This is the preprint of the following article:

Bajec D, Kostyniuk A, Huš M, Grom M, Pohar A, Likozar B. Catalytic methane halogenation by bromine over microporous SAPO-34 zeolite material towards methyl bromide, dibromomethane and hydrogen bromide. Journal of the Taiwan Institute of Chemical Engineers. 2023; (142): 1–11.

doi: 10.1016/j.jtice.2022.104645

which has been published in final form at:

http://dx.doi.org/10.1016/j.jtice.2022.104645

Appendix A. Supplementary info

Figure S1: Photograph of quartz reactor containing 1 g of SAPO-34 after 30 h on stream with remaining volume filed with SiC.

Figure S2: Photograph of used SAPO-34 after 30 h on stream and after evacuating the sample at 120 $^{\circ}\mathrm{C}.$

Figure S3: Photograph of quartz reactor containing 1 g of coked SAPO-34.

Figure S4: Used SAPO-34 after 20 h on stream at 380 $^{\circ}$ C and WHSV = 2 h⁻¹, with 15 mol.% of Br₂ in inlet gas mixture.

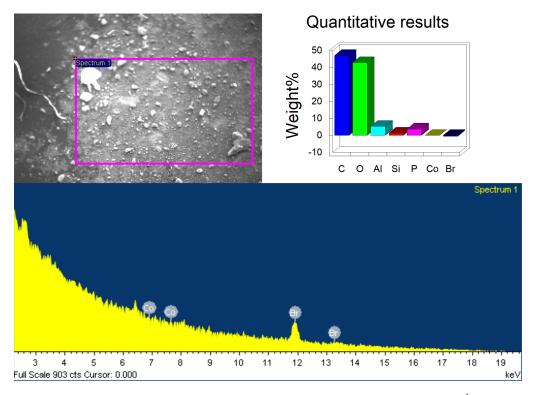


Figure S5: SEM-EDX analysis of the spent SAPO-34. Reaction conditions: WHSV = 0.6 h $^{-1}$, T = 300–365 °C, TOS = 30 h.

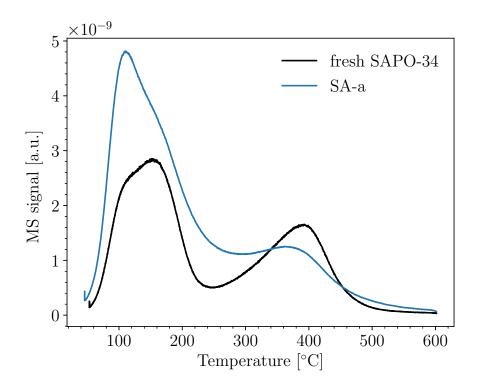


Figure S6: Comparison of NH_3 -TPD-MS (m/Z = 17) profiles of fresh SAPO-34 with used sample SA-a.

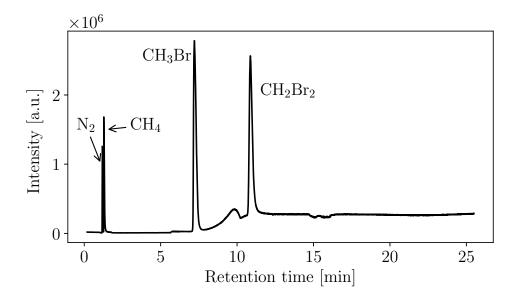
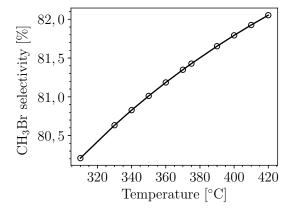
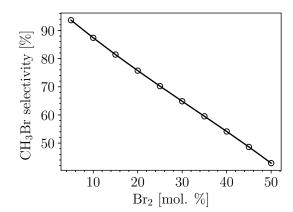




Figure S7: Example of a chromatogram (total ion) from the middle of methane bromination over SAPO-34 at 390 $^{\circ}$ C and WHSV = 0.22 h⁻¹.

Figure S8: Photograph of quartz reactor containing 1 g of used SAPO-34 after 4.5 h reaction with $\rm CH_2Br_2$ at 410 °C.

(a) $\rm CH_3Br$ selectivity at different temperatures with 15 mol. $\%~Br_2$ in the reaction mixture.

(b) CH $_3{\rm Br}$ selectivity at different content of ${\rm Br}_2$ in the reaction mixture at 375 $^{\circ}{\rm C}.$

Figure S9: Equilibrium selectivity for CH_3Br at 1 bar.