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Contact-free sensing gained much traction in the past decade. While remote monitoring of some parameters (heart rate)

is approaching clinical levels of precision, others remain challenging (blood pressure). We investigated the feasibility of

estimating blood pressure (BP) via pulse transit time (PTT) in a novel remote single-site manner, using a modiied RGB camera.

A narrow-band triple band-pass ilter allowed us to measure the PTT between diferent skin layers, harvesting information

from green and near-infrared wavelengths. The ilter minimizes the inter-channel inluence and band overlap, however some

overlap remains within the ilter bands. We further resolve this using a color-channel model and a novel channel-separation

method. Using the proposed setup and algorithm, we obtained multi-wavelength (MW) PTTs in an experiment inducing BP

changes to 9 subjects. The results showed good absolute Pearson’s correlation coeicient between both MW PTT and systolic

BP (R = 0.61, p = 0.08) as well as diastolic BP (R = 0.54, p = 0.05), pointing to feasibility of the proposed novel remote MW

BP estimation via PTT. This was further conirmed in a leave-one-subject-out experiment, where a simple Random Forest

regression model achieved mean absolute errors of 3.59 and 2.63 mmHg for systolic and diastolic BP respectively.

CCS Concepts: · Applied computing → Health informatics; · Computing methodologies → Model veriication and

validation; · Hardware → Emerging tools and methodologies.

Additional Key Words and Phrases: remote sensing, blood pressure, pulse transit time, multi-wavelength, photoplethysmogra-

phy

1 INTRODUCTION

Wireless sensing has seen large development and increased interest over the past decade, especially in the ields
of indoor localization [27], activity recognition [29] and physiological signal [16, 28, 31] monitoring. The initial
research focus of the latter was on those physiological parameters that are most expressed and most easily
detectable in a contact-free manner, such as heart rate (HR) and respiratory rate (RR). In recent years however,
the ield expanded rapidly towards the monitoring of more subtle parameters, such as heart rate variability (HRV),
blood oxygen saturation (SpO2) and blood pressure (BP). This was facilitated by improved accuracy of sensors
going hand-in-hand with their reduced cost and subsequent widespread availability, especially in the form of
RGB cameras. Alongside hardware development there have also been major algorithmic advancements, especially
with the transition towards deep learning, where deep convolutional neural networks (CNNs) and transformer
architectures dominate the current state of the art [5, 14]. These developments are relevant in the context of AI
of Things (AIoT), as the ever more present neural networks are one of the manifestations of transition from IoT
to AIoT. The latter has especially large potential in the healthcare domain [26]. Contact-free systems, similar to
the one proposed in our work, can form an interconnected network of intelligent systems with many beneits.
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For example they monitor patients, give intelligent suggestions for disease management or prevention, and ofer
decision support, all while being non-invasive and not interfering or obstructing the patients everyday lives.

The main enabler at the forefront of contact-free physiological monitoring remains remote photoplethysmog-
raphy (rPPG), which relects cardiovascular activity and blood perfusion via color changes of the skin [2]. These
can be captured using a simple setup comprising an RGB camera and a light source. State-of-the-art research
uses rPPG reconstruction waveforms to estimate some highly expressed physiological parameters, such as HR,
in a robust and accurate manner, achieving errors as low as 1-3 beats-per-minute (BPM) [5]. Other more subtle
parameters, such as BP, remain diicult to estimate while being highly valuable for both physicians and patients.
Attempts at BP estimation include either analysis of rPPG waveform morphology or measurement of pulse transit
time (PTT) between multiple sites (e.g., palm and forehead) [24]. PTT is a surrogate metric often used when
BP cannot be measured directly (e.g., due to sensor limitations, for instance having just optical sensors), and is
known to be well-correlated with BP.

BP is the most commonly measured physiological parameter both at primary and secondary healthcare, as well
as at home. Traditional wide-spread cuf-based measurement is cumbersome, induces subject stress (white-coat
syndrome), requires following speciic protocols and can lead to inaccurate or lack of (home) measurement
entirely. Subsequently, more unobtrusive organic measurement is desirable. This is being addressed via previously
mentioned contact-free BP estimation, where most commonly rPPG is reconstructed via skin color changes
using an RGB camera. If only a single rPPG signal is reconstructed, it is used to compute morphological features
by either deining a feature vector based on cycle reference points, or by using a black box model (e.g., neural
network) to derive features internally. These are then correlated to BP by a data-driven model. When two rPPG
signals are reconstructed from diferent locations, delay between reference points is measured, as this PTT is
medically known to be correlated to BP. The latter is challenging, as two precisely synchronized sensors are
required and two regions of interest must be precisely monitored at once. Most commonly one of these is the face,
which also comes with privacy preservation issues. BP estimation from PPG in general remains an active research
area in both contact and contact-free monitoring, and has been subject to several challenges, both technical
and fundamental. The former are being addressed successfully via sensor improvements and noise removal
algorithms. However, fundamentally waveform analysis remains challenging as the connection between features
(often obtained from black-box models [5]) and BP is less clear [24]. Additionally, a general predictive model is
diicult to obtain, as many researchers agree that hemodynamics governing BP are highly person-speciic due to
speciics of both blood and vascular structure, thus requiring (re)calibration of models to each individual [25].
PTT on the other hand is well-established and the connection to BP is well understood, however, requiring
several measurement sites and sensors is a limitation and a burden to the user.

Instead of using traditional multi-site PTT measurement technique, we evaluate the feasibility of a single-site
contact-free multi-wavelength (MW) approach in which we measure PTT between diferent depths of skin
instead of diferent spatial locations. This would allow for privacy-preserving unobtrusive monitoring that
minimizes the user burden and uses more information from a single site by monitoring the blood low through
the skin layers instead of between diferent spatial locations. It also removes the requirement for two sensors at
diferent locations and corresponding regions with skin exposure, circumventing synchronization, or requirement
for speciic position of a subject (e.g., palm raised next to face) that is required for monitoring of two distant
sites. Additionally, it importantly improves on existing MW contact approaches, since even slight skin contact
causes some compression that inluences the waveform [20, 21]. Such an approach fundamentally difers from
existing work in BP estimation, which is based on either contact single-site MW PTT (traditional wearables
approach) [18, 19], remote PPGmorphology analysis (connection between features and BP not medically clear) [5],
or remote multi-site PTT (requires several measuring sites with skin exposure, less feasible in practice) [22].
We also investigate the correlations between the observed PTTs and recorded ground-truth systolic (SBP)

and diastolic (DBP) BP in an experiment involving 9 subjects in two scenarios, eliciting distinctly diferent BP
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values. Finally, we evaluate explicit BP prediction capabilities by using a regression model to predict SBP and DBP.
Additionally, we propose a vital, yet to the best of our knowledge always overlooked, color channel separation
method that is crucial for the observation of PTTs, which are inherently very short in a single-site MW approach,
due to the short distance the blood traverses.
Such a contact-free single-site MW approach would ofer numerous advantages compared to the current

łgolden standard” for BP measurement, which remains the use of a cuf-based sphygmomanometer. The proposed
alternative could allow for simple contact-free BP screenings, for example daily measurements when a person
is in front of a bathroom mirror. It would omit the need for a trained person to place the cuf and monitor the
measurement, be more comfortable, and potentially have less inluence on the measurement result (e.g., white
coat syndrome) ś all while using just a single RGB sensor. Additionally, since the PTTs being measured are very
short, the waveforms must not be inluenced or distorted in any way. While subtle, such inluence is present
when using contact sensors due to slight skin compression [20]. Researchers in this ield have also shown that
leveraging information from the infrared (deeper skin layer) is valuable as pulsatility is more stable [12, 21]. Due
to these shortcomings, there is an apparent need for a novel contact-free approach that also uses non-conventional
infrared part of the spectrum in addition to visible light, to reconstruct PPG waveforms. The relationship between
PPG, PTT and BP on the other hand is widely-researched and well-established [2, 13]. We discuss shortcomings of
existing methods in greater detail in Section 2. A pilot study describing such a recording setup has been reported
at BHI 2022 (Slapničar et al., citation pending upon publication), however this paper focuses on entirely diferent
methodology validated in diferent experiments and does not overlap.

The rest of the paper is organized as follows: in Section 2 we give a detailed overview of related work, focusing
especially on remote and MW sensing while also looking at state-of-the-art BP estimation from PPG; we then
explain the physiological background and reasoning behind MW PTT and its relationship with BP, together with
the camera physics and the model of our color channels in Section 3; in Section 4 we detail our recording setup
and describe the data collection protocol; in Section 5 we describe our data processing pipeline and correlation
analysis; and in Section 6 we discuss our indings alongside the limitations, while also proposing some future
work. We conclude our paper with a summary in Section 7.

2 RELATED WORK

2.1 MWMonitoring of Physiological Signals

A review study on MW wearable PPG was conducted recently by Ray et al. [23] in which they highlight the
importance of a variety of factors for MW skin monitoring, such as melanin (skin tone) and skin temperature.
They show an extensive overview of wavelengths and hardware used in these studies, showing that in the
majority of cases the blue, green and infrared (IR) part of the light spectrum is used, as these wavelengths have
diferent penetration depths in accordance with relevant vascular content at diferent depths of skin. Their
study was broad in terms of monitored vitals, however, for BP estimation they highlight the work of Liu et al.,
who proposed single-site BP estimation using a custom MW contact sensing probe [19]. They showed a decent
correlation between SBP and PTT using blue and red PPG trace. They later expanded their research [18] showing
that MW PTT is correlated with SVR ś a metric correlated to (traditional) PTT ś which can in turn be used for
continuous BP estimation. In a study using 20 subjects they achieved low errors of around 3 mmHg for SBP
using a four-wavelength (470, 570, 590, 940 nm) sequential illumination sensor, which is not practical in a remote
setting (fast-lickering lights). These errors were achieved on per-subject basis using a formula connecting PTT
and BP that requires calibration values.

An early contact-free proposal of MW imaging for HR and SpO2 monitoring was given by Wieringa et al. [30].
They built a custom recording setup with a CMOS camera and light sources emitting wavelengths of 660, 810
and 940 nm. They acquired respiratory, HR and SpO2 information from PPGs at multiple wavelengths, which
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correlated well with ground truth. Another study in remote MW PPG analysis was reported by Moço et al. [20]
in which they highlight skin inhomogeneity as an important factor in phase diferences of PPGs from diferent
wavelengths. They suggest that the observed temporal delays relect morphological heterogeneity of the PPG
waveform due to tissue-speciic factors to a larger extent than actual propagation-related properties, which
can be a major challenge for PTT applications. They initially investigated only the spectrum of visible light,
focusing on green and red. However, in later work they highlight NIR wavelength as being a good choice for
SpO2 measurement, as it reaches the deeper pulsating arterioles instead of only the capillary bed. They express
concerns about the latter exhibiting pulsatility as a consequence of elastic deformations and subsequent capillary
density changes in the monitored region, rather than only blood volume changes, which they support by showing
that skin compression can importantly inluence the PPG morphology (e.g., when using a ingertip contact sensor).
They also ofer detailed models for skin layers microvasculature [21]. Their work ofers important fundamentals
in terms of understanding and modelling the non-trivial blood perfusion in the complex skin microvasculature.

2.2 Remote BP Estimation

There is a myriad of recent work dealing with BP estimation from rPPG. Some of it relies heavily on morphological
properties of the waveform or several waveforms obtained from smaller sub-regions of the chosen measurement
site, such as the forehead. Iuchi et al. [14] recently proposed one such method in which they used RGB facial
videos that were converted to what they call spatial pulse wave signal. This is in essence a sequence of frames
divided into small sub-regions where each sub-region shows the intensity of hemoglobin in the skin in the form
of a heatmap. This sequence of frames is then fed into a branched 2D CNN to estimate SBP and DBP with mean
absolute errors (MAE) as low as 6.7 mmHg for SBP and 5.4 mmHg for DBP. Importantly they also showed good
correlation coeicients between prediction and ground truth ś up to 0.81 for SBP and 0.84 for DBP ś indicating
that BP variations (even though quite limited in the dataset) were successfully modelled. In their experiment
they also used personalization, as the data was split into training and testing using the 80-20 split, where data of
same individual is present in both sets. Some other recent approaches are complete black-box end-to-end neural
network implementations, taking a sequence of images as input and predicting BP as output, without manual
data processing intermediate steps. Botina et al. [5] proposed a truly end-to-end 3D CNN architecture capable of
real-time rPPG reconstructions and subsequent physiological parameter estimation, in which they reduce the
dimensionality of the input frames to achieve up to 88% increase in speed. They still maintained comparable
accuracy in terms of correlation coeicients to other state-of-the-art architectures. Despite good results, the
challenges mentioned previously remain ś personalization and calibration requirements [24], good skin exposure
with enough skin pixels, lighting conditions, etc.

2.3 Synthesis and Findings

Looking at related work as well as review papers of contact-free physiological parameter estimation, we came to
the following indings:

• MW measurement of PTT has seen success in contact approaches using high-frequency sensors. However,
Moço et al. [21] clearly showed that compression inherently produced by contact sensors can be problematic
for PTTs and the interpretation of results. Additionally they highlight the importance of NIR wavelengths
which are less prone to inluence of skin heterogeneity, but are typically not used, as the NIR is not available
out-of-the-box in consumer cameras.

• Inter-channel inluence and sensitivity of speciic-wavelength pixels to other wavelengths is never discussed,
despite being of vital importance when dealing with very short MW PTTs that can not be easily discerned.
Without channel separation, the PTTs are extremely short and diicult to measure.

ACM Trans. Sensor Netw.
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• Remote BP monitoring is a popular research topic, however, it faces many challenges like person-speciic
hemodynamics and tissue speciics, diiculty of modelling BP variations (e.g., often predicts around mean
BP values, which results in low errors, since the majority of data is in that range) and the use of black-box
models that lack explainability. Furthermore, when using traditional multi-site PTT approach, in case of
multiple sensors, precise synchronization and multi-site calibration is required.

Our proposed solution aims to answer these by using a contact-free sensor in the form of a modiied triple-
band-pass high-frequency camera and a channel separation method preceding conventional data processing.
This type of sensor modiication allows us to leverage information from deeper skin layer via NIR part of the
spectrum. In contrast to existing single-site approaches, which use contact PPG sensors, our proposed setup and
method do not require skin contact, thus not compressing nor distorting the tissue and the waveform, meaning
the precise location of systolic peaks is completely preserved. This is important for computation of short PTTs
between skin layers. Usage of narrow triple-band-pass ilter in combination with algorithmic channel separation
resolves the inter-channel inluence and overlap, allowing for robust PTT observations. Additionally, contact PPG
sensors are always dependant on either battery life (consumer wearables) or cables (most often clinical devices),
making them more obtrusive and not suitable in all circumstances. In diferent contexts, diferent recording setups
are preferred, as each has its pros and cons. While a traditional contact approach circumvents many technical
challenges such as light source and image sensor speciics, the proposed contact-free approach would be more
desired in cases where wearables are not feasible due to some subject speciics such as skin conditions, allergies,
preterm infants, etc. Personalization or person-speciic calibration remains a fundamental challenge, which we
acknowledge and work around by using a small amount of each subjects data in the training of regression models.
We describe the proposed methods in detail, followed by our experimental results, in Sections 4ś6.

3 PHYSIOLOGICAL AND PHYSICAL BACKGROUND

3.1 Hemodynamics and Skin Physiology

The underlying idea behind PTT is to measure the time it takes for a speciic heart pulse wave to traverse a
certain distance. This idea was historically most commonly implemented using pulse arrival time (PAT), where an
electrocardiogram (ECG) and a distal PPG (usually at the ingertip) are synchronized and then the R peak in the
QRS complex of the ECG and the corresponding systolic peak in the PPG are used as the reference points between
which the PAT is measured [8].When the temporal delay is measured using two PPG signals, it is referred to as
PTT [22]. This delay is shorter if vascular stifness and BP are higher, and longer when vascular stifness and BP
are lower.
While the relationship between PTT and BP seems simple and intuitive, the hemodynamics of humans are

neither trivial nor general. There are two crucial variables determining systemic BP, the cardiac output (CO, the
amount of blood ejected by the heart into aorta in some time, typically one minute) and the systemic vascular
resistance (SVR, the luidic resistance of blood vessels opposed to the low of blood), as given in 1 [13].

�� = �� · ��� (1)

To introduce PTT into the dependancy via SVR, we rely on the Moens-Korteweg equation (2):

��� =

�

���
=

︄
���� · ℎ

2��
(2)

where ��� is pulse wave velocity, which is the velocity at which a pulse wave propagates a certain distance �,
���� is the incremental elastic modulus of the vessel wall, ℎ is the vascular wall thickness, � is the vessel radius,
and � is the blood density, assuming the arterial wall is isotropic, meaning uniform in all directions. SVR is related
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to the elastic modulus on the right-hand side of the equation [13]. PWV is complex and varies drastically as the
pulse traverses the cardiovascular system due to diferent types of vessels in the body. Additionally, especially in
thinner vessels, wave relection makes the PWV diicult to estimate. Literature reports diferent values spanning
2-3 orders of magnitude. Precise measurements in capillaries, which are the dominant vessels between diferent
skin layers of the palm, show expected PWV in the range of 6.4 ś 17.6 mm/s [4]. Assuming average palm skin
thickness of 1 mm, we can expect PTTs of around 156 ś 57 ms. Importantly, this depends on speciic elastic
properties of the arterial / capillary wall and can vary between subjects.
Modern PTT approaches simplify the traditional setup by commonly replacing the ECG with a PPG or a

camera sensor, as these sensors are cheaper, simpler to use, less obtrusive and more accessible [15]. Despite
this, the multi-site nature of measurement remains, and comes with its set of challenges, such as the noise on
each sensor and precise synchronization required. MW approach circumvents these by using a single sensor
at a single measuring site. Instead of measuring the delay of the pulse reference points between two diferent
locations, such an approach is instead based on the idea that diferent wavelengths of light penetrate to diferent
skin depths, relecting blood perfusion as it arrives from deeper towards the upper skin layers [18, 19]. Related
work established that a direct light source with wavelength 550 nm (green) can reach depths between 0.1 and 1
mm (mostly dermis layer), while wavelength 850 nm (infrared) penetrates beyond 2 mm deep (hypodermis layer),
depending on skin tissue speciics [7]. The obtained waveforms from diferent skin depths are expected to be
slightly delayed due to blood traversal. The fundamental diference between approaches is shown in Fig. 1.

Fig. 1. The principle of the proposed multi-wavelength remote PTT monitoring compared with traditional multi-site PTT.

Fig. 1 also shows a layered structure of the skin microvasculature consisting of three layers: the topmost
epidermis, which is mostly bloodless and consists of dead or dehydrated cells; the middle dermis containing
capillary loops and small arterioles; followed by the deepest hypodermis containing subcutaneous fat and larger
vessels. We are mainly interested in the dermis and hypodermis, as they contain majority of the vasculature that
exhibits blood low.

ACM Trans. Sensor Netw.
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3.2 Camera Physics

Obtaining diferent wavelength information is an inherent property of RGB cameras, as each color pixel is
sensitive to speciic wavelengths. This is vital for obtaining delayed PPG waveforms from diferent skin depths.
However, the image sensor of the camera is not perfect but is instead governed by the quantum eiciency of each
wavelength pixels, which shows the relative amount of speciic wavelength photons successfully registered by
the image sensor pixels and translated to a digital signal. An example is shown in Fig. 2, which belongs to our
speciic image sensor, but also serves well for illustration purposes. The relative intensity of sensor response
(photons registered and translated to digital signal) on the y axis is in the range [0, 1], where 0 means no photons
are registered and 1 means all of them are. The x axis simply shows diferent wavelengths of light in the visible
and near infrared (NIR) spectrum.

Fig. 2. uantum eficiency of the image sensor of iDS 3040SE. Superimposed black line shows the triple band-pass filter
response, which importantly helps with band overlapping. The red, green and blue lines correspond to �,� and �, while the
color-coded areas under the curves �� and �� are used for computation of � and � in Eq. 3.

Each of the colored lines in Fig. 2 represents the relative response of the corresponding speciic color pixels
of the image sensor (red, green and blue) at diferent wavelengths. We can discern two important facts and
corresponding challenges:

(1) Channel response overlap: Looking at each speciic channel response (e.g., green), we see that its pixels
also respond to wavelengths in the neighbouring bands (e.g., in blue and red wavelengths), meaning that the
image and subsequent rPPG trace obtained from such a channel are an impure mixture of several channels.
We can also observe that all three color-speciic pixels respond in the NIR band around 850 nm. Subsequently
we can hypothesise that the PPG waveforms from diferent wavelengths are hard to distinguish, since rPPG
traces obtained from pixels of each wavelength are in fact a mixture, which must irst be separated.

(2) Lower relative response in the NIR: The relative intensity of the pixel response falls substantially towards
the longer wavelengths, reaching only around 20% quantum eiciency. This means that in order to obtain
similar amplitudes and prominent systolic peaks in the NIR rPPG trace compared to other wavelengths,
we must compensate by having higher energy in this part of the spectrum coming from the light source.
Additionally, the band of the ilter we use and describe in Section 4 is also wider in this range to compensate
for the low quantum eiciency.

ACM Trans. Sensor Netw.
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These challenges are fundamental to out-of-the-box cameras and vast majority of image sensors, and must
therefore be understood and considered when dealing with MW approaches. We propose the following mathemat-
ical description of each color channel obtained from our camera equipped with a triple-bandpass ilter, producing
the quantum eiciency signature shown in Fig. 2:

� = �

� = � + � · � + �

� = � + � · � + �

(3)

where �,� and � are the red, green and blue values produced by the camera, while � ,� and � are the corresponding
channel-separated red, green and blue values. The parameters � and� are describing the ratio of the corresponding
color present in mixture that must be determined.
To elaborate further, let us for example consider the � component from Fig. 2, looking only at the areas that

the triple-bandpass ilter passes through (under the black curve) ś it comprises of the actual green response � in
the band around 550 nm, but we can also observe non-trivial response of the green line in the blue band around
450 nm, as well as in the NIR band around 850 nm. The latter is (almost) equal to the � = � response, while the
former can be expressed as some fraction of the (channel-seperated independent) blue response in the form of
� · �. Some simpliications are made here, speciically we truncated the relative response under 0.1 to 0 (since the
inluence is very small) and we equalized all three responses in the NIR band, since the sensor responses are
almost the same.

4 RECORDING SETUP

4.1 Camera

As discussed in Section 3, skin layers are thin at 1-2 mm and blood traversal velocity in capillaries expected
around 12 mm/s, so the PTT measured between diferent skin layers is expected to be short at around 100 ms.
Knowing this, we required a camera capable of high-frequency recording. Additionally looking at related work
dealing with contact MW PTTmeasurement [18, 19], we discerned that our camera should be capable of recording
at around 250 fps. This allows measuring PTT with precision of up to 4 ms, which is more than an order of
magnitude shorter than expected PTT, so it should be able to capture PTT variations related to BP. Additionally,
we wanted no on-board image processing since any changes to the pixel values might inluence and distort the
obtained rPPG waveforms. Following these requirements we opted to use the iDS 3040SE-Q RGB camera with the
Sony IMX273 1/3" CMOS image sensor and iDS-5M23-C1618 16 mm lens for our experiments. This camera allows
for variable frame rates of up to hundreds of fps while also ofering programmatic access to the raw images as
registered by the sensor. For our experiments we chose 250 fps due to aforementioned reasons.

As seen in Fig. 1 and shown by Moço et al. [21], capillary loops dominate the papillary dermis layers reachable
by shorther wavelengths, while smaller arterioles and arteries are found in the deeper layers of the skin, so we
wanted to use light that also reaches those depths. NIR in the wavelengths around 850 nm seems suitable for
penetrating to deeper dermis layers, however, it is not registered by the image sensor of a traditional RGB camera
out of the box, since they come equipped with a default IR ilter with a cutof at 650 nm. We thus modiied our
camera by irst removing the on-board IR ilter and then replacing it with a triple band-pass MidOpt TB475/550/850
ilter, which allows only light in narrow bands of 475±10 nm (blue), 550±10 nm (green) and 850±22 nm (NIR) to
pass. The band is wider in the NIR due to lower sensitivity of the image sensor in the NIR range, as seen in 2.
Furthermore, human skin often exhibits sweating, especially when exposed to heat or after physical activity,
which can result in specular relections on the surface. These might distort our signal reconstructions, so we
additionally used the MidOpt PR1000 VIS/SWIR Wire Grid Linear Polarizer which is efective in the range of
400ś2000 nm.

ACM Trans. Sensor Netw.
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The combination of these modiications gives us access to NIR information from deeper arterioles in the
reticular dermis while also partially addressing the irst challenge mentioned in Section 3 ś channel separation.
As the selected ilter has narrow bands, it isolates the response of the pixels producing a łcleaner” image in terms
of speciic wavelength idelity, albeit this does not solve the problem entirely, as explained in Section 3.

4.2 Light Source

To further address the second challenge listed in Section 3 ś poor quantum eiciency in NIR part of the spectrum
ś we had to use a light source that emits the full spectrum that we are interested in, as well as (ideally) increases in
energy towards the NIR. Daylight has a suitable spectrum, however, we wanted good control and consistency in
our light source, so we used an artiicial source instead. The spectrum requirement meant that conventional LED
sources are not suitable, since they have distinct peaks in the blue and green part of the spectrum while emitting
virtually no energy in the NIR. An obvious initial candidate was a traditional incandescent ilament bulb, which
has a suitable spectrum for our use case. Upon making initial recordings with a standard 230V 50W bulb and our
high-frequency camera, we observed lickering in the recordings, which is a consequence of the 50 Hz alternating
current. To circumvent this we instead used a direct current power source ś a 12V 650W power supply unit ś
alongside Osram Decostar 51ALU ilament bulbs. These bulbs are coated with thin aluminum coating and unlike
their dichroic counterparts, the heat is fully emitted in front, meaning we get a good amount of (N)IR emission,
compensating for the lower quantum eiciency in this part of the spectrum. We decided to use two 50W bulbs to
ensure enough light to get reasonable visibility, as the exposure time is very short at such high fps. The light was
directed towards the region of interest (ROI) of the skin and the bulbs were placed perpendicular to one another
in order to negate any shadows created by the uneven surface of the recording ROI.

4.3 Blood Pressure Monitor

Ground-truth BP measurements were obtained with a clinical-grade Omron M10-IT cuf-based digital BP moni-
toring device in order to obtain precise and trustworthy measurements. The cuf was placed on the upper arm in
accordance with the oicial guidelines. The whole setup with an anonymous example subject is shown in Fig. 3.

Fig. 3. Anonymous subject being recorded and video frames being processed to obtain per-channel rPPG traces. Overlapping
lines of a single trace correspond to diferent Buterworth filter orders (1-4). Note that this photo is taken with ambient
lighting to capture the recording setup, while the actual recordings for experimental data collection always take place without
any ambient lighting to avoid light source interference.
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4.4 Data Collection Protocol

The described recording setup was used to record the central part of the palm skin of test subjects, as seen in the
example frame shown in Fig. 3. The palm was chosen for measurement since it is one of the places where skin
exhibits the most pulsatility (similar to ingertip and forehead, which are the most commonly used sites) and is
relatively comfortable to record. The spectral range between blue (450 nm) and NIR (850 nm) was selected as such
light penetrates between 0.5 and 4 mm deep in human skin tissue, which is suitable accounting for variations in
skin thickness due to calluses or other anomalies [3].

We obtained palm recordings from 9 subjects alongside their ground-truth BP measurements. Written consent
for recording and data processing was obtained from all subjects. Seven were male and two were female, the total
mean age was 32±3.4 years. Each subject was asked to report any potential existing health pre-conditions and 7
of them reported no existing pathologies or diseases, while also having normal body mass index. There were
two outliers in terms of health status, since they were years-long cigarette smokers, while also being above the
average age.

Since we were interested in very precise waveforms, and some related work shows potential inluence of cuf
compression on the waveform itself via blood vessel compression [20, 21], we recorded videos of the left palm
while placing the cuf on the right upper arm to minimize the inluence. Each recording lasted for 30 s, during
which a single ground-truth measurement was taken, since the measurement itself takes more than 20 s. Thus a
single SBP, DBP and HR ground truth is associated with the whole 30-sec recording, which is feasible since BP
does not change a lot in 30 s outside of extreme circumstances (e.g., arterial bleeding or strong medication). Each
subject was recorded several times on diferent days, following 2 scenarios:

• Resting position: In the irst scenario each subject was equipped with a cufwhile seated upright stationary
in a chair. They were asked to close their eyes and relax for 1 minute. This allowed for the cardiovascular
signals to stabilize, and afterwards they placed their palm under the camera. A video recording of their
palm was then made simultaneously with the ground truth BP measurement.

• Intense physical activity: In the second scenario each subject was asked to perform 2 minutes of intense
cardiovascular exercise consisting of jump squats followed by jumping jacks, without pause. This notably
elevated their HR and was expected to raise their BP as well. Immediately after completion, they were seated
in the same stable upright position with their arm immobilized on a desk support (to minimize waveform
distortions and movement artefacts), the cuf was applied and the recording was made immediately. Since
BP and HR do not drop that rapidly, this allowed for the capture of elevated vitals.

As mentioned, we repeated this recording sequence on diferent days in order to avoid some daily speciics of
individuals (e.g., had a stressful meeting coming up), which might not relect their typical hemodynamic state.
In total we obtained 99 recordings from 9 subjects and irst checked the SBP and DBP distributions using a
ShapirośWilk test, which returned � > 0.05, for both cases, conirming it to be a normal distribution. SBP and
DBP were on average increased by 22.3 and 11.0 mmHg respectively between rest and activity. Since we also
have dependencies between measurements (a sort of before / after scenario), as we assume that subjects with
higher BP during rest will also have higher BP during activity, we used the paired T-test to check for statistically
signiicant diferences between resting and post-activity scenarios. We used the standard signiicance level of 0.05,
and obtained p-values of 0.01 and 0.001 for DBP and SBP respectively, successfully rejecting the null hypothesis
that our rest and activity BP samples come from normal distributions with the same mean, thus conirming that
the two scenarios are diferent in a statistically signiicant manner.
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5 DATA PROCESSING METHODOLOGY

5.1 Frame Acquisition Sotware

Once our recording setup was inalized at the physical level, we had to ensure that we removed any on-board
default image processing. We did this by developing a piece of recording software based on the oicial iDS SDK
together with their Peak library. In short, we irst set the fps to 250, which means that we had to make a trade-of
by setting the exposure time to only 4 ms. We then turned all the white-balance corrections of and set the color
gains to the default value of 1.0. At this point we obtained raw 3D matrices corresponding to each frame, which
we then manually Debayered as given in (4):

�,�, � =




�

����� (�1

2 + �2

2 )

�

(4)

where � are the (nearinfra)red pixels,�1 and �2 are the green pixels and � are the blue pixels in a standard half
green, one quarter red and one quarter blue Bayer mosaic pattern. Doing this lowered the resolution of the inal
frames (due to halving of the green pixels) to 540 x 720 pixels.

5.2 Signal Processing

The sequence of frames was irst globally spatially averaged (taking all pixels, since only skin is present in each
frame) in order to obtain three temporal RGB traces. These traces were then zero-phase iltered with a 2nd order
Buttherworth band-pass ilter with cutof frequencies of [0.5, 6.0] Hz. This removed low-frequency baseline
wandering and eliminated high-frequency noise. Finally we normalized our signals amplitude to a constant
range of [-1, 1]. At this point we obtained relatively clean traces with obvious cardiac pulsatility, as seen in
Fig. 3. Methods used in this processing pipeline were universally applied to all signals, as they were carefully
designed to not inluence the waveforms in any way that would distort the relationship under investigation.
More speciically, both the amplitude normalization and the zero-phase iltering were chosen speciically to be
generally applicable and to not inluence the temporal position of the systolic peak or the steepest systolic rise
point, regardless of the subject.
In order to measure PTT, we opted to use a reference-point method, meaning we used a single robustly

detectable stable point per cardiac cycle, between which we measure PTT in diferent waveforms. Speciically we
chose the steepest point on the systolic slope, as this is often more robust and stable compared to more commonly
used systolic peaks. The systolic rise is more apparent even in noisy signals, while systolic peaks are sometimes
diicult to precisely determine even for state-of-the-art peak detection algorithms [11]. Stability is important in
this case because even a slight temporal missdetection of a few samples can represent a large part of the very
short PTT. We detected these reference points by using the derivative method, taking the more clearly-expressed
peaks in the irst derivative. As precision and stability of these reference points is vital, we cross-checked our
detections with state-of-the-art systolic rise/peak detection algorithms proposed by Elgendi et al. and Han et
al. [6, 9], which were speciically developed to tackle challenging conditions and cardiac anomalies respectfully.
Since we ensured our signals were as clean as possible, by both stabilizing the measurement site, as well as using
aforementioned algorithmic cleaning, all algorithms detected the same locations of reference points. Detected
example reference points can again be seen in Fig. 3, represented by the star markers.

At this point of the pipeline, we can make an initial observation of the PTTs by looking at the steepest points
locations in each channel, and then computing the diference between these. To do this, we irst took the green
channel and its corresponding steepest point detections as the reference, because green has been both historically
and empirically (from our observations) identiied ś and also widely accepted in the ield ś as the trace with the
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most expressed and stable pulsatility. We then checked a very narrow area before and after these reference points
by deining a short threshold of 40 samples and searching for steepest point detections in the other two traces
(red and blue). If such points were found, we computed the temporal diference (PTT), otherwise we ignored the
cycle.

Looking at early results, we had two initial important observations. First, the waveforms were relatively clean
and stable in NIR and green, while the blue often expressed very shallow and noisy pulsatility. Second, the PTTs
were extremely short, lasting just a sample or two. Given the former, while also knowing that blue wavelengths
have the shallowest penetration mostly reaching the upper less blood-perfused skin layers, and concerns expressed
in related work about lower wavelengths [21], we decided to simply remove the blue channel from further analysis,
since it was too unstable. Regarding the unobservable PTTs, this was not entirely unexpected, since we already
highlighted the problematic inter-channel inluence in previous sections, which was only partially resolved using
the narrow-band triple band-pass ilter.

5.3 Channel Separation and PTT Analysis

To further reduce the inter-channel inluence, we irst had to determine � and � from (3), which we computed
from our image sensor response as given in (5):

� =

��1

��1
�� [450, 500] ��

� =

��2
��2

�� [520, 570] ��

(5)

where ��1 and ��1 are the areas under the curve in the blue band of the ilter, while ��2 and ��2 are the areas under
the curve in the green band of the ilter. This essentially tells us the amount of one color present in the other
one, where the unwanted łincorrect” color is the numerator and the dominant łtrue” color is the denominator as
shown in Fig. 2. For our speciic camera and image sensor we obtained � = 0.61 and � = 0.13. Once � and � are
obtained via deinite integration of the curves in Fig. 2 bound by the ilter bands, we can follow (3) to express
channel-separated � , � and � traces as given in (6):

� = �

� = � − � − � · �

� = � − � − � · �

(6)

With some expression manipulation we can express the channel-separated traces as follows. First we express �
by inserting �:

� = � − � − � · (� − � − � · �) (7)

Inserting this back into � gives us:

� = � − � − � · � (8)

where all the variables are known and can be obtained from the system. The factor 1
1−� ·� is a camera-speciic

constant that only inluences the amplitude, which was normalized, so we can omit it, giving us the inal forms
as:
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� = �

� = � − � − � · (� − �)

� = � − � − � · (� − �)

(9)

The efects of this channel separation method are summarized in Table 1. We can observe that they are
positive and align with our expectations, since the PTTs become more obvious and mostly appear in the expected
order [10].

5.4 BP Correlation Analysis

We analyzed the correlations between the measured ground-truth SBP and DBP values, and PTTs in both recording
scenarios to investigate the feasibility of BP estimation. We used absolute Pearson’s correlation coeicient as the
correlation metric. As there is a general consensus in the community that BP is subject-speciic, our analysis was
irst done on a per-subject basis, where we were interested in both the actual correlation and the detection of the
two subjects who reported overall higher BP and for whom we could reasonably assume to have stifer vessels
due to a history of smoking and higher age. However, since we only have a handful of samples for each subject,
we cannot make statistically signiicant conclusions. Subsequently we also checked the correlation between SBP /
DBP and PTT in general, looking at the whole population at once. Our aim was to investigate whether we ind
consistent correlation patterns on both general and subject level, separating the diferent elicited hemodynamics
and corresponding BPs. Looking at general correlations on the full population, we can also make conclusions
about statistical signiicance of our observations. We used the MATLAB internal computation of p-values in the
corr() function, which checks the probability of getting a correlation as large as observed by random chance,
when the true correlation is zero.

5.5 BP Prediction Analysis

As the ultimate goal (that is most valuable to medical professionals) is to numerically estimate BP, we also trained
a Random Forest regression model to predict SBP and DBP. We used each of the recordings as one instance with
the corresponding ground-truth SBP and DBP label. We then used the average PTT in the recordings as our irst
feature, and then extended the feature vector with additional features describing the morphological properties of
the waveform in that recording. In accordance with related work [17] we decided to use the average cycle width
(�� ), time from start of cycle to systolic peak (�� ), time from systolic peak to cycle end (�� ) and areas under the
curve for each of these sections (���� , ���� and ���� ). We did not choose any features relating to the diastolic
notch, as it is diicult to precisely detect even in a traditional contact setup, while in our case the waveform
is additionally distorted due to the remote nature of the measurement. Finally, we also added age and sex as
demographic features describing each individual.
We implemented a leave-one-subject-out (LOSO) evaluation framework with personalization, where in each

iteration we use the data of � − 1 subjects for training and the left-out subject for testing. A small part of data
belonging to the test subject (in our case one instance of rest and one instance of activity scenario) is added to the
training data in each iteration to personalize the model. While we are aware that this is slight overitting to the
test subject, we decided to still use personalization, as consensus in the ield is that a general BP estimation model
usually works much worse compared to a personalized model [24], even when the data is obtained in a highly
controlled setting with contact sensors. We trained a Random Forest regression model due to relatively low time
complexity and good historical performance, and evaluated the performance for SBP and DBP individually using
the Mean Absolute Error (MAE) metric.
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6 RESULTS AND DISCUSSION

Our initial hypothesis based on related work [10] and physiological background described in Section 3 was that
the cardiac wave from the deeper vessels in the NIR range should be observed irst, while those in the shallower
layers like papillary dermis should be delayed. We deine these times as ��� = ���������_��������green −

���������_��������NIR, and we expect them to be positive, if in agreement with our hypothesis. Since we have a
single ground-truth SBP and DBP for many cardiac cycles in a given 30-sec recording, we computed a single PTT
that corresponds to one recording, as the average of all the detected PTTs. These PTTs between NIR and green
for subjects in our experiment are shown in Fig. 4

Fig. 4. Per-subject PTTs computed from reference points between NIR and green channel.

First we can observe that the PTTs are indeed consistently positive, thus in agreement with our hypothesis
and related work [10]. Looking at the y axis, we can discern that the average PTT is also longer in the rest
scenario, as the HR and BP are lower, SVR is higher, and blood traverses more slowly. Furthermore, these PTTs
are in the expected range of 50-150 ms [4] and noticeably vary between subjects, which was not the case before
applying channel separation. This conirmed that channel separation is important, both at the physical sensor
level (narrow-band triple band-pass ilter) as well as the signal processing level. Looking at subjects 7 and 8 ś
our outliers in terms of age and cardiovascular state ś we can observe overall lower PTTs compared to all other
subjects. This is again in agreement with our expectations of them having stifer vessels, facilitating faster blood
traversal and lower PTTs.

The second thing to validate are the efects of reined algorithmic channel separation. The average PTT between
NIR and green across all subjects increases by 38.8 ms on average compared to average durations before applying
our algorithm. Additionally, under the hypothesis of NIR steepest point appearing before the reference steepest
point in green, the amount of cases in agreement increases by 19.3%. These statistics are summarized in Table 1.
The positive efect of channel separation is an increase in the PTTs on average, making them more easily

observable and measurable. This efect can be observed when looking at the PPG waveforms in close detail (e.g.,
a couple of cycles), as shown in Fig. 5. The efect is especially prominent between the NIR and green waveforms,
while the blue waveform has some morphological irregularities that make it challenging to extract meaningful
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Table 1. Summarized statistics of refined algorithmic channel separation efects.

Before After Δ change

Average PTT (green-NIR) 8.0 ms 46.8 ms +38.8 ms
% of PTT in correct order (green-NIR) 79.4% 98.7% +19.3%

reference points and physiological information. This is because the blue light with shorter wavelength has
shallower penetration into skin tissue and the epidermis does not exhibit blood perfusion due to lack of vascular
presence.

Fig. 5. Efects of channel separation on the PTTs. The let plot shows more prominent post-channel-separated PTTs observed
between the dashed lines, while the right plot shows the barely noticeable PTTs before channel separation.

We then checked the general correlations between PTTs and BP on all our recorded samples across all subjects,
which can be inspected in the scatter plot shown in Fig. 6. We also looked at the subject-speciic correlations
between PTTs and BP for both scenarios, however, even though these match in direction and value to those
observed on all samples, they are statistically less signiicant due to the low number of samples.
In both cases, we can observe a clear separation between the two groups of measurements ś red dots in the

upper left corner of each plot correspond to higher BP and shorther PTTs, while blue dots in the bottom right
corners correspond to lower BP and longer PTTs. The regression lines and correlation coeicients, show relatively
high values of absolute correlations (R) between PTTs and BP, showing that these two biomarkers are indeed
well-correlated, even when PTT is obtained in such a novel remote MW manner. If we consider the average
correlation across all subjects in Fig. 6, we ind higher correlations for SBP compared to DBP (0.61 vs. 0.54), which
might be attributed to the fact that DBP is generally more consistent and changes less than SBP between rest and
activity. For these correlations we obtained the correspoding p-values of 0.08 / 0.05 for SBP / DBP.
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Fig. 6. Pearson’s correlations and regression lines between PTT and DBP (let) / SBP (right) for all measurements of all
subjects. PTT shown is obtained ater the proposed channel separation.

Finally the predictive performance of our trained regression model in terms of MAE across all subjects is
shown in Table 2.

Table 2. MAEs for SBP and DBP prediction using a Random Forest regression model in a leave-one-subject-out evaluation
with personalization.

Subject MAE SBP [mmHg] MAE DBP [mmHg]

1 3.34 2.12
2 3.58 2.33
3 3.12 2.07
4 5.02 2.98
5 3.37 2.46
6 2.89 2.11
7 4.46 3.71
8 4.41 3.58
9 3.19 2.31

Avg. 3.59 2.63

We observed good stability between subjects, with the average MAEs of 3.59 mmHg and 2.63 mmHg, which
surpasses the baseline that always predicts the mean by 15.61 and 9.73 mmHg for SBP and DBP respectively. The
systolic error is higher, which could be attributed to larger variations in systolic pressure, while the diastolic
generally changes less. We also observe a slight degradation of performance with subjects 7 and 8, which difer
from others in terms of age and subsequently also their cardiovascular state (stifer vessels). Investigating the
feature importances, we found that the PTT feature dominates in importance compared to all others, achieving
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mean decrease in impurity (deined as the total decrease in node impurity, weighted by the probability of reaching
that node, averaged over all trees of the ensemble [1])of 0.68, while the second largest was only 0.05.

A comparison with related work is diicult as the approaches are fundamentally diferent (remote vs. contact,
single-site vs. multi-site, PTT vs. PPG morphology), the models are often neural networks [5] that require more
data and the experimental setup also difers. Despite this, our experiments conirm importance and robustness of
PTT compared to morphological waveform features, show the value of personalization [24] while also highlighting
that in case of PTT, very little personalization is needed for good performance, as using only 2 instances decreases
the error on average by 3.52 and 2.41 mmHg for SBP and DBP respectively. Another important yet often overlooked
aspect when dealing with black-box models (e.g., neural networks) is the lack of explainability or basis on known
physical and physiological laws. While such models can yield lower errors, the question of overitting to speciic
datasets and the reasoning for predictions is often ignored, while the PTT relationship to BP is well-established
in literature [2].

7 CONCLUSION AND LIMITATIONS

A synthesis of our results brings us to the conclusion that single-site remote MW BP estimation with a modiied
consumer camera is feasible and could ofer an alternative to current cuf-based or optical contact approaches.
We list the main contribution alongside important limitations in the following sections.

7.1 Contributions

The main contributions are as follows:

• Remote MW PTT estimation is feasible and an improvement over traditional multi-site PTT monitoring,
since it uses just a single site and sensor, omitting the need for precise synchronization or high-resolution
cameras (e.g., when palm and forehead are captured on the same frame, which must have enough pixels of
each to reconstruct the rPPG waveform). More importantly, it can circumvent problems with MW contact
sensors, which were reported to inluence the waveforms via skin compression [21].

• A pitfall of other work that should always be considered is the camera-speciic inter-channel inluence.
This should be resolved both at the physical level (narrow-band ilter) as well as signal processing level
(the proposed channel separation method), as not accounting for this inluence might lead to diicultly in
detecting MW PTTs or incorrect conclusions based on their durations. Furthermore, using bands far-apart
(e.g., green and NIR) produces longer and more easily observable PTTs.

• A relatively simple regression model can achieve decent performance with relatively low MAEs for both
SBP and DBP, also conirming the importance of the PTT feature compared to other commonly used
morphological PPG features. Additionally, only a couple of instances used for personalization improve the
performance compared to a general model.

We can also conclude, in agreement with related work [21], that using the NIR band is preferred in MW PTT
monitoring compared to traditional visible spectrum, since NIR light reaches deeper skin layers with arterioles,
exhibiting better pulsatility compared to shallow layers reachable by blue wavelengths, while also increasing
the length of the blood traversal path and delay between the waveforms. Feasibility of the proposed method
was conirmed in controlled laboratory conditions, showing that usage of NIR and green wavelengths allows
for acquisition of stable rPPG waveforms suitable for careful signal processing [18, 21] and subsequent PTT
calculation. Despite this, some challenges remain before practical application, which are listed and discussed in
detail in the following section.
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7.2 Limitations

We acknowledge that a non-clinical experiment with 9 subjects cannot be used to make statistically signiicant
general conclusions. A large-scale clinical validation would be required instead, but this requires access to more
(varied) subjects and prolonged observations with continuous ground-truth BP. The former is always preferred to
a cuf, as it ofers much richer BP information, but is measured using an intravenous catheter, which can only be
feasibly used with trained medical personnel. Such a large-scale clinical validation (in a hospital) is exceptionally
challenging to organize and makes more sense for subsequent steps beyond a feasibility study. Ideally such an
extensive evaluation would include hypotensive and hypertensive patients, both with mild (no medication) and
more severe (using medication) cases.
We also made some simpliications in our work when doing channel separation ś we approximated some

signal contributions which might be reined further. Additionally, channel separation might be inaccurate when
the light source spectrum does not cover the relevant spectral bands we are interested in. In future work we will
consider strictly data-driven algorithms for channel separation that are independent of the quantum eiciency
and light spectrum information, for instance using a genetic algorithm where the channels are initially a random
linear combination of all three colors and the coeicients corresponding to each color are iteratively derived by
using the error of a BP regressor as the itness function. Another option would be to use a projection method,
generating a densely populated space of candidate coeicients and try to ind the best performing ones.

Furthermore, we were quite strict with removal of noisy data, since our interest was in fundamental feasibility
rather than practical application. Signal noise (e.g., movement) still remains a challenge when considering wide-
spread use. During our lab experiments, we circumvented this by ensuring a stable sitting position and ixed
arm position immediately after the exercise inished. This combined with the processing pipeline allowed for
very robust detection of reference points, however, the method used to detect those should always be veriied for
performance and stability when dealing with noisier waveforms, as it is vital for PTT computation. In practical
BP screening applications it could be partially resolved with a similar setup using a foam padding on which
a subject places their hand. The setup would also consist of an enclosure ensuring no interference of ambient
lighting while providing a light source with the desired spectrum. Generally, sunlight has a very broad uniform
spectrum containing all the bands we are interested in, so it could be used for our proposed method, however,
using common LED bulbs is not suitable due to their poor spectrum lacking NIR and IR part. Still, an LED array
containing diodes that also emit longer-wavelength light is feasible and relatively inexpensive to construct [12].
Such a setup could be used in a doctor’s oice, especially when screening many subjects (e.g., groups of school
children). Even more feasible (due to required personalization) is home use for telemedicine (e.g., elderly people),
as self-measurement of BP with a cuf-based device (most common in general population) is very impractical and
cumbersome, potentially causing incorrect measurements or even refusal to do regular measurement.

Finally, as we decided to use the palm as the measurement site due to tissue properties, our work is palm-speciic
to a degree, although we expect these indings to hold for other well-perfused skin locations. This remains to be
validated, as variations in both skin tissue (e.g., melanin content, thickness, etc.) and measurement location should
be investigated. However, as our purpose was to validate the early feasibility of remote MW PTT measurement
and subsequent BP estimation, we limited our prototype setup and scenarios to be robust and reproducible at the
cost of variations in measurement sites.

We used a relatively simple regression model to check the feasibility of explicit BP prediction and get a baseline
result to compare against related work. The evaluation framework was designed to use personalized calibration,
meaning some small part of data of each subject was used in the training in order to personalize the regression
model. While this is not ideal, the consensus in the community is that building a robust generalized model is not
feasible due to subject-speciic relationship between PPG features and BP [24], meaning that personalization or
calibration is required (or at least desired) in all models for BP estimation, including those based on multi-site
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PTT [14]. More speciically, there can be subject speciics in many biological properties, such as blood thickness,
arterial wall thickness, elasticity, and other parameters related to PPG and BP. While early results seem promising,
this evaluation is still in early stages and will be extended with more sophisticated models, additional features
and other robust evaluation schemes.

Despite these limitations and further research opportunities, this work showed the importance of fundamental
understanding of both human physiology and camera physics for contact-free single-site MW measurement,
while highlighting and addressing important challenges using novel methods. We showed that it is feasible to
estimate PTT in such a way and conirmed that it highly correlates with BP, ofering potential for remote MW
BP estimation, which could be a useful part of a potential telemedicine system, as one of the parts in the growing
framework of AIoT.
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