Supplementary Material to:

Magnetic Extraction of Weathered Tire Wear Particles and Polyethylene Microplastics

Vaibhav Budhiraja^{1,*}, Branka Mušič^{2,*} and Andrej Krzan¹

- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia

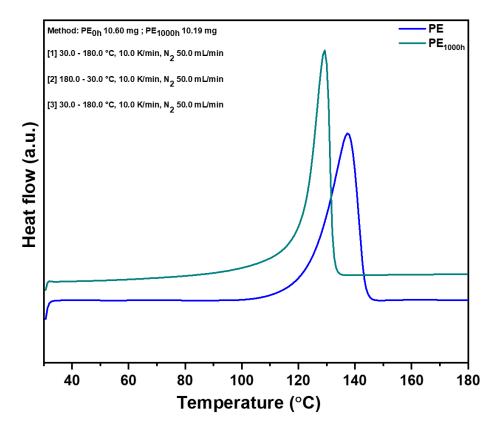


Figure S1. DSC of PE and weathered PE_{1000h}

The DSC of PE and weathered PE_{1000h} has been done with a Mettler Toledo, Greifensee, Switzerland TGA/DSC 1 thermogravimeter. The experiments were done in the temperature range of 30-180 °C in an environment of N₂, with a flow rate of 50 mL/min and a heating rate of 10 K/min. The crystallinity of the PE is calculated using the formula; Degree of Crystallinity (%) = $\Delta H_m J/g$ (calculated) × 100 $\Delta H_m J/g$ (100%)

The melting enthalpy of a 100% crystalline PE used for calculation is 293 J/g. The crystallinity of pristine PE and weathered PE_{1000h} is 74% and 68% respectively.

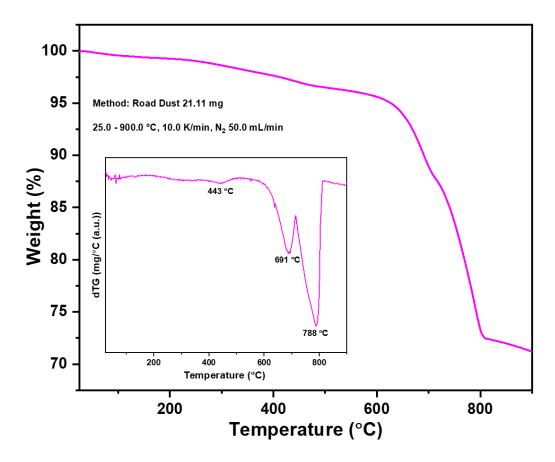


Figure S2. TGA of Road Dust. First differential is shown in the inset.

The TGA of road dust has been done with a Mettler Toledo, Greifensee, Switzerland TGA/DSC 1 thermogravimeter. The experiments were done in the temperature range of 25-900 °C in an environment of N₂, with a flow rate of 50 mL/min and a heating rate of 10 K/min. The first derivative shows a mild peak at 443 °C which could be from the degradation of tire rubber. The peak at 691 °C could be from carbon black originating from the tire or any other source in the dust sample. The most prominent peak at 788 °C might be due to some inorganic impurities in the dust sample.