Valorized deinking paper residue as fill material for geotechnical

structures

Karmen Fifer Bizjak^a, Barbara Likar^a, Ana Mladenovič^a, Vesna Zalar Serjun^{a,*}

^a Slovenian National Building and Civil Engineering Institute, Dimičeva 12, 1000 Ljubljana, Slovenia

*Corresponding author: V. Zalar Serjun

E-mail address: vesna.zalar@zag.si; Telephone: +386 1 2804341; Fax: +386 1 2804484;

ORCID: 0000-0003-1658-2466

SUPPLEMENTARY INFORMATION

Supplementary Figures

Fig. SI1 Appearance of raw materials used for the preparation of the geotechnical composites.

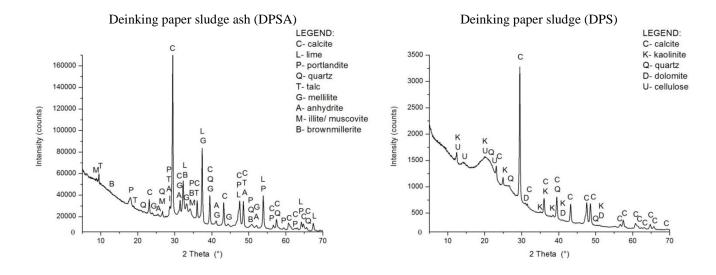


Fig. SI2 XRD patterns of raw materials used for the preparation of the geotechnical composites.

Deinking paper sludge ash (DPSA)

Deinking paper sludge (DPS)

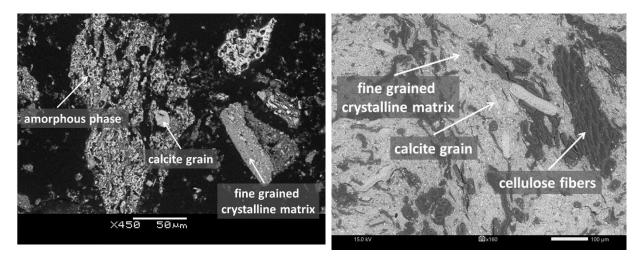


Fig. SI3 SEM micrographs of the raw materials used for the preparation of the geotechnical composites

Fig. SI4 (A) Mixing of DPSA and DPS for preparation of D80/20 demonstration test field TP 1.2; **(B)** compaction of D70/30 (layer 2) on the TP 2.1 demonstration test field.

Fig. SI5 Demonstration fields

Supplementary Tables

Table SI1 Summary of the different researched fields of the application of wastepaper sludge and wastepaper sludge ash.

Research field	Intended use	Reference				
Wastepaper sludge						
Papermaking material	Reuse in a paper mill	Tofani, G., et al., 2020. Alternative filler recovery from paper waste stream. Waste Biomass				
		Valor. https://doi.org/10.1007/s12649-020-01011-7				
Energy recovery techniques	Waste biomass feedstock for	Zhang, Z., et al., 2015. Simultaneous recovery of organic and inorganic content of paper deinking				
	thermochemical methods (pyrolysis,	residue through low temperature microwave-assisted pyrolysis. Environ. sci. Technol. 49, 2398-				
	direct liquefaction, steam reforming,	2404. https://doi.org/10.1021/es505249w				
	anaerobic digestion, and gasification);					
	biogas production (anaerobic digestion)	Steffen, F., et al., 2017. Valorization of waste streams from deinked pulp mills through anaerobic				
		digestion of deinking sludge. Bioresources, 12, 4547–4566.				
		https://doi.org/10.15376/BIORES.12.3.4547-4566				
		Mendez, A., et al., 2014. Biochar from pyrolysis of deinking paper sludge and its use in the				
		treatment of a nickel polluted soil. J. Anal. Appl. Pyrol. 107, 46–52.				
		https://doi.org/10.1016/j.jaap.2014.02.001				
		Ivan, D., Asta, K., Mika, H., 2015. Deinking sludge utilization possibilities: Technical, economic,				

		and environmental assessments. LUT Scientific and Expertise Publications/Research Reports.
		http://urn.fi/URN:NBN:fi-fe201505269106
Soil amendment and a plant	Addition to top-soil in agriculture	Phillips, V.R., et al., 1997. The use of paper-mill sludges on agricultural land. Biores. Technol.
nutrient carrier		60, 73-80. https://doi.org/10.1016/S0960-8524(97)00006-0
Absorbent material for	Metal-ion removal from water	Calace, N., et al., 2003. Metal ion removal from water by sorption on paper mill sludge.
netals		Chemosphere, 51, 797-803. https://doi.org/10.1016/S0045-6535(02)00864-0
Manufacture of pozzolanic	Supplementary cementitious material	Naik, T.R., Friberg, T.S., Chun, YM., 2004. Use of pulp and paper mill residual solids in
material		production of cellucrete. Cem. Concr. Res. 34, 1229-1234.
		http://dx.doi.org/10.1016/j.cemconres.2003.12.013.
		Garcia, R., et al., 2008. The pozzolanic properties of paper sludge waste. Constr. build. mater. 22,
		1484–1490. https://doi.org/10.1016/j.conbuildmat.2007.03.033
		Frías, M., Rodríguez, O., Rojas M.I.S., 2015. Paper sludge, an environmentally sound alternative
		source of MK-based cementitious materials. A review. Constr. Build. Mater. 74, 37-48.
		https://doi.org/10.1016/j.conbuildmat.2014.10.007
Obtaining hydraulic	Alite and belite;	Pelisser, C., et al. 2020. Alite and belite obtained from the sludge of a paper recycling process. J.
6,		

		Simão, L., et al., 2017. Waste-containing clinkers: Valorization of alternative mineral sources
		from pulp and paper mill. Process Safety Environ. 109, 106–116.
		https://doi.org/10.1016/j.psep.2017.03.038
Ceramic industry	Building bricks preparation	de Azevedo, A.R.G., et al., 2019. Characterizing the paper industry sludge for environmentally-
		safe disposal. Waste Manag. 95, 43–52. https://doi.org/10.1016/j.wasman.2019.06.001
		Singh, S.K., et al., 2018. Sustainable utilization of deinking paper mill sludge for the manufacture
		of building bricks. J. Cleaner Prod. 204, 321-333. https://doi.org/10.1016/j.jclepro.2018.09.028
Manufacture of fiberboard	Board materials	Geng, X., Zhang, S.Y., Deng. J., 2007. Characteristics of paper mill sludge and its utilization for
		the manufacture of medium density fiberboard. Wood Fiber Sci. 39, 345-351.
Production of asphalt	Additive for bituminous	Mari, E.L., et al., 2009. Paper mill sludge as fiber additive for asphalt road pavement. Philipp. J.
mixture	mixture; substitution of mineral filler in	Sci. 138, 29–36.
	asphalt	
		Wei, C.J., et al., 2020. Microscopic analysis and mechanical properties of recycled paper mill
		sludge modified asphalt mixture using granite and limestone aggregates. Constr. Build. Mater.
		243, 118172. https://doi.org/10.1016/j.conbuildmat.2020.118172
Lightweight (sintered)	Co-sintering of paper sludge with H ₃ BO ₃	Hu, S.C., et al., 2012. Lowered temperature resource recycling of paper sludge using a co-melting
aggregates for pre-stressed		technology. Bioresources 7, 2766–2783.
concrete production		

Wastepaper ash					
Slag former	Replacement of primary lime in the	Hu, X., et al. 2020. Utilization of fly ash and waste lime from pulp and paper mills in the argon			
	argon oxygen decarburization (AOD)	oxygen decarburization process. J. Clean. Prod. 261, 121182.			
	stainless steelmaking process	https://doi.org/10.1016/j.jclepro.2020.121182			
Improvement of water	Production of high ion exchange capacity	Ishimoto, H., Origuchi, T., Yasuda, M., 2000. Use of Papermaking Sludge as New Material. J.			
quality	material (microporous material)	Mater. Civ. Eng. 12. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:4(310)			
Soil remediation	The remediation of contaminated soil via	Oprčkal, P., et al., 2020. Remediation of contaminated soil by red mud and paper ash. J. Clean.			
	an immobilization procedure	Prod. 256, 120440. https://doi.org/10.1016/j.jclepro.2020.120440			
Agriculture	Calcium amendment in agriculture	Muse, J.K., Mitchell, C.C., 1995. Paper mill boiler ash and lime by-products as soil liming materials. Agron. J. 87, 432–438.			
Cement-based materials /	Mineral addition; cementitious material;	Ishimoto, H., Origuchi, T., Yasuda, M., 2000. Use of Papermaking Sludge as New Material. J.			
Usage as supplementary	Mortars and concrete production by the	Mater. Civ. Eng. 12. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:4(310)			
ementitious material	usage of SCM				
		Martínez-Lage, M., et al., 2016. Concretes and mortars with wastepaper industry: Biomass ash			
		and dregs. J. Environ. Manag. 181, 863-873. https://doi.org/10.1016/j.jenvman.2016.06.052			
		Segui, P., Aubert, J.E., Husson, B., Measson, M., 2012. Characterization of wastepaper sludge			

		ash far its valorization as a component of hydraulia hindars. April Clay 9-: 57-70, 95
		ash for its valorization as a component of hydraulic binders. Appl. Clay Sci. 57, 79-85.
		https://doi.org/10.1016/j.clay.2012.01.007
		Segui P., Aubert, J.E., Husson, B., Measson, M., 2013. Valorization of wastepaper sludge ash as
		main component of hydraulic road binder. Waste Biomass Valor. 4, 297-307.
		https://doi.org/10.1007/s12649-012-9155-1
		Mavroulidou, M., Awoliyi, S., 2018. A study on the potential use of paper sludge ash in concrete
		with glass aggregate. Waste Manage. Res. 36. https://doi.org/10.1177/0734242X18801196
		Azrizal, M., et al., 2019. The properties of wastepaper sludge ash and its generic applications. J.
		Phys. Conf. Ser. 1349 012087. https://doi.org/10.1088/1742-6596/1349/1/012087
Clinker production	Hydraulic binder production	Simão, L., et al., 2017, Waste-containing clinkers: Valorization of alternative mineral sources
		from pulp and paper mill. Process Safety Environ. 109, 106–116.
		https://doi.org/10.1016/j.psep.2017.03.038
Glass-ceramics	Component for the preparation of glass-	Toya, T., et al., 2006. Preparation and properties of glass-ceramics from kaolin clay refining
	ceramics material	waste (Kira) and paper sludge ash. Ceram Int. 32,789-96.
		http://dx.doi.org/10.1016/j.ceramint.2005.06.008
Manufacture of boards	Preparation of calcium silicate board	Chen, M. et al., 2019. Recycling of paper sludge powder for achieving sustainable and energy-

	materials	saving building materials. Constr. Build. Mater. 229, 116874.
		https://doi.org/10.1016/j.conbuildmat.2019.116874
Geopolymer materials	Precursor substitution in geopolymer	Mamat, N., Kusbiantoro, A., Rahman, N., 2018. Hydrochloric acid-based pre-treatment on paper
	composites	mill sludge ash as an alternative source material for geopolymer. Mater. Today: Proc. 5, 21825-
		21831. https://doi.org/10.1016/j.matpr.2018.07.038
		Cherian, C., Siddiqua, S., 2019. Pulp and paper mill fly ash: A review. Sustainability. 11, 4394.
		https://doi.org/10.3390/su11164394
Aggregate production	Light-weight aggregate for various	Perumal, P., Ganesh, G.M., Santhi, A.S., 2012. A review on artificial aggregates. Int. J. Earth Sci.
	applications	Eng. 5, 540–546.

Investigated material	Scope	Composite preparation	Composite characterization	Reference
		waste	paper sludge	
– paper mill sludge	to study the chemical and geotechnical properties	sampling from the outlet over a period of 3 days	chemical and geotechnical properties, leachability of trace elements	Kuokkanen, T., et al., 2008. Chemical and leaching properties of paper mill sludge. Chem. Speciat. Bioavailab., 20, 111-122. https://doi.org/10.3184/095422908X324480
– paper sludge	to study the suitability of its use for <i>in situ</i> applications	sampled paper sludge, taken at the end of the dewatering process in different periods of the activity of the plant	laboratory analyses; geotechnical, physical, chemical analysis and leaching tests	Boni, M.R., D'Aprile, L., De Casa G., 2004. Environmental quality of primary paper sludge. J. Hazard. Mater. 108, 125- 128. https://doi.org/10.1016/j.jhazmat.2003.11.017
As a low permeable barr	ier:			
– paper mill sludge	to investigate its beneficial reuse as landfill cover and bottom liner material in municipal waste landfills	numerical modeling	two-dimensional finite element analyses	 Balkaya, M. 2019. Assessment of the geotechnical aspect of the use of paper mill sludge as landfill cover and bottom liner material. Desalination Water Treat. 172, 70–77. https://doi.org/10.5004/dwt.2019.25134

Table SI2 Summary of studies assessing the application of wastepaper sludge and wastepaper sludge ash in geotechnical application

 paper pulp-sludge mixture with Class C fly Ash and three different polymers different paper mill 	to optimize a design that would be suitable as a hydraulic barrier in the form of a landfill liner to find its beneficial use	paper pulp sludge admixed with fly ash and polymers; compaction test	organic content, atterberg limits, consolidation, california, bearing ratio, shear strength, gas permeability, and liquid permeability consolidation, strength,	Slim, G.I., et al., 2016. Optimization of polymer-amended fly ash and paper pulp millings mixture for alternative landfill liner. procedia engineering. 145, 312–318. https://doi.org/10.1016/j.proeng.2016.04.079. Moo-Young, H.K., Jr., Zimmie, T.F., 1997. Waste
sludges – paper sludge	as the impermeable barrier in landfill cover to test for its chemical, stability and sealing properties	compaction test sampling from five paper millsduring a period of 1 year	permeability, long term infiltration tests chemical and geomechanical analyses, biodegradability and sealing tests	minimization and re-use of paper sludges in landfill covers: A case study. Waste Manag. Res. 15, 593–605. Zule, J., Likon, M., Černec, F., 2007. Chemical properties and biodegradability of waste paper mill sludges to be used for landfill covering. Waste manage. Res. 25, 538–546. https://doi-org.nukweb.nuk.uni- lj.si/10.1177/0734242X07079188
– deinking by product	to identify the biodegradation parameters that could influence the long-term behavior of DBP covers	construction of biodegradation cells, compaction in three layers	biodegradation, leachate analysis, evolution of gas, hydraulic and geomechanical properties	Panarotto, C.T., Cabral, A.R., Lefebvre, G., 2005. Environmental, geotechnical, and hydraulic behaviour of a cellulose-rich by-product used as alternative cover material. J. Environ. Eng. Sci. 4, 123–138. https://doi.org/10.1139/s04-062

– deinking by product	to evaluate the field behavior and performance of a cover with capillary barrier effect to control water percolation	experimental plot constructed on the landfill site; cover system consists of a seepage control layer where a layer of DBP was compacted on top of a capillary barrier	the distribution of precipitation, calculations of degrees of saturation, suction	Abdolahzadeh, A.M., Lacroix Vachon, B., Cabral, A.R., 2011. Evaluation of the effectiveness of a cover with capillary barrier effect to control percolation into a waste disposal facility. Can. Geotech. J. 48, 996–1009. https://doi.org/10.1139/t11-017
 paper sludge composite mixtures with various additives (wood ash, fly ash, cement) 	to evaluate the suitability of Slovenian wastepaper sludge as hydraulic barrier in landfill covers	samples of various paper sludges and composite mixtures; Cylindrical and prismatic samples; two field test cells	water content; uniaxial compressive and shear strength; hydraulic conductivity; electric conductivity.	Kortnik, J., Černec, F., Hrast, K., 2008. Paper sludge layer as low permeability barrier on waste landfills. Soil Sediment Contam. 17, 381–392. https://doi-org.nukweb.nuk.uni- lj.si/10.1080/15320380802146586
– pulp and paper sludge	to identify whether compacted pulp sludge would perform equally well as a barrier layer as compacted clay and a geomembrane	compacted pulp sludge; barrier plot installation; a 1.4-ha on-site ash landfill closed by using a compacted sludge barrier system	exfiltrate quantity and quality, tracer applications, soil water content	Ham, V.M., et al., 2009. Pulp and paper sludge as a barrier layer in landfill closure: A new opportunity. Pulp Pap. Can. 110, 25–30.

For soli stabilization:

 paper mill sludge 5, 10 and 15% addition to different soil samples 	to study the possibility of its use for stabilization of village road sub-base	soil admixed with sludge; standard Proctor test	Atterberg limits, compaction properties, California bearing ratio value	Talukdar, D.K., 2015. A study of paper mill lime sludge for stabilization of village road sub-base. Int. J. Adv. Res. Technol. 5, 739–746.
 paper mill sludge replacement of 2, 4, 6, 8 and 10% of laterite soil 	to investigate the effect on the strength, stability, and durability of laterite soil	soil admixed with ash; compaction test	specific gravity, Atterberg's limit, compressive strength, California bearing ratio test, durability test	Akshatha, B.A., Jain, A., 2020. Evaluation of laterite soil stabilized using waste paper sludge. Int. J. Res. Sci. Innovation 7, 132–136.
 paper mill sludge addition of 14 and 17% to the different clays 	to assess its effectiveness as an alternative to lime or cement for clay stabilization	clays intermixed with sludge and compacted; two different curing methods of specimens	uniaxial compression, water retention and volumetric behavior.	Mavroulidou, M., 2018. Use of waste paper sludge ash as a calcium-based stabiliser for clay soils. Waste Manage. Res. 36, 1066–1072. https://doi.org/10.1177/0734242X18804043.
 paper mill sludge addition of 2, 5 and 8% to the marine soil 	to investigate the properties of marine soil intermixed with DPS (5% of DPS was the optimal percentage to stabilize the marine soil)	marine soil intermixed with DPS, compaction test.	measurements of Atterberg Limits Test; TriaxialTest.	Mansor and Ishamuddin; http://122.129.122.220/bitstream/123456789/2115/1/ DIGES%20AKADEMIK%20PSA.pdf (accessed 20 October 2020)

For soli stabilization: development of to investigate and to – wastepaper sludge ash compressive strength at show the potential use of Khalid, N., et al., 2012. Clay soil stabilized using waste cylindrical specimens, -2, 4, 6, 8, 10, 12 and different curing periods, wastepaper sludge ash as paper sludge ash (WPSA) mixtures. Electron. J. Geotech. 14% intermixed with California bearing ratio Proctor test an additive to stabilize a Eng. 12, 1215–1225. (soaked and unsoaked clay soil condition) - paper sludge ash liquid and plastic limit to assess its effect of on soil admixed with ash: Dharan, R.B., 2016. Effect of waste paper sludge ash on engineering behaviors of -4, 6, 8, 10, 12% tests, compressive compaction test engineering behaviors of black cotton soils. Int. J. Earth Sci. addition to the black black cotton soils (soil strength, California Eng., 9, 188–191. stabilization) bearing ratio

Wastepaper ash

to critically valorize ash mineralogical and a mixture of ash and composition, red mud for the soil admixed with ash; immobilization compaction test remediation of

Oprčkal, P., et al., 2020. Remediation of contaminated soil by red mud and paper ash. J. Clean. Prod., 256, 120440.

https://doi.org/10.1016/j.jclepro.2020.120440

procedure in which a

immobilization

contaminated soil via an

clay soil

cotton soil

- paper sludge ash

- 50% addition to the

contaminated soil; 25%

admixing with red mud

admixed with

contaminated soil

permeability

strength, water

efficiency, compressive

	chemically inert geotechnical composite is obtained			
 paper sludge ash soil material from unpaved road intermixed with different fillers 	to investigate the effect of two types of bioash as stabilization binders, studied using the Partial least squares structural equation modeling.	samples prepared in the laboratory (cube molds), road stabilization pilot case (4% cement, 9% bioash)	modeling; field tests: bearing capacity	Sarkkinen, M., et al., 2018. Effect of biomass fly ashes as road stabilisation binder. Road Mater. Pavement Des. 19, 239–251, https://doi.org/10.1080/14680629.2016.1235508
- paper mill ash - 20 and 30% of ash in combination with road material; field- 30% of ash addition	to analyze the different sections of gravel road stabilized with paper ash regarding stiffness and environmental impact	ash gravel mixtures - laboratory and field tests	compression strength- also after six weeks of hardening and after 12 freeze-thawing cycles, infiltration capacity, lysimeters, bearing capacity	Vestin, J., et al., 2012. Fly ash as a road construction material, In: Arm, M., Vandecasteele, C., Heynen, J., Suer P., Lind, B. (Eds.), WASCON, 1–8.
- paper sludge ash - ash, lime, soil mixtures (three different soils)	- to assess the performance of mixes in terms of load bearing	laboratory test of different mixture; compaction test; two test road sections	environmental impact, engineering performance	Zhou, H., Smith, D.W., Sego, D.C. 2000. Characterization and use of pulp mill fly ash and lime by products as road construction amendments. Can. J. Civ. Eng. 27, 581–593.

– paper mill fly ash –20 and 30% by weight of fly ash in combination with road base material	capacity, serviceability, and compaction to present and compare the field performance of road sections stabilized // Considerable improvement of the road performance can be achieved	based on the laboratory results, a mix with 30% of fly ash and 70% of road base material used for the field test- two road test sections	field performance of the stabilized road was inspected and investigated through evaluation of bearing capacity and strength, infiltration capacity	Arm, M., et al., 2014. Pulp mill fly ash for stabilization of low-volume unpaved forest roads - field performance. Can. J. Civ. Eng. 41, 955–963. https://doi.org/10.1139/cjce-2014- 0030
For Controlled Low Stre - paper sludge ash; 5, 10, 20 and 30% as a substitute for Portland cement - paper sludge ash	to investigate the possibility of using the recycled aggregate and SCM, without using a PC, to produce CLSM for various applications to determine the strength of CLSM using PSA in	mixing; cube shaped specimens recycle concrete aggregate: binder = 1:1 and 1:2;	compressive strength, strength development slump test, compressive	 Ridzuan, A.R.M., et al., 2011. Strength assessment of controlled low strength materials (CLSM) utilizing recycled concrete aggregate and wastepaper sludge ash, IEEE Colloquium on Humanities, Science and Engineering, Penang, 2011, pp. 208–211, https://doi.org/10.1109/CHUSER.2011.6163718. Azmi, A.,N., Fauzi, M.,A., Nor, M.,D., Ridzuan, A., R., M., Arshad, M., F., 2015. Production of controlled low strength

	replacement of Portland	replacement of cement;		aggregate concrete, in: 3rd International Conference on Civil			
	cement	mixing; cube shaped		and Environmental Engineering for Sustainability,			
		specimens		IConCEES 2015 – Melaka, Malaysia, MATEC Web of			
				Conferences, 47, 01011, p. 1-8.			
				https://doi.org/10.1051/matecconf/20164701011. EDP			
				Sciences.			
Combination of wastepaper sludge and wastepaper ash							
For Controlled Low Stre	ngth Material:						
	ngth Material:						
- paper mill sludge (as	ngth Material:			Wu, H., et al., 2016. Utilization of solid wastes/byproducts			
- paper mill sludge (as ibrous admixture, paper		pre-blending, mixing,	flowability tests,				
For Controlled Low Stre – paper mill sludge (as Fibrous admixture, paper mill fly ash (as SCM), paper mill bottom ash (as	to explore the feasibility	pre-blending, mixing, cylindrical specimens	flowability tests, mechanical performance	Wu, H., et al., 2016. Utilization of solid wastes/byproducts			
- paper mill sludge (as ibrous admixture, paper nill fly ash (as SCM),	to explore the feasibility of utilizing solid		-	Wu, H., et al., 2016. Utilization of solid wastes/byproducts from paper mills in controlled low strength material			

Table SI3 Concentrations of elements in standard reference material SPS-SW1 (reference material for measurements of elements in surface waters), Spectrapure Standards, Oslo, Norway). Concentrations of elements were determined by ICP-MS. The results represent the mean concentration obtained from three parallel samples \pm standard deviation.

Element	SPS-SW1	SPS-SW1
	Certified ($\mu g L^{-1}$)	Determined (µg L ⁻¹)
As	10.0 ± 0.1	9.9 ± 0.2
Ba	50 ± 1	49 ± 1
Cd	0.50 ± 0.01	0.50 ± 0.01
Cr	2.00 ± 0.02	2.01 ± 0.04
Cu	20 ± 1	20.1 ± 0.4
Мо	10.0 ± 0.1	10.09 ± 0.2
Ni	10.0 ± 0.1	9.9 ± 0.2
Pb	5.0 ± 0.1	4.91 ± 0.01
Se	2.00 ± 0.02	2.03 ± 0.04
Zn	20*	18.7 ± 0.4

* Informative value

Table SI4 Concentrations of chlorides fluorides and sulfates in standard reference material Anions – WholeVolume (Merck KGaA, Darmstadt, Germany), determined by spectrophotometry. The results represent themean concentration obtained from three parallel samples \pm standard deviation.

Anions	Anions – Whole Volume	Anions – Whole Volume
	Certified (mg L ⁻¹)	Determined (mg L ⁻¹)
Cl	95.0 ± 9.50	92.0 ± 5.0
F	1.17 ± 0.117	1.05 ± 0.06
SO ₄ ²⁻	44.3 ± 4.43	41.0 ± 2.0