Nahar and Ara, 2018; Naseem et al., 2021).
The final predictions in random forest are calculated from an
ensemble of predictions from individual trees used as a median
prediction. Different studies have shown that random forest
outperforms other methods such as extreme gradient boosting,
multiple regression (Watt et al., 2021), geographically weighted
regression, artificial neural network, and support vector machine
for regression (Chen et al., 2019).

Altogether, eight models were developed (Table 1). The best
settings for each method were explored by changing its parameters
repeatedly. The settings that gave the highest accuracy were
kept as optimal. The models were validated using 10-fold cross-
validation. The three best models were used as an ensemble for
the predictions where the most frequent prediction per model
cell was considered.

The models can be further improved if spatial autocorrelation
is taken into account. Spatial autocorrelation is the correlation
between spatially adjacent values of a single variable. In
our study, we did not consider spatial autocorrelation.
Therefore, the bias due to spatial autocorrelation was unknown
(Diniz-Filho et al., 2003).

Attribute importance was calculated based on Gini impurity.
For a decision tree, the impurity decrease from each feature
can be averaged, and the features are ranked according to this
measure. Gini impurity gives the probability of misclassifying
an observation. Therefore, the lower the Gini the lower the
likelihood of misclassification, i.e., the lower Gini the higher
variable importance. The Gini impurity has a minimum (highest
level of purity) of 0 and a maximum value of 0.5 indicating a
random assignment of classes. Gini impurity for the ith node is
given by Breiman et al. (1998):

Gini (i) = 1−
K∑

k = 1

p2
i,k

where pi,k is the proportion of samples that belong to class k in the
ith node of the tree.

Model performance was evaluated with mean absolute error
(MAE), root mean squared error (RMSE), true positive rate [TPR
or sensitivity = TP/(TP + FN)], false positive rate [FPR or fall-
out = FP/(FP + TN)], precision = TP/(TP + FP), ROC area
(Receiver Operating Characteristic area), and Kappa = (observed
accuracy—expected accuracy)/(1—expected accuracy). ROC area is
an area under the curve (AUC), where the TPR is plotted on the
Y-axis, and the FPR on the X-axis (Witten and Frank, 2005).

TABLE 1 Model types used for the modeling of Lecanosticta acicola
potential distribution.

Model type Settings References

GLM Family = binomial, link
function = logit.
Elevation, PRECSEASON
and PRECWARMQ were
log transformed.

McCulloch et al., 2005

Individual
classification—
random
tree

K-Value: the number of
randomly chosen
attributes = in t(log2(no.
predictors)+ 1).
Break ties randomly when
several attributes look
equally good.
The maximum depth of the
tree = unlimited.
The minimum proportion
of the variance on all the
data that needs to be
present at a node in order
for splitting to be
performed in regression
trees = 0.1.
The minimum total weight
of the instances in a
leaf = 2.0

Breiman, 2001

Individual
classification—J48

The confidence factor used
for pruning = 0.25.
The minimum number of
instances per leaf = 5.

Quinlan, 1993

Individual
classification—LMT

Minimum number of
instances at which a node is
considered for
splitting = 15.

Landwehr et al., 2005;
Sumner et al., 2005

Bagging—random
Tree

Equal settings as for
individual classification
tree.
Number of trees in forest:
Random tree = 260,
J48 = 140, LMT = 120

Breiman, 1996, 2001

Bagging—J48

Bagging—LMT

Random forest Number of trees in forest:
140
Break ties randomly when
several attributes look
equally good.

Breiman, 2001

2.6. Range expansion under climate
change scenarios

The potential distribution of L. acicola was computed
for five global climate models (GCM, Table 2) and three
combined pathways of Shared Socioeconomic Pathway (SSP)
and Representative Concentration Pathway (RCP): SSP1-RCP2.6,
SSP2-RCP4.5, and SSP5-RCP8.5 (van Vuuren et al., 2011; Riahi
et al., 2017). In the remainder of the text, we refer to
these simply as RCP scenarios and they are used to illustrate
different pathways for future climate forcing. The predictions
were made for eleven 30-year periods between 1971 and 2100.
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TABLE 2 Global climate models used for prediction of the potential
distribution of Lecanosticta acicola.

Model name Modeling center References

CMCC-ESM2 CMCC (Centro
Euro-Mediterraneo per I
Cambiamenti Climatici,
Italy)

Cherchi et al., 2019

CNRM-CM6-1-HR CNRM-CERFACS
(National Center for
Meteorological Research,
Météo-France and CNRS
laboratory, Climate
Modeling and Global
change)

Voldoire et al., 2019

MPI-ESM1-2-LR MPI (Max Planck Institute,
Germany)

Gutjahr et al., 2019;
Mauritsen et al., 2019

MRI-ESM2-0 MRI (Meteorological
Research Institute, Japan)

Yukimoto et al., 2019

UKESM1-0-LL MOHC, NERC,
NIMS-KMA, NIWA (Met
Office Hadley Centre,
Natural Environmental
Research Council, National
Institute of Meteorological
Science / Korean
Meteorological
Administration
(NIMS-KMA), National
Institute of Weather and
Atmospheric Research
(NIWA))

Sellar et al., 2019

The results of the five GCMs were averaged on combined SSP-
RCP (median) per 30-year period. Data on the presence or
absence of L. acicola were for the period 1922–2021, but not all
climate data were available for this period. Most climate data
were available for the period after 1970. Therefore, a standard
meteorological period of 30 years (1971–2000) was chosen as the
reference period.

The model’s results were clipped by the global distribution
of pines (Earle, 2021) which resulted in maps of potential
distribution of L. acicola. Potential distribution in the
reference period was compared with the known distribution
of L. acicola (Tubby et al., 2023) to get the realized
distribution (Figure 1).

Uncertainty of the GCMs predictions were classified as (1)
certain when all five GCMs predicted the same result, (2) low when
one GCM had a different result, and (3) medium when two GCMs
had different results.

2.7. Software

The database was prepared and managed in Microsoft SQL
Server 2016 (version 13.0.6419.1). Variable selection was done using
R statistical software (R Core Team, 2022). The models using
machine learning methods were developed with Weka 3.8.6 (Hall
et al., 2009; Frank et al., 2016), GLM was developed with R. Maps
were drawn with ESRI ArcMap 10.6.1. Charts were drawn with R
and Microsoft Excel version 2304.

TABLE 3 Variables selected for model development.

Variable name Description

Elevation Elevation above sea level

DIURNG (BIO2) Mean diurnal range (mean of monthly max
temp—min temp)

TMPWETTQ (BIO8) Mean temperature of wettest quarter

PRECSEASON (BIO15) Precipitation seasonality (coefficient of variation of
monthly precipitation)

PRECWARMQ (BIO18) Precipitation of warmest quarter

MRSOS Moisture in upper portion of soil column of
wettest quarter

RLDS Surface downwelling longwave radiation of driest
quarter

RSDS Surface downwelling shortwave radiation of
warmest quarter

3. Results

3.1. Selected variables and number of
model cells

Eight of 44 independent variables were selected for the model
development (Table 3).

There were 3,769 model cells covering the native and
extralimital range of pines (Table 4). Europe and North America
shared almost the same number of model cells containing pines, i.e.,
33.1 and 32.5%, respectively. Asia followed with 25.6%. All other
continents had a non-native distribution of pines covering under
5% of model cells.

3.2. Performance of the models and
variable importance

The worst performing model was GLM by almost all
evaluation indicators. Individual classification trees performed
better than GLM. Among individual classification trees, the
best was LMT and the worst, random tree. The bagging
approach performed better than individual classification
trees and GLM. Among bagging the best classifier was
random tree and the worst J48. Random forest performed
nearly the same, but slightly better than bagging with LMT.
The best model was bagging with random tree, with a
very high AUC (0.938) and high precision (0.878). The
best three models were selected for the climate change
predictions: bagging—random tree, bagging—LMT, and random
forest (Table 5).

Variable importance, based on average Gini impurity, ranged
from 0.33 to 0.40. The most important variables were RLDS,
DIURNG, and PRECWARMQ. Elevation and TMPWETTQ
had nearly the same Gini impurity. PRECSEASON was
also identified as important for L. acicola distribution. The
least important variables were MRSOS and RSDS. However,
differences between Gini impurities of the variables were
small (Figure 3).
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TABLE 4 Global distribution of Pinus species, by continent.

Continent No. model
cells

Proportion of global
coverage (%)

Europe 1,246 33.1

North America 1,225 32.5

Asia 965 25.6

Africa 125 3.3

Australia 123 3.3

Oceania 54 1.4

South America 31 0.8

Total 3,769 100

3.3. Realized distribution in the reference
period 1971–2000

Data on the occurrence of L. acicola were mainly from Europe
and North America (Figure 4). BSNB was also detected in a small
number of cases in Asia and South America, but not in Oceania and
Africa. Most of the absence data were recorded in Europe. Absence
data were available for all continents in the geodatabase.

The actual distribution of L. acicola in the reference period
covered 5.9% of Pinus spp. area globally (Tubby et al., 2023), but
the model ensemble indicated suitable environmental conditions
for the pathogen across 58.2% of Pinus spp. cover in this
period (Figure 4).

The most suitable conditions for L. acicola in 1971–2000 were
in Asia, North America and Africa, where the potential distribution
was computed to cover 75, 69, and 62% of continental Pinus spp.
area, respectively, taking into account the median of five GCMs
and the RCP4.5 climate change scenario. In contrast, only 35% of
Pinus spp. area in Europe fitted the model conditions of L. acicola
in 1971–2000 (Figures 4, 7).

The comparison between the actual distribution and the
potential distribution of L. acicola, taking into account median
predictions based on historical data of five GCMs in the period
1971–2000, showed that 81.6% of model cells were classified
correctly, i.e., 40.9% cells predicted to be absent for L. acicola and
40.7% present. In some cases, the model predicted presence of

L. acicola but actual distribution data showed an absence of the
disease (4.0% of model cells, false positive predictions). This type of
potential expansion of actual range was mostly detected in Europe
(13 model cells) and in Africa (three model cells). In contrast,
in some locations the model ensemble predicted absence of the
disease, but actual distribution showed presence (14.4% of model
cells). These false negative median predictions were again, mostly
in Europe (50 model cells), with a few in North America (six model
cells) and Asia (one model cell) (Figure 5).

Globally, actual distribution of L. acicola covered 10.1% of
potential distribution in the reference period (Table 6). The
highest realized distribution of L. acicola was determined in South
America with disease known to be present in 22.7% of potentially
suitable areas. In second place was Europe, with 21.1% of realized
distribution. Asia had only 2.3% realized distribution. In Africa and
Oceania, the disease was absent.

3.4. Range expansion predictions for
climate change scenarios 2001–2100

The different climate change scenarios (five GCMs, three RCPs)
showed a positive trend in possible range expansion of L. acicola for
the period 2001–2100. The average model predictions toward the
end of the century (2071–2100) show the potential distribution of
L. acicola rising to 62.2, 61.9, 60.3% of Pinus spp. area for RCP2.6,
RCP4.5, RCP8.5, respectively. Predictions for different RCPs were
almost consistent up to 2031, smaller differences are expected after
2031. However, on a global scale the relative change in median
prediction from 2001 to 2100 was only 4.0, 3.7, 2.1% of Pinus spp.
area for RCP2.6, RCP4.5, RCP8.5, respectively. In contrast, the 95%
confidence interval was 35.7–82.3% of Pinus spp. area in the period
1971–2000 and 33.6–85.8% in the period 2071–2100 (Figure 6).

The linear relationship between diseased pine area and time
was statistically significant (p < 0.001). Linear correlation for all
three RCPs was positive and very high to medium, i.e., Pearson
correlation coefficient measured 0.97, 0.84, 0.64 for RCP2.6,
RCP4.5, RCP8.5, respectively. The average increase of potential
global distribution of L. acicola measured 0.05, 0.04, and 0.01% per
year for RCP2.6, RCP4.5, RCP8.5, respectively.

On all continents potential distribution of L. acicola will be
higher at the end of 21st century than in the reference period

TABLE 5 Performance of the models.

Model type TP (%) TN (%) Kappa MEA RMSE TPR FPR Precision AUC

GLM 72.457 27.543 0.447 0.323 0.403 0.725 0.271 0.765 0.839

Individual
classification—Random tree

80.397 19.603 0.604 0.196 0.439 0.804 0.199 0.804 0.807

Individual classification—J48 83.127 16.873 0.658 0.231 0.384 0.831 0.175 0.831 0.842

Individual
classification—LMT

84.119 15.881 0.679 0.217 0.351 0.841 0.163 0.841 0.901

Bagging—Random tree* 87.841 12.159 0.754 0.222 0.316 0.878 0.125 0.878 0.938

Bagging—J48 86.352 13.648 0.724 0.234 0.327 0.864 0.140 0.863 0.926

Bagging—LMT* 87.097 12.903 0.739 0.219 0.315 0.871 0.133 0.871 0.936

Random forest* 87.097 12.903 0.740 0.223 0.318 0.871 0.130 0.871 0.935

*Selected models for the ensemble predictions.
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FIGURE 3

Attribute importance based on average Gini impurity decrease. RLDS, surface downwelling longwave radiation of driest quarter; DIURNG, mean
diurnal range; PRECWARMQ, precipitation of warmest quarter; Elevation, height above sea level; TMPWETTQ, mean temperature of wettest quarter;
PRECSEASON, precipitation seasonality; RSDS, surface downwelling shortwave radiation of warmest quarter; MRSOS, moisture in upper portion of
soil column of wettest quarter.

FIGURE 4

Potential distribution of Lecanosticta acicola on Pinus spp. illustrating the median predictions based on historical data of five GCMs in the reference
period 1971–2000.

1971–2000. The highest relative change in the potential distribution
of L. acicola, compared to the potential distribution in 2000,
considering the median of five GCMs and the RCP4.5 climate
change scenario until the end of 21st century, is expected in
Oceania, Australia, and Africa with 175, 26.8, and 14.1% increases,
respectively, compared to the potential distribution in 1971–2000.
By 2071–2100 the model predicts an increase in the potential
distribution of L. acicola of 12.2% in Europe, 10.5% in South
America and 10.0% in Asia. In North America a negligible change
of 3.1% is expected. Intriguingly, the potential distribution of

L. acicola in Europe generally decreases between 2040 and 2070,
although thereafter rapidly rises from 2071 to 2100 (Figure 7).

A spatial comparison between the potential distribution of
L. acicola in the reference period 1971–2000 and the median
prediction of five GCMs considering RCP4.5 in the period 2071–
2100 showed that most of the model cells (87.7%) will not
change status (i.e., presence/absence of L. acicola will not change).
The model predicted that L. acicola could expand its potential
distribution to an additional 8.0% of Pinus spp. area, to cover a total
of 61.9% of Pinus spp. area. Most of this expansion was registered in
Europe (3.2%), Asia (2.1%), and North America (1.8%). Expansion
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FIGURE 5

Comparison between actual and potential distribution of Lecanosticta acicola based on the median predictions from historical data of five GCMs in
the reference period 1971–2000 (false positives illustrate where the model predicted presence, but actual distribution data show absence of disease;
false negatives show where models predicted absence of the disease, but actual distribution showed presence).

was detected in a northward direction in the Northern Hemisphere,
and southward in the Southern Hemisphere. A reduction in the
potential distribution of the disease was predicted in 4.3% of model
cells, mostly in Europe (2.6%), North America (1.3%) and Asia
(0.3%) (Figure 8).

Each model’s cell uncertainty of GCMs predictions was
classified as low and medium as described in the methods. Low
and medium uncertainty of GCMs predictions were identified in
46.7–51.8% of model cells for three RCPs in the period 1971–2100
(Figure 9). The lowest uncertainty was for RCP2.6 and the highest
for RCP8.5, although differences between RCP uncertainties were
small. Uncertainty increased from 1971 to 2100.

The highest uncertainty of the predictions was for Oceania
and Europe and the lowest for Australia and South America
(Figure 10). Australia, South America, Africa and Asia had similar
uncertainties of the model ensemble predictions, e.g., uncertainty
for 2071–2100 for those continents ranged from 22.6 to 34.6%.
Uncertainty of the predictions for North America was medium.

TABLE 6 Realized distribution of Lecanosticta acicola based on the
median predictions from historical data of five GCMs in the reference
period 1971–2000 by continent.

Continent Realized distribution*

South America 22.7

Europe 21.1

North America 12.4

Asia 2.3

Africa 0

Oceania 0

Global 10.1

*Actual distribution as a % of potential distribution.

Uncertainty in model predictions increased over the period 1971–
2100 for all continents except South America, where levels of
uncertainties decreased.

There was high confidence (low uncertainty) in the model
predictions for RCP4.5 in the period 2071–2100 for most of
the south Europe, east Asia, most of North America except for
the central states, Africa and Australia (Figure 11). Most of
New Zealand had medium and low uncertainties. In Australia
medium and low uncertainty was concentrated to Victoria, New
South Wales and South Australia. In South Africa most of the
model cells with low and medium uncertainties were found
on the coastline between Cape Town and Gqeberha. In North
America, uncertain model predictions were mostly found in Rocky
Mountains and Great Plains. Uncertainty of GCMs predictions for
central, east and west Europe were low to medium.

4. Discussion

Pine species are a significant component of global forests,
with great economic, cultural, and ecological importance, and a
significant role to play in carbon sequestration (e.g., UN, 2015;
EC, 2021a,b). However, a changing climate has the potential
to influence their resilience to pathogens such as L. acicola.
Data from a recently compiled, global dataset of Lecanosticta
species distribution clearly demonstrated L. acicola tolerates a
wide range of temperatures and precipitation (Tubby et al., 2023).
Furthermore, as evidence suggests L. acicola has significantly
expanded its range over the past 20 years (Munck et al., 2011;
van der Nest et al., 2019a; Tubby et al., 2023), there is a need
to understand how climate change might affect the risk posed by
L. acicola to global pine forests.
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FIGURE 6

Potential global distribution of Lecanosticta acicola according to three RCPs climate change scenarios expressed as % of global pine area for 30-year
periods (value at 2100 is a prediction for 2071–2100). Solid lines depict median values of the five GCMs, dashed lines show 95% confidence interval.

FIGURE 7

Potential distribution of Lecanosticta acicola according to the median of five GCMs and the RCP4.5 climate change scenario across different
continents, expressed as the proportion of Pinus spp. area in each continent (%) for 30-year periods (value at 2100 is a prediction for 2071–2100).
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FIGURE 8

Potential distribution of Lecanosticta acicola based on median predictions from five GCMs, with RCP4.5 in the period 2071–2100 compared to the
potential distribution in the reference period 1971–2000.

FIGURE 9

Uncertainty of the five GCMs predictions of potential distribution of Lecanosticta acicola for three RCPs in the period 1971–2100 illustrating
increasing levels of uncertainty with time. Low and medium uncertainty are classes of uncertainty depicting that one or two GCMs had different
results.

The current study built on the findings of earlier, regional
disease monitoring studies which indicated increased prevalence
and severity of disease outbreaks might be related to changes in
climate (Broders et al., 2015; Wyka et al., 2018). Warmer winters,
cooler spring temperature and cumulative precipitation over the
spring and summer were important predictors of the presence and
severity of white pine needle damage (WPND), of which L. acicola
is one of a number of causal agents, in North America (Wyka et al.,
2017). Similarly, daily maximum temperature and daily cumulative
precipitation were the two best variables explaining L. acicola spore
abundance in the Basque region of Spain, where low precipitation
and average maximum daily temperatures >25◦C resulted in very
little spore release (Wyka et al., 2018; Mesanza et al., 2021).

When L. acicola presence/absence data from the geodatabase
compiled by Tubby et al. (2023) were examined, climatic
variables relating to temperature and precipitation also proved
very significant in explaining areas suitable for proliferation of
L. acicola globally. L. acicola can survive temperatures in planta
of between –24 and +35◦C (Tubby et al., 2023) but has an
optimum temperature for growth in the region of 20–25◦C (Kais,
1972) and two of the eight most significant variables in the
current study, DIURNG and TMPWETTQ, related to temperature.
Along with rainfall, high moisture (leaf wetness) and relative
humidity are necessary for conidia production, dissemination, and
germination in L. acicola (Kais, 1975; Wyka et al., 2018) and
other foliar pathogen such as Dothistroma species (Pérez Jara, 1973;
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FIGURE 10

Uncertainty of the five GCMs predictions of potential distribution of Lecanosticta acicola for RCP4.5 in the period 1971–2100 by continent. Low and
medium uncertainty are classes of uncertainty depicting that one or two GCMs had different results.

FIGURE 11

Uncertainty map of the five GCMs predictions of potential distribution of Lecanosticta acicola for RCP4.5 in the period 2071–2100, where “certain”
indicates outputs from all GCMs agree, “low” uncertainty indicates one GCM had different result, and “medium” uncertainty indicates two GCMs had
different results.

Watt et al., 2011b; Woods et al., 2016). In the current model, three
of the most significant variables related directly to moisture
availability: PRECSEASON, PRECWARMQ and MRSOS. Relative
air humidity was not significant in the model produced by Mesanza
et al. (2021) and was also removed from our model at the second
"interpretation step" of VSURF procedure. Interestingly, MRSOS
was identified as more important than relative humidity, and
moisture levels in the top layers of soil in the wettest quarter were
included in the model. Although its role in the life cycle of L. acicola
remains unclear, it is possible that higher water availability in the

litter and upper soil layers might facilitate spore production and
release from acervuli during the wettest part of the year.

The model ensemble in this study also found solar radiation
(as RLDS and RSDS) to be significant. This variable was discarded
from the Mesanza et al. (2021) study, although solar radiation is
known to influence DNB severity (Watt et al., 2021). Solar radiation
affects temperature directly, and as discussed above, temperature
itself is a significant explanatory variable. However, solar radiation
may also have direct impacts on behavior of L. acicola, by
affecting spore production, and the host, by triggering stomata to
open, allowing entry of fungal pathogens (Purschwitz et al., 2006;
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Iturritxa et al., 2015). Solar radiation also affects moisture levels
indirectly by increasing evaporation. This effect is exacerbated by
increasing wind speeds (Watt et al., 2021), however, two of three
wind variables were removed due to high autocorrelation, and the
third wind variable was removed at the first step of the VSURF
variables selection procedure.

Coarse spatial resolution of the model and input data could
have large effects on the model and its results. If a finer spatial
resolution were chosen, the importance of the variables could
change, and other variables would be included in the model that
otherwise were excluded from the model, such as relative humidity
and wind speed. However, the spatial resolution of the relative
humidity data ranged from 0.70 to 2.8◦ (approximately 77.8 to
311.2 km), which is far from ideal (1 km or less). Also, the host
distribution data had a resolution of 1-degree. Therefore, as a
compromise we decided to use a spatial resolution of 1-degree, into
which all data were resampled.

An ensemble of the three best models developed utilizing the
selected environmental parameters, five GCMs and three RCPs,
demonstrated that the potential distribution range of L. acicola
could cover up to 85.8% of Pinus spp. area by the end of the 21st
century, considering the upper limit of the 95% confidence interval.
Variability between the RCPs was small, e.g., the median prediction
ranged from 60.3 to 62.2% in the period 2071–2100. Interestingly,
the lowest value belonged to RCP8.5 and the highest to RCP2.6,
showing that smaller changes in temperature will likely be more
favorable for BSNB than greater changes. Those results could
be interpreted as: (1) in the scenarios RCP8.5 and RCP4.5 daily
maximum temperature could exceed the optimum temperature for
L. acicola growth and spore production and release (Kais, 1972;
Wyka et al., 2018), decreasing the global area suitable for the
pathogen proliferation; and (2) performance of extrapolation of
the model ensemble from the current climate to other climate
conditions was poor, because the RCP2.6 is a scenario closest to the
climate of the reference period. The latter was considered with the
model ensemble approach which reduce errors when extrapolating
(Elith and Leathwick, 2009). Therefore, the model predictions
indicate possible unfavorable conditions for potential distribution
of L. acicola in the future due to higher temperatures. On the
other hand, GCMs had a huge impact on the potential distribution
range, i.e., 33.6–85.8% of global Pinus spp. area, as they encompass
large variations in climate predictions, and medium uncertainty of
the predictions. Therefore, it is important to include an adequate
number of GCMs in species distribution modeling, e.g., at least 5 to
10, to encompass a range of possible climate developments inside
specific RCPs. Furthermore, it is imperative that the predictions are
correctly interpreted using an uncertainty map.

When the realized distribution of BSNB was examined, most
false negatives and false positives occurred in Europe. This could
be a consequence of the uneven distribution of absence data
in the geodatabase, where most absence data were collected in
Europe. It would be interesting to investigate different selection
methods for pseudo-absences and their impact on model results
(Barbet-Massin et al., 2012). However, this was beyond the scope
of the current study.

In North America 68.8% of Pinus spp. area was considered
suitable during the reference period (1971–2000) but the realized
distribution was only 12.4%. Indeed, the pathogen is probably
native to North America or Mexico (van der Nest et al., 2019b)

and already relatively widely established in eastern regions of
North America. The models predict very little change (3.1%) in
range expansion to the end of 21st century. Realized distribution
of L. acicola in Europe was 21.1% in the reference period. The
potential distribution of L. acicola in Europe during the reference
period covered 34.8% of Pinus spp. area, but could reach 39.1%
by 2100. Again, this is a relatively minor increase in its potential
distribution (12.2%). The highest relative changes in the pathogen’s
potential distribution are expected in Africa, Australia and Oceania,
with a 14.1, 26.8, and 175% increase, respectively, compared to
the reference period. The very high relative change in L. acicola
potential distribution in Oceania is largely due to increased
potential areas for expansion across New Zealand, a country known
for its longstanding battles against other pine needle pathogens
including red needle cast (RNC; Ganley et al., 2014) and DNB
(Bulman et al., 2016). Predictions illustrate that the potential
distribution of L. acicola in Oceania remains relatively stable until
2040 and thereafter suddenly increases to 2060. Somewhat different
results were obtained for DNB where model predictions under
climate change showed increased risk for North America, Europe,
and New Zealand (Oceania), but reduced risk for forests worldwide
(Watt et al., 2011a).

While range expansion in North America, Europe and Asia
appears likely under climate change predictions as L. acicola is
already present in these regions, the real potential for L. acicola
to disseminate across Oceania, Australia and Africa remains far
more uncertain. The significant increase in area of pine forests at
risk of BSNB will only be realized following the introduction of the
pathogen to these regions. Whilst inter-continental dissemination
via wind-blown ascospores is a possibility, as has occurred
with D. septosporum (Barnes et al., 2022), introduction via
anthropogenic means on infected planting stock is a likely pathway
(Santini et al., 2013). The model outputs emphasize the critical
importance for these regions of maintaining strict biosecurity
measures, as the accidental introduction of L. acicola could have
hugely significant impacts on forest condition and ecosystem
services, given the large areas of vulnerable pine forests.

Possible expansion of BSNB in the future could be partly
explained by a moderate increase in temperature; The recent
expansion of BSNB in Europe might support this hypothesis
(Tubby et al., 2023). However, too high temperatures will have a
negative effect on potential distribution of L. acicola as discussed
earlier. A limiting factor for the disease is also likely to be
precipitation whose patterns could drastically change in the future.
A decrease in rainfall could lead to a decrease in potential
distribution of BSNB in some regions as showed by our model,
mostly in Europe. However, reduction is expected only in 4.3%
of model cells considering RCP4.5 in the period 2071–2100. But
expansion of potential distribution is predicted in an additional 8%
of pine area, altogether 61.9% of global pine area. Nevertheless, the
model predicted increases in suitable areas for L. acicola, where it
could expand its distribution in the future. The trend was calculated
to be positive and statistically significant for all three RCPs.

In all of these regions, while the models predict varying degrees
of range expansion, they do not attempt to predict changes in
disease severity and impact. Such changes in severity of WPND
have already been observed in northern regions of North America
(Broders et al., 2015; Wyka et al., 2017) and Alpine regions of
Austria (Tubby et al., 2023). Similarly, the profile of D. septosporum,
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increased from a sporadically reported organism on Pinus species
in southern England and Wales, to a pathogen which resulted in
species change across Britain’s Public Forest Estate (Archibald and
Brown, 2007; Bulman et al., 2016).

Spread of pathogens to new, distant regions is possible via
human mediated pathways, e.g., infected plants for planting or
in the case of pine pitch canker caused by F. circinatum, also by
infected seeds and contaminated soil and equipment (Drenkhan
et al., 2020). Biosecurity measures are indeed of utmost importance
when a disease cannot easily cross spatial discontinuities in the
distribution of host species due to the short dispersal of spores as
in case of F. circinatum (Möykkynen et al., 2015; Drenkhan et al.,
2020). Biosecurity measures, together with awareness raising will
be vital if we want to limit further spread of L. acicola as shown in
Slovenia, where tourists were identified as important likely pathway
of BSNB (Tubby et al., 2023).

While the results of the model ensemble show increases in
potential dissemination of L. acicola, these predictions do not
take into account changes in the distribution and susceptibility of
pine species resulting from climate change. Several studies predict
climate-induced changes in host susceptibility to forest pathogens
(Kliejunas et al., 2009; Linnakoski et al., 2019), as stresses imposed
by drought or high temperatures influence expression of defense
chemicals (Stenlid and Oliva, 2016; Klutsch et al., 2017). Climate
change is also likely to affect the pine host distribution (e.g., Xu and
Yan, 2001; García-López and Allué, 2010; Coops and Waring, 2011;
Hirata et al., 2017; Mauri et al., 2022). The range of P. sylvestris
is predicted to decrease across the Iberian Peninsula under many
climate change predictions (Garzón et al., 2008; Benito Garzón
and Vizcaíno-Palomar, 2021) as is the range of, for example,
P. strobiformis in the southern United States and Mexico (Shirk
et al., 2018). These factors will have consequences for the realized
range of L. acicola in the near future, despite the ability of the
pathogen to thrive in a wide range of habitats and climates (Tubby
et al., 2023). Our simulations showed that RCPs did not have
a substantial effect on the potential distribution of the studied
pathogen. Therefore, we could speculate that the ecological niche of
L. acicola is plastic enough to allow adaptation to changes in Pinus
spp. availability in the future due to climate change. Nevertheless,
this matter should be considered in another study.

The current study tested four modeling approaches with eight
models, and performance of the model ensemble was very good,
with high precision (0.87) and very high AUC (0.94), meaning
predictions made by the ensemble are plausible. However, many
other approaches exist for SDM, e.g., generalized additive models,
generalized boosting models, multiple adaptive regression splines,
maximum entropy, and cellular automata (Elith and Leathwick,
2009; Thuiller et al., 2009; Möykkynen et al., 2017). Finally, it is
important to use a multi-model approach which can improve the
use of the model for extrapolation and reduce errors (Elith and
Leathwick, 2009). Our model ensemble included random forest and
bagging with two different base learners (LMT and random tree).
Random forest and bagging outperformed single classification trees
and GLM which agrees with the results of other studies (Jin et al.,
2014; Carvajal et al., 2018; Nahar and Ara, 2018; Chen et al., 2019;
Naseem et al., 2021; Watt et al., 2021).

Our study is based on a comprehensive global dataset
of Lecanosticta species (Tubby et al., 2023). The dataset was
extensive and of high quality because it is based on official

country surveys, peer-reviewed articles, and most of the records
were confirmed by laboratory analysis with the data being
contributed by specialist researchers worldwide. Many factors
were included within the models which explain the disease
spatial distribution very well. Because the model inputs were of
high quality, the model outputs can be considered with higher
confidence which is clearly depicted in the model performance
indicators. Consequently, we believe that the developed models
strongly characterize the impact of these variables on BSNB
potential distribution.

This study clearly shows that suitable conditions for BSNB
cover more than half of global Pinus spp. area in the reference
period 1971–2000, and its potential distribution range is predicted
to increase in the near future. The maps of potential distribution of
BSNB could assist forest managers in considering the risk of BSNB.
The results will allow practitioners and policymakers to focus
surveillance methods and implement appropriate management
plans. Knowledge gained from model learning can help determine
regions where the disease is not likely to occur but environmental
conditions are suitable for Pinus species.

5. Conclusion

1. The potential distribution of L. acicola in the reference period
(1971–2000) covered 58.2% of global Pinus spp. area while the
realized distribution covered only 10.1% of global potential
distribution of L. acicola.

2. Predictions for future climate change scenarios showed a
positive trend in the potential distribution of L. acicola
from 1971 to 2100.

3. Representative Concentration Pathways had little effect on
L. acicola potential distribution (60.3–62.2% in the period
2071–2100 for medium prediction). A hotter climate and
precipitation deficits could limit L. acicola potential spread in
some regions in the future due to climate change.

4. Global climate models had a large impact on the potential
distribution of L. acicola resulting in wide 95% confidence
intervals of 33.6–85.8% of global pine area. Low and medium
uncertainty of GCMs predictions were identified in 46.7–
51.8% of model cells for three RCPs in the period 1971–2100.

5. Out of 44 bioclimatic and environmental variables the eight
most influential for the spatial distribution of L. acicola were
determined to be: surface downwelling longwave radiation of
driest quarter, mean diurnal temperature range, precipitation
of the warmest quarter, elevation, mean temperature of the
wettest quarter, precipitation seasonality, surface downwelling
shortwave radiation of warmest quarter, and moisture in the
upper portion of the soil column during the wettest quarter.

6. Certain regions currently thought to be free of L. acicola
have some of the highest predicted range expansion values,
emphasizing the critical importance of adherence to strict
biosecurity measures.

7. Whilst these modeling efforts provide an informative
summary of potential increases in L. acicola prevalence
in global Pinus forests, the possibility of changes in the
severity of the disease and host potential distribution require
further investigation.
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(2022). Diversity, migration routes, and worldwide population genetic structure of
Lecanosticta acicola, the causal agent of brown spot needle blight. Mol. Plant Pathol.
23, 1620–1639. doi: 10.1111/mpp.13257

Laas, M., Adamson, K., and Drenkhan, R. (2019). A look into the genetic diversity
of Lecanosticta acicola in northern Europe. Fungal Biol. 123, 773–782. doi: 10.1016/j.
funbio.2019.06.012

Landwehr, N., Hall, M., and Frank, E. (2005). Logistic model trees. Mach. Learn. 59,
161–205. doi: 10.1007/s10994-005-0466-3

Linnakoski, R., Kasanen, R., Dounavi, A., and Forbes, K. M. (2019). Editorial:
Forest health under climate change: effects on tree resilience, and pest and pathogen
dynamics. Front. Plant Sci. 10:1157. doi: 10.3389/fpls.2019.01157

Mauri, A., Girardello, M., Strona, G., Beck, P. S. A., Forzieri, G., Caudullo, G., et al.
(2022). EU-Trees4F, a dataset on the future distribution of European tree species. Sci.
Data 9:37. doi: 10.1038/s41597-022-01128-5

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., et al. (2019).
Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its
Response to Increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038. doi: 10.1029/
2018MS001400

McCulloch, C. E., Searle, S. R., and Neuhaus, J. M. (2005). Generalized, linear, and
mixed models. Hoboken, NJ: John Wiley & Sons, Inc.

Mesanza, N., García-García, D., Raposo, E. R., Raposo, R., Iturbide, M., Pascual,
M. T., et al. (2021). Weather variables associated with spore dispersal of Lecanosticta
acicola causing pine needle blight in Northern Spain. Plants 10:2788. doi: 10.3390/
plants10122788

Mi, C., Huettmann, F., Guo, Y., Han, X., and Wen, L. (2017). Why choose Random
Forest to predict rare species distribution with few samples in large undersampled
areas? Three Asian crane species models provide supporting evidence. PeerJ 5:e2849.
doi: 10.7717/peerj.2849

Möykkynen, T., Capretti, P., and Pukkala, T. (2015). Modelling the potential spread
of Fusarium circinatum, the causal agent of pitch canker in Europe. Ann. For. Sci. 72,
169–181. doi: 10.1007/s13595-014-0412-2

Möykkynen, T., Fraser, S., Woodward, S., Brown, A., and Pukkala, T. (2017).
Modelling of the spread of Dothistroma septosporum in Europe. For. Pathol. 47:14.
doi: 10.1111/efp.12332

Mullett, M. S., Adamson, K., Bragança, H., Bulgakov, T. S., Georgieva, M.,
Henriques, J., et al. (2018). New country and regional records of the pine needle blight
pathogens Lecanosticta acicola, Dothistroma septosporum and Dothistroma pini. For.
Pathol. 48:e12440. doi: 10.1111/efp.12440

Munck, I. A., Ostrofsky, W. D., and Burns, B. (2011). Eastern white pine needle
damage. Washington, DC: USDA Forest Service.

Nahar, N., and Ara, F. (2018). Liver disease prediction by using different decision
tree techniques. Int. J. Data Min. Know. Manage. Process 8, 1–9. doi: 10.5121/ijdkp.
2018.8201

Naseem, R., Shaukat, Z., Irfan, M., Shah, M. A., Ahmad, A., Muhammad, F.,
et al. (2021). Empirical assessment of machine learning techniques for software
requirements risk prediction. Electronics 10:168. doi: 10.3390/electronics10020168

Oskay, F., Laas, M., Mullett, M., Lehtijärvi, A., Doğmuş-Lehtijärvi, H. T.,
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