

This is the Author-Submitted Version of the paper:

J. Vreča and A. Biasizzo, "A Configurable Mixed-Precision Convolution Processing
Unit Generator in Chisel," 2023 26th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), Tallinn, Estonia, 2023, pp.
128-131, https://doi.org/10.1109/DDECS57882.2023.10139758.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/DDECS57882.2023.10139758

A Configurable Mixed-Precision Convolution
Processing Unit Generator in Chisel

1st Jure Vreča
Computer Systems Department (E7)

Jožef Stefan Institute
Ljubljana, Slovenia

jure.vreca@ijs.si

2nd Anton Biasizzo
Computer Systems Department (E7)

Jožef Stefan Institute
Ljubljana, Slovenia
anton.biasizzo@ijs.si

Abstract

We present a configurable implementation of a convolution processing unit suitable for computing mixed-precision quantized
neural networks. We used Chisel to write the hardware generator, it is a framework for writing hardware circuit generators.
Our generator is designed to use minimal hardware resources and is flexible in various aspects of the convolution operation,
including: image size, kernel size, image bitwidth, kernel bitwidth, activation function, and more. The processing unit is static
after generation, thus we don’t pay the price of using more general hardware, instead we can tailor it to the problem at hand.

Index Terms

neural networks, quantization, Chisel, FPGA

I. INTRODUCTION

Neural networks have proven useful in many areas, but they are very computationally intensive, and are difficult to implement
on low-power devices. The root cause of their processing complexity is the vast number of parameters, and consequently their
memory footprint. For example AlexNet uses 60 million floating-point parameters, which use around 240 MB of memory [1].
However, research has shown that using floating-point parameters is not needed to achieve good accuracy of a neural network.
In fact, satisfactory results cay be achieved with using fixed-point arithmetic with bitwidths as low as only a single bit [2, 3].
Such networks are referred to as quantized neural networks.

While quantization decreases accuracy of networks, not all layers of the neural network are equally sensitive to quantization.
Therefore, some layers may be quantized to lower bitwidths than others, while still preserving accuracy of the overall neural
network. Such an approach is called mixed-precision quantization, and it can achieve a more optimal memory footprint to
neural network accuracy ratio [4, 5].

Unfortunately, most modern hardware is unable to properly take advantage of lower bitwidth formats, as it is build for
computing with larger words, like 64- or 32-bit. Instead of designing hardware to handle arbitrary bitwidths dynamically, we
opted to design a generator that can generate the required static processing unit, that is tailored to a specific convolution layer.
A set of such processing units are connected together in series to compute the entire convolutional neural network. Such an
approach is not completely novel [6, 7]. However, previous work mostly focused on using high-level synthesis (HLS) tools,
which can produce less optimal results [8]. We present an alternative approach of developing such hardware in the Chisel
Hardware Construction Language (HCL) [9].

II. THE CHISEL HCL

Chisel is not a Hardware Description Language such as Verilog or VHDL, instead a software program is developed, that
generates digital logic. Internally Chisel first elaborates the design to an intermediate representation, that can then be exported
as synthesizable Verilog. Chisel is implemented as a framework in the Scala programming language. This means that you can
use many advanced features of the Scala programming language, like object oriented and functional programming, to build
your hardware. Chisel also has a testing facility called ChiselTest, which enable the verification of the circuit.

All hardware characteristic in Chisel are represented as Scala classes. For example, a module is defined as a child of an
abstract class Module, which has an IO field (an object), that defines the input/output interface of the module. Chisel is a
typed language, so we must provide each signal with a Chisel type. This can be Bool for boolean values, UInt for unsigned
integers, SInt for signed integers, and there also exist some other less often used types. When defining some types, like UInt,
we can also add a width parameter, that is denoted with the .W postfix. However, not all widths need to be specified, as some
can be inferred from the code. To illustrate the Chisel framework a simple example of a Chisel module, that generates an
incrementer is given in Listing 1.

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0098). This work is also part of a
project that has received funding from the ECSEL Joint Undertaking under grant agreement No 101007273 (DAIS).

0 1 1 0
0 0 1 1
0 0 0 0
1 0 1 1

∗ 1 1
1 0

=
1 2 2
0 1 2
1 0 1

Fig. 1. The convolution operation.

One of Chisel most useful features is its ability to parameterize a design. Listing 2 shows a parameterized version of an
incrementer that has one input and one output of type T . The expression T <: Bits with Num[T] is a type bound expression
which forces type T to be a sub-type of the Chisel base type Bits, and this type must implement the Num trait, which limits
the set of types to the types which have defined the addition operator. Such a parameterization allows us to generate modules
that add the constant n to the inputs of various types. Chisel also accepts functions as parameters, and even entire modules.

1 c l a s s Inc1 e x t e n d s Module {
2
3
4 v a l i o = IO (new Bundle {
5 v a l i n = I n p u t (UIn t (3 .W))
6 v a l o u t = Outpu t (UIn t ())
7 })
8 i o . o u t : = i o . i n + 1 .U
9 }

Listing 1. Simple design.

1 c l a s s IncN [T <: B i t s w i th Num[T]] (
2 t : T ,
3 n : I n t) e x t e n d s Module {
4 v a l i o = IO (new Bundle {
5 v a l i n = I n p u t (t)
6 v a l o u t = Outpu t (t)
7 })
8 i o . o u t : = i o . i n +n . S . asTypeOf (t)
9 }

Listing 2. Parameterized design.

III. PROCESSING UNIT

A. The Convolution Operation

Our generator generates a circuit tailored to a particular quantized convolution layer. The mathematical operation that our
processing unit performs can be expressed as an operation on a four-dimensional weight tensor w (a set of kernels), and a
three-dimensional input tensor x. The result is another three-dimensional tensor y. The dimensions of w are K,C, F, F ; where
K is the number of kernels, C is the number of channels in each kernel, and F is the width and height of the kernel, which
we constrain to be equal. The dimensions of tensor x on the other hand are C,W,H . The channel dimension C of tensor x
must be equal to the channel dimension of tensor w, and both W and H must be greater than F . A computation of a single
element of the output y is shown in Eq. (1),

y[k, i, j] = f(

C−1∑
c=0

F−1∑
x=0

F−1∑
y=0

x[c, i+ x, j + y] · w[k, c, x, y] + b) (1)

where f is an activation function, b is the bias value, and k identifies the used (applied) kernel as well as the output channel.
Fig. 1 shows a small example of a convolution operation, where C = 1, K = 1, F = 2, W = H = 4.

The accuracy of quantized neural networks can be increased by scaling the output. In efficient implementations the scaling
factors are limited to powers-of-two. This simplifies the scaling operation to a shift operation, as described in [10].

B. Hardware Architecture

Fig. 2 shows the block diagram of our processing unit. It contains the following units:
• three memory units (local static RAM):

– FEATMEM, a memory unit to store the input feature map,
– KERNELMEM, a read-only memory initialized with the kernel weights,
– RESMEM, the result memory unit.

• Two register files: the first for kernel parameters, and the second holds a subset of the input feature map.
• A Neuron Compute Unit.
• A Threshold/Shift Unit.
• Kernel RF Loader Unit, Sliding Window Unit, and other control logic.

In the next subsections, we will discuss some of these hardware units in more detail.

C. The Neuron Compute Unit

An abridged version of the Neuron Compute Unit is shown in Listing 3. It is written in a generic form in Chisel and can
be used to generate hardware for various different quantization parameters. The module is type parameterized with five type
parameters, namely: the input type I , the weight type W , the multiplicand type M , the threshold type A, and the output type
O. These type parameters can be either UInt or SInt of a specified bitwidth, and thus we can set the bitwidth of the inputs,
the weights, the multiplicands, the accumulator and the output. It also accepts the activation function, multiplication function

Fig. 2. A block diagram of the processing unit with arrows indicating the direction of the data flow.

1 c l a s s NeuronComputeUnit [I <: B i t s , W<: B i t s , M<: B i t s , A<: B i t s , O<: B i t s] (
2 gen I : I , genW :W, genA :A, genO :O,
3 numSynaps : I n t ,
4 mul : (I , W) => M,
5 add : Vec [M] => A,
6 a c t F n : (A, A) => O) e x t e n d s Module {
7
8 v a l i o = IO (new Bundle {
9 v a l i n : Vec [I] = I n p u t (Vec (numSynaps , gen I))

10 v a l w e i g h t s : Vec [W] = I n p u t (Vec (numSynaps , genW))
11 v a l t h r e s h : A = I n p u t (genA)
12 v a l s h i f t : UIn t = I n p u t (UIn t (8 .W))
13 v a l o u t : O = Outpu t (genO)
14 })
15
16 v a l muls = V e c I n i t ((i o . i n . z i p (i o . w e i g h t s)) . map {
17 c a s e (x : I , w: W) => mul (x , w)
18 })
19 v a l pAct = add (muls)
20 v a l sAct = (pAct >> i o . s h i f t) . asTypeOf (pAct)
21 i o . o u t : = a c t F n (sAct , i o . t h r e s h)
22 }

Listing 3. An abridged version of the NeuronComputeUnit module.

and the adder function as an argument, meaning it can be easily adjusted to different types of quantization, e.g. binarized neural
networks. These are networks with binary weights and inputs, use the XNOR operation for multiplication, and the population
count operation for the addition [2].

The unit is capable of calculating one element of the output y in a single cycle. This means that it can compute the dot
product between two sets of C ∗ F ∗ F elements in a single cycle. The amount of logic required to implement this unit is not
immense, as the operational elements themselves, are low bitwidth, and fixed-point. In other words, as the use case in mind
are highly quantized neural networks, we assume that the weights w bitwidth, and the input x bitwidth, are small.

D. Memory layout

One important assumption of our processing unit, is that the weights and the input feature map, can be stored on the same
chip (e.g. Block RAMs on FPGAs). This means that we must be conservative in the use of memory, to allow a reasonably
sized neural network to compute. Fig. 3 shows an example memory layout of an input feature map with width and height equal
to three, and two channels. Each channel is represented in a different hue in the figure. Several parameters are packed together
into 32-bit memory words, with no parameter being split. This constrain means that depending on the parameter bitwidth, we
may have unused bits at the end of the memory word. In Fig. 3 for example, the last two bits of every word are unused.

The layout of the kernel weight parameters is similar to the layout of the input feature map parameters with the exception
that the parameters of each subsequent kernel start on a new memory word. This simplifies the design with minimal memory
overhead.

1 2 3

4 5 6

7 8 9

c = 0

10 11 12

13 14 15

16 17 18

c = 1
0 8 16 24 32

0

32

64
...

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

Fig. 3. Example memory layout for an input feature map quantized to five bits (C=2, W=H=3).

0 1
0 0

→ 1 1
0 1

→ 1 0
1 1

0 1 1 0
0 0 1 1
0 0 0 0
1 0 1 1

Fig. 4. The Rolling Register File operation.

E. Register Files

We use the weight stationary approach to computing the convolution. In doing so we first load the Kernel Register File with
a kernel, and they then remain stationary, for the duration of sliding across the input image.

The Rolling Register File shifts feature values between registers to emulate the behavior of the window sliding across the
input feature map. This behavior is demonstrated in Fig. 4, on the example input map from Fig. 1. Such a design achieves
minimal data movement between the FEATMEM memory and the Rolling Register File, and also accomplishes better utilization
of the Neuron Compute Unit, as we don’t need to refill the entire register file from scratch every time the window moves.

F. Sliding Window Unit

The Sliding Window Unit (SWU) is responsible for gathering the feature values stored in the FEATMEM memory, and
transferring them to the Rolling Register File. The SWU must be able to gather the data, regardless of the input feature map
bitwidth. We implement this by using several counters and by calculating the bit-address of each specific element. The SWU is
the main bottleneck in achieving a high utilization of the Neuron Compute Unit, as it jumps between different memory words
to gather the specific elements of a given window. An alternative approach would be to unroll the input feature map, but this
would also greatly increase the memory consumption.

IV. EXPERIMENTS

Table I shows the synthesis results we obtained with constant parameters W = H = 28, C = 3, and K = 16, and different
bitwidths of the weight and input feature map parameters. We used Xilinx Vivado 2022.2 to perform out-of-context synthesis
on the Verilog generated by Chisel 3.5.5. The KBW column represents the bitwidth of the weights, IBW the bitwidth of
the input feature map, LUT and FF represent the number of lookup tables and flip-flops used, RAMB18 and RAMB36
are the number of 18-kbit and 36-kbit Block RAM elements, and finally the clock represents the maximum achievable clock
rate, with frequency being the inverse of it. None of our designs use any DSP blocks. We also plot the data points in Fig. 5
and Fig. 6 where KBW equals IBW , and transform the metrics RAMB18 and RAMB36 into a single metric BRAM ,
using the formula BRAM = RAMB18 + 2 ·RAMB36.

As is seen in Fig. 5 the amount of lookup tables, flip-flops, and Block RAMs our design uses is approximately proportional
to the sum of the bitwidths for the case of highly quantized neural networks. The maximum frequency, however, drops off
fairly quickly with increasing bitwidths, and then it reaches a plateau at around 25MHz, as it is shown in Fig. 6. In all cases
the critical path was in the Neuron Compute Unit, which contains multipliers and an corresponding adder tree.

V. CONCLUSION

In this work we showed how Chisel can be used to write generators for convolution processing units. As a next step we
intend to pipeline the Neuron Compute Unit in order to shorten the critical path and thus increase the maximum achievable
frequency. We also intend to add support for other types of convolution, such as depth-wise convolution and depth-wise
separable convolution.

Fig. 5. A plot of the amount of resources required against the bitwidth of weights and input feature map parameters.

Fig. 6. A plot of the maximum achievable frequency compared to the bitwidth of weights and input feature map parameters.

REFERENCES

[1] By Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep Convolutional Neural
Networks”. In: Communications of the ACM 60 (6 2012), pp. 84–90.

[2] Itay Hubara et al. “Binarized neural networks”. In: Advances in Neural Information Processing Systems (NIPS 2016),
pp. 4114–4122. ISSN: 10495258.

[3] Shuchang Zhou et al. “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradi-
ents”. In: 1 (1 2016), pp. 1–13. URL: http://arxiv.org/abs/1606.06160.

[4] Zhen Dong et al. “HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks”. In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 18518–18529.
URL: https://proceedings.neurips.cc/paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf.

[5] Zhewei Yao et al. “HAWQ-V3: Dyadic Neural Network Quantization”. In: Proceedings of the 38th International
Conference on Machine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning
Research. PMLR, July 2021, pp. 11875–11886. URL: https://proceedings.mlr.press/v139/yao21a.html.

[6] Claudionor N. Coelho et al. “Ultra Low-latency, Low-area Inference Accelerators using Heterogeneous Deep Quantization
with QKeras and hls4ml”. In: Nature Machine Intelligence 3 (8 2021), pp. 675–686. ISSN: 25225839. DOI: 10.1038/
s42256-021-00356-5.

[7] Michaela Blott et al. “FINN-R: An end-to-end deep-learning framework for fast exploration of quantized neural net-
works”. In: arXiv 1 (1 2018). ISSN: 23318422.

[8] Syed Asad Alam et al. “On the RTL Implementation of FINN Matrix Vector Unit”. In: ACM Trans. Embed. Comput.
Syst. (July 2022). Just Accepted. ISSN: 1539-9087. DOI: 10.1145/3547141. URL: https://doi.org/10.1145/3547141.

[9] Chisel/FIRRTL Hardware Compiler Framework. https://www.chisel-lang.org. Accessed: 2023-01-12.
[10] Amir Gholami et al. “A Survey of Quantization Methods for Efficient Neural Network Inference”. In: (2021). URL:

http://arxiv.org/abs/2103.13630.

TABLE I
SYNTHESIS RESULTS FOR W = H = 28, C = 3, K = 16.

KBW IBW LUT FF RAMB18 RAMB36 Clock [ns] Freq [MHz]
2 2 721 327 2 1 13.656 73.23
2 3 911 359 2 2 14.908 67.08
2 4 692 391 2 2 34.486 29.00
2 5 825 425 3 3 34.849 28.70
2 6 949 453 3 3 36.290 27.56
2 7 1043 486 2 4 36.340 27.52
2 8 1026 515 1 5 36.017 27.76
3 2 835 355 2 1 15.157 65.98
3 3 890 387 2 2 35.289 28.34
3 4 902 419 2 2 35.282 28.34
3 5 1154 453 3 3 36.031 27.75
3 6 1279 481 3 3 36.246 27.59
3 7 1419 514 2 4 36.507 27.39
3 8 1474 543 1 5 37.251 26.84
4 2 678 384 2 1 34.495 28.99
4 3 1048 416 2 2 35.858 27.89
4 4 1227 448 2 2 36.958 27.06
4 5 1314 482 3 3 38.271 26.13
4 6 1456 510 3 3 38.081 26.26
4 7 1631 543 2 4 38.320 26.10
4 8 1701 572 1 5 38.885 25.72
5 2 708 412 2 1 34.621 28.88
5 3 1140 444 2 2 37.414 26.73
5 4 1218 476 2 2 37.305 26.81
5 5 1513 510 3 3 38.760 25.80
5 6 1791 538 3 3 38.859 25.73
5 7 2003 571 2 4 39.495 25.32
5 8 2099 600 1 5 40.057 24.96
6 2 860 440 2 1 36.554 27.36
6 3 1245 472 2 2 37.502 26.67
6 4 1342 504 2 2 37.785 26.47
6 5 1677 538 3 3 38.661 25.87
6 6 1932 566 3 3 38.851 25.74
6 7 2235 599 2 4 38.961 25.67
6 8 2386 628 1 5 39.302 25.44
7 2 912 467 2 1 36.895 27.10
7 3 1349 499 2 2 37.713 26.52
7 4 1472 531 2 2 37.926 26.37
7 5 1837 565 3 3 29.050 34.42
7 6 2150 593 3 3 38.953 25.67
7 7 2575 626 2 4 40.340 24.79
7 8 2795 655 1 5 40.100 24.94
8 2 966 495 2 1 36.616 27.31
8 3 1488 527 2 2 38.431 26.02
8 4 1617 559 2 2 38.865 25.73
8 5 1994 593 3 3 38.952 25.67
8 6 2362 621 3 3 39.194 25.51
8 7 2822 654 2 4 40.707 24.57
8 8 2972 683 1 5 40.141 24.91

