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Abstract

A new method for efficient and robust determination of thermal conductivity in liquids
is presented. The method is based on the search for an optimal agreement between the
analytical solution of the heat transfer in a continuum model described by Fourier law and
the relaxation of thermal inhomogeneity simulated by nonequilibrium MD simulations. Our
approach exploits a transient regime in which a system relaxes towards equilibrium after the
introduction of a small temperature perturbation in a spatially confined part of the system.
The applicability of this new method is demonstrated on liquid argon and two water models,

the mW and SPC models.
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1. Introduction

Thermal conductivity () is one of the fundamental material properties and measures
the rate at which thermal equilibrium is established. In the past, a substantial effort has
been devoted to the development of computational methods which allow one to determine
thermal conductivities of liquids, crystals, and glasses by exploiting molecular dynamics
(MD) simulations [I]. Accurate and reliable in silico methods are especially important in

cases where an experimental determination of transport coefficients is challenging as for
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example in ionic melts [2, B] or liquids under extreme pT conditions [4, [5]. Ionic melts
and specifically understanding of their thermal properties are now becoming increasingly
more important due to their use as heat-transfer fluids in solar power plants [6] and molten
salt nuclear reactors [7]. State of the art computational methods for the determination of
thermal conductivities (and other transport coefficients as well) generally fall into one of the
two categories: equilibrium and non-equilibrium methods.

Equilibrium methods are rooted in the Green-Kubo (GK) theory of linear response
[8, 9] where one is required to evaluate the integral of the heat flux autocorrelation function

which, for three-dimensional isotropic case, reads as:

1 to—o0

Here V and T are the volume and the temperature of a system, respectively, and () stands
for the ensamble average. Despite the theoretical elegance, the GK method is associated
with practical limits raised by the slow convergence of x with the avaliable simulation time
to. In case of slow relaxation in the system, long-time tails are present in the autocorre-
lation function. Moreover, the autocorrelation function becomes dominated by statistical
noise at large 7 values which implies that the upper integration limit ¢, significantly affects
the result [I0, 1T, T2]. Therefore, large simulation cells and long trajectories are usually
required to obtain well-converged results. The aforementioned problems were significantly
overcome very recently by the introduction of the cepstral analysis which allows relatively
accurate estimation of transport coefficients even from trajectories affordable by ab-initio
MD simulations [I3, [14]. Another recently introduced equilibrium approach by Cheng &
Frenkel is based on the computation of the thermal conductivity solely from an analysis of
particle density fluctuations [I5] and therefore bypasses the computation of the heat flux.
In order to overcome the difficulties of the equilibrium methods described above, several

nonequilibrium (NEMD) methods have been developed which rely on continuum description



of heat conduction given by Fourier law:
J=—xkVT. (2)

A common trait of most NEMD methods is the direct use of the Fourier law. For that
purpose, one either imposes a temperature gradient along one direction of a simulation
cell and measures the generated heat flux [I6] (direct-NEMD) or one imposes the heat
flux and measures the established temperature gradient [I7] (reverse-NEMD). In both cases
k is estimated as a slope of J, versus dT'/dx (z is the direction along the temperature
gradient) after a non-equilibrium steady state has been reached. These methods require
shorter simulation times but may suffer from convection problems and significant size effects.
In the context of NEMD methods, it is much less common to deviate from the non-equilibrium
steady state as explained above and use a transient regime instead where a relaxation of
temperature perturbation is monitored. Such ideas were mostly applied to studies of heat
conduction in crystalline and amorphous solids in the context of phonons [I8] 19, 20| and
transient melting at the nanoscale [21].

Here we present a new non-equilibrium scheme for the determination of thermal con-
ductivity of liquids based on continuum description of heat transfer. The method exploits
the transient regime where a system undergoes a thermal relaxation towards equilibrium
after the introduction of a small temperature perturbation. Our approach is simple to im-
plement, easy to run in parallel and is compatible with periodic boundary conditions (PBCs)

commonly applied in bulk MD simulations.

2. Model

Let us consider a bulk liquid in a form of extended linear filament with a temperature
inhomogeneity present along the main axis. Heat transfer in such a system is described
by combining the Fourier law and continuity equation which leads to the heat transport
equation

OT (x,t) iazT(x, t)

ot pc, O0a% 3)
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with p standing for the density and ¢, for specific heat. Assuming the fixed form of initial
temperature profile To(x,t = 0) we can obtain temperature profile at any time ¢ > 0 by the

general solution of eq. (3):

T(a,t) = 2a\1/ﬁ /_ Z To(z') exp (—%) i’ (@)

where we introduce the parameter a = /k/(pcy).

Although the equation generally describes heat conduction in macroscopic contin-
uum medium, we assume that it also can correctly describe heat conduction for sufficiently
large microscopic systems, ¢.e. sufficiently dense systems containing large enough number
of atoms, NV > A, above some threshold value N. If microscopic system is supposed to
obey the Fourier law, then for a properly set parameter a the solution should match the
temperature profile derived from the simulated particle velocity distributions at the same
time ¢ > {, given that the analytical and simulated temperature profiles at the time ¢, are
equal. Furthermore, if matching between analytical and simulated temperature profiles is
found to exist for a given value of a at any instant of time during the relaxation and persists
over the size range N' > N, then the fitting parameter a can be used to determine the ther-
mal conductivity x of the simulated system. Standard MD simulations of bulk media imply
periodic boundary conditions (PBC), which means that any inhomogeneity in the primary
simulation cell representing the finite volume of the system is necessarily replicated in all
surrounding image cells. Thus, in order to make the analogy of the temperature profile T'(z)
in the simulated system under PBC and its continuum counterpart, we should also apply the
periodic condition, T'(z & L) = T'(x), in the analytical model with L being the length of the
primary cell. The analytical solution for the time dependent temperature profile within the
range of the primary cell, [—L/2, L/2], which is explicitly derived in Appendix A, consists

of contributions from the neighboring image cells,

n=N
1 (nL)? Ly , (x —2")? = 2nL(x — 2') ,
T(x,t) = —— T — d
(x7 ) 2CL /_7Tt — exp ( 4a2t ) /—L/Q O(CE ) exp 4CL2t €T,
(5)




where n indexes neighboring images as indicated in Figure

Temperature [arb. units]

x/L

Figure 1: A schematic representation of temperature profiles in continuum linear filament applying PBC
along x-axis. Upper and lower rows display the profile To(z) at the beginning, and at some later time ¢,
T'(z,t), respectively. The central cell (n = 0) corresponds to the primary cell.

Derivation of the thermal conductivity can be thus based on fitting of the analytical so-
lution of eq. to temperature profiles collected from MD simulations at different evolution
times from some well defined initial temperature profile.

In what follows the above approach will be validated on three carefully chosen systems:
liquid argon, Stillinger-Weber monoatomic water model (mW) [22] and the SPC [23] water

model.

3. Simulation setup

All MD simulations were performed using LAMMPS [24] combined with several in-
house developed computer codes for the purposes of thermostatting and post-processing. A
standard velocity-Verlet integration scheme was used and the periodic boundary conditions
were imposed in all directions.

Pairwise interactions in liquid argon, a paradigmatic example of a simple liquid, were



described using the Lennard-Jones potential:

o0 -4 [(6)" - (3] o

and truncated at r. = 2.50. Unless stated otherwise, simulations were performed with 6.000
atoms. For the sake of comparison with a previous study by Ercole et. al. [13] we ran our
calculations at the density p = 1.55 g/cm?® and Ty = 220 K, adopting ¢/kp = 119.8 K and
o = 0.3405 nm [25]. Equations of motion were integrated using a timestep of 4 fs. For
monoatomic water (mW) introduced by Molinero and Moore we used the Stillinger-Weber
force-field which also contains many-body interactions. As discussed by other authors before,
the standard expression for heat flux should not be used in the case of many-body potentials
[26]. Thermal conduction in mW water has been studied by Cheng and Frenkel who used
the recently introduced WAVE method. We performed our simulations with 9.000 atoms
adopting the same thermodynamic conditions as in [I5] (7' = 800 K and p = 35.6 atm) and
a timestep of 4 fs.

Lastly we check the perfromance of our method on bulk water represented by SPC water
model. We used 3000 molecules and ran the simulations at p = 1.0 g/cm?® and T = 300 K
with a timestep of 1 fs. Bond lengths and HOH angles were constrained using SHAKE [27].
Long-range interactions were taken into account by means of PPPM [28] method with a
force accuracy of 1075,

The workflow of our approach is as follows. First, a cubic simulation box with an
edge L is created and the atoms are placed at random positions. The system is extensively
equilibrated at Ty in the NVT ensemble using Nose-Hoover thermostat [29, B0]. After the
initial equilibration, the system is divided into Nj slices along the z direction (see Fig. [2)
and the Nose-Hoover thermostat is switched off. To create a temperature perturbation, the

atomic velocities in each slice are rescaled by a factor
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where T” is given by the shape of the perturbation that we want to impose. For SPC water,
all atoms in a molecule are rescaled by the same factor. Here we have used a perturbation
in the form of a boxcar function:

To+ AT ;154 <gp< Lid

T otherwise

where 0 < x < L. Such rescaling procedure is applied for 500 ps every At = 20 fs. After
each rescaling event, atom velocities are corrected by the amount of the center of mass
velocity of entire system to assure zero total momentum. Between two rescaling events, the
system is allowed to evolve microcanonically. After a non-equilibrium steady state has been
reached, we keep the same protocol for as long as required to extract M frames which serve
as a starting point for relaxation. Usually, M = 1000 is sufficient to obtain well-converged
results. The aforementioned frames are extracted every 7 = 800 fs which is enough to ensure
that two successive starting configurations are statistically independent of each other. The
value of 7 can be conveniently estimated for instance from velocity autocorrelation function.
Lastly, M independent microcanonical (NVE) simulations are performed and the atomic
velocities are stored in each slice. The length of each NVE run is typically between 10-20
ps which is sufficient for the system to almost completely relax to equilibrium. Obviously,
the length of NVE runs has to be adjusted according to the magnitude of L, since for larger
simulation boxes the relaxation proceeds slower and vice versa. The final temperature in

j-th slice at time ¢t is obtained from:

1) = <NDOF Zml > ' ®

Here Tj is computed from velocities of atoms which, at time ¢, belong to the j-th slice and the

constrained degrees of freedom in case of SPC water model are carefully omitted in Npop.
Note that the velocities stored in each slice are taken from all M NVE runs and a single

calculation of a temperature per slice is made.



In order to obtain thermal conductivity x from thermal diffusivity «, the density and
the isobaric heat capacity ¢, are required (o = r/pc,). Given that all simulations are
performed at constant volume, the density is readily available and the heat capacity can be
routinely evaluated from a slope of enthalpy H(T') versus temperature T in the interval from

Ty to Ty + AT using a separate set of NpT simulations.

T=7b T=7b+6T T=7b
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Figure 2: The simulation box divided into Nj slices. Figure was generated using VMD [31] and matplotlib.

4. Results and Discussion

In the following, we test our approach on liquid argon in a superfluidic state, mW
and SPC water models as described in Simulation setup (Section 3) and summarized in
the Appendix B. We begin with a short description of time series analysis (x(¢)) through
which the final conductivity along with the error can be estimated. We continue with the
evaluation of the robustness of our method to the choice of several parameters: the number
of neighboring periodic images required, the width of the perturbation and the magnitude
of AT. We finish our discussion by examining size effects for Lennard-Jones fluid and give

a brief overview of results for mW and SPC water. The number of slices is fixed at N, = 30.
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Figure 3: Snapshots of temperature profiles during relaxation at various times for liquid argon.

4.1. Liquid argon

Using the simulation protocol described in Section 3, we obtain temperature profiles
T(x,t) (see Figure |3) which are used to compute the thermal conductivity by fitting them
with the analytical solution given by Eq. . We perform a separate fit at each ¢ and thus
obtain a time series x(t) from which the final conductivity along with the error estimate is

extracted.

4.1.1. Time series analysis

A typical shape of k(t) is shown in Figure 4. For ¢t < 2 ps, k shows significant instability
which we suspect is due to the memory effect of a thermostat. Nonetheless, for ¢t > 2 ps, &
quickly stabilizes and generally begins to oscillate around the correct value of thermal con-

ductivity. Therefore values of k for t < 2 ps are discarded from further discussion. The shape



of k(t) for t > 2 ps shows regular oscillations which are not merely statistical fluctuations.
Given that simulations are performed under periodic boundary conditions, such oscillations
are expected. As the temperature perturbation relaxes, the thermal wave collides with the
ones from its neighboring images. When the thermal wave bounces back, x is underestimated
and vice versa as the wave relaxes again. Thermal waves are not predicted by Fourier law or
heat equation which is the basis of our model. We did not try to incorporate their presence
in our analytical solution but rather account for them in the posteriori analysis. A thor-
ough discussion on thermal waves and non-Fourier types of heat conduction can be found
for instance in Ref. [32]. As far as our method is concerned, for smaller simulation boxes
and sufficient averaging over a large number of trajectories it is possible to nearly eliminate
the presence of a wave in the final x(t). Conversely, for larger simulation boxes the wave
persists which is expected given that the creation of a coherent wave is more likely (compare
for instance Figure 4 and Figure 5a). In Figure 4 we show that if running average over a
well-converged k(t) is performed, the presence of thermal waves is not problematic to obtain
the correct value of thermal conductivity since running average is a well-behaved function.
More specifically, for a set of N equally spaced temperature profiles from a trajectory of

length t,,.. = NAt, we define the running average over k(t) as:

1 J
R(t) = TRl 2:; Ki. (9)

Here k corresponds to the moment in time ¢, from which averaging takes place, namely

to = kAt, t = jAt (for t = t0e, 7 = N), and 1/At is the sampling frequency.
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Figure 4: Raw data (left) and running average (right) of thermal conductivity shown for a system of liquid
argon where AT = 30 K, d/L = 0.2 and Ny = 30. Two neighboring images (n = 2) were included in the
fitting procedure. Our estimation of x agrees well with values obtained by Ercole et. al. [13] within the
statistical error.

To summarize, if well-converged k is to be obtained from a stable running average
over k(t), it should not matter whether oscillations are present in the simulation when solely
trying to extract thermal conductivity; they contribute only to the larger standard deviation.

Another important parameter which influences the rate of convergence of k(t) with
respect to the number of required simulated trajectories is 7 as defined in Simulation setup.
An optimal choice of 7 can be estimated from a velocity autocorrelation function (VACE).
The suggested choice of 7 is the moment at which VACF reaches 0, which ensures that
two succesive starting configurations, used to study an independent thermal relaxation, are

indeed uncorrelated.

4.1.2. Neighboring periodic images corrections

As shown in Section 2, the correct treatment of heat transfer for the setup considered
here includes taking into account the periodic boundary conditions. Here we identify the
minimum number of neighboring periodic replicas of the central box (n = 0) that are neces-
sary to ensure that the relaxation of a temperature perturbation is correctly described for the
whole duration of our simulations (i.e. until thermal equilibrium is nearly established again).
We also compare our predictions with the model which ignores the periodicity and assumes
that the perturbation is allowed to spread to infinite media on both sides of the central box.

The solution of the heat equation for the latter case can be evaluated analytically and has a
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well-known form given by:

T(x,t) = Ty + %AT [erf (%(LZ#) —erf <%(L_4$)] . (10)

As expected, for short ¢ (¢t < 7 ps) it is not important whether the system is treated
as periodic or infinite on both sides of the central box. The latter approximation, however,
quickly breaks down as demonstrated in Figure 5 (left). To achieve well converged k()
throughout the whole relaxation process under periodic geometry, it is necessary to include
neighboring image corrections up to at least n = 2. Nonetheless, it is actually not necessary
to sample the whole relaxation to achieve well converged k since running average over x(t)
stabilizes much faster (see Figure 4). Therefore as shown in Figure 5 corrections up ton = 1
are already sufficient. Throughout this work, we have consistently used corrections up to

n = 2.

4.1.8. Width of a perturbation and the magnitude of AT

To check how the shape of a perturbation affects the estimation of thermal conductivity,
we performed simulations for various widths (d) of the slab in which a thermal perturbation
is introduced, and magnitudes of AT by keeping the number of slices and the system size
fixed (Ng = 30, N = 6000). Simulation parameters that were used and corresponding results

are given in Table 1.

d/L AT K] | & [W/mK]

1/5 30 0.1969 £ 0.007
2/5 | 30 | 0.1927 £ 0.007
1/5 50 0.1958 £ 0.005

Table 1: Values of « for various values of d/L and AT.

We conclude that neither the magnitude of AT nor the width of a perturbation do not
significantly affect « since all values listed in Table 1 coincide within the statistical error,
indicating the robustness of our method. Note that the higher values of AT may speed

up the convergence of temperature profiles and therefore the convergence of s itself since
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the signal to noise ratio is increased. However, too high values of AT can cause significant

changes in both x and ¢,. Therefore, we suggest using modest values of AT up to 20% of
the reference temperature.

4.1.4. Size effects

We finish our discussion by examining the influence of L (and the number of atoms
N) on predicted values of k. Our systems are cubic and therefore all cell parameters are
changed simultaneously (L = L, = L, = L,). The relationship between systems size and
the number of atoms is given in the Table [2|

As discussed by several authors before, thermal conductivity predicted by NEMD meth-
ods is generally underestimated for small L. This effect is severe for solid systems when the
phonon mean free path is smaller than L [19]. For liquid systems, size effects also exist and

it has been suggested, for example, that k o 1/ V'L, for a Lennard-Jones fluid when the

cross section is kept constant and the simulation cell is elongated along z-axis [33].
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Figure 5: Dependence of k(t) with rescpect to the maximum range N of neighboring images included in

the analytical solution (5)), which was used in the fitting procedure (left) and size dependence of (L) as
predicted by our method (right).
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LIA]| N
27.76 | 500
33.70 || 894
44.07 | 2000
55.53 | 4000
75.36 | 10000
88.14 || 16000

Table 2: Number of atoms N in the various simulation cells of size L.

Here we do not wish to discuss the scaling relationship (L) as predicted by our method
in detail, but merely provide guidance for selecting the optimal L. Figure 6 clearly shows
that  is underestimated for small L in agreement with studies mentioned before. Thermal
conductivity converges near L ~ 4.4 nm which, for the density used here, corresponds to
N ~ 2000 atoms. All values of x beyond this treshold agree within statistical uncertainty.
Nonetheless, this treshold may depend on the density and therefore an analysis of size effects

is highly suggested to obtain reliable and well-converged thermal conductivity.

4.2. Monoatomic water model

Monoatomic water (mW) model is a simple example of a liquid which contains many-
body interactions. As such (and as briefly mentioned before) the textbook definition of heat
fluxes based on pairwise interactions is not applicable in this case and the correct definition
of heat fluxes is non-trivial. In our method an explicit definition of heat fluxes is not needed
thus making our approach much more elegant. Simulations performed here to illustrate the
applicability of our approach were run at Ty = 800 K which is also a range of thermodynamic
conditions relevant for e.g. industrially important ionic melts. Therefore we expect similar
performance for ionic systems. Cheng and Frenkel determined the thermal conductivity of
mW using WAVE method. They determined £ = 0.16 W/mK (6,912 atoms) and x = 0.17
W/mK (27,648 atoms), respectively. Our method predicts £ = 0.1721 W/mK in good
agreement with predictions from WAVE. Our approach therefore also performs well even at

fairly extreme conditions.
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4.8. SPC water model

Lastly we devote our attention to a simple molecular fluid - an SPC water model.
Heat transport in molecular fluids is significantly more difficult to simulate due to addi-
tional degrees of freedom with the most problematic ones being the bond vibrations and
angle bendings. In the results presented here the bonds and angles have been constrained
using the SHAKE algorithm which effectively means that the degrees of freedom which may
act as energy sinks are eliminated. Indeed with constraints we reach excellent agreement
between our method (k = 0.768 W/mK) and the previous works where the authors have
used either the Green-Kubo [34] (x = 0.776 W/mK) or the Miiller-Plathe [34] (x = 0.802
W/mK) approach. If the constraints are released, our method fails to correctly simulate
heat conduction since the kinetic energy is drained into the vibrational modes. We expect

our approach will perform similarly with other liquids be it in flexible or rigid flavors.
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Figure 6: Time series analysis for mW (left) and SPC water (right).
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5. Conclusions

In the present work, we have successfully demonstrated and thoroughly evaluated
our approach to calculating thermal conductivities in atomistic and molecular liquids using
nonequilibrium molecular dynamics. The method presented here is simple, robust, effective,
and can be easily performed in parallel. It is independent of the choice of the interatomic
potentials and can be applied to both pairwise and many-body potentials. An important
advantage is that our approach does not require an a priori definition of the heat fluxes,
which is known to be problematic in cases where fluids cannot be described by a pairwise
interatomic potential. The efficiency of the method is evidenced by the proper treatment of
periodic boundary conditions in the derivation of the analytical solution in reference contin-

uum models.
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7. Appendix

A Derivation of equation (@

Suppose Ty(z) is periodic function with periodicity L corresponding to the initial tem-

perature profile along linear filament as shown in Figure [[l The analytical solution for the

time dependent temperature profile for x € [—1/2,1/2] according to ({]) is given by the sum

from individual intervals:
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Taking into account the periodic condition T'(x +nL) = T(z), n = --- —1,0,1,---, and

substitutions «’ = z” 4+ nL, we can evaluate each of the above integrals within the interval

[—1/2,1/2]:

n=N  .1/2 " 2
1 (x —a” —nlL) )
T(x,t) = E To(z")exp | —(— dz" =
(z,0) 2av/ 7t /_Z/Q (@) exp ( ( 4a?t
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- 2(1,\/7T_t nz_:]v exp (_ 4a2t ) /_ T()(ZL’ )exp o 4a2t dx’.
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B Workflow for calculating thermal conductivities using NEMD simulations

Algorithm 1

—

generate the simulation box and initialize velocities
equilibrate at Ty in the NVT ensemble using e.g. Nose-Hoover or CSVR thermostat
divide the system into N slices along x-axis and switch off the thermostat
while ¢ < t., do (equilibration of the temperature perturbation)
if t mod At =0 then
compute current temperature in each slice
rescale velocities in each slice in accordance to perturbation shape
compute and subtract the total c.o.m. momentum
end if
end while

=1
: while i < M do (generation of initial configurations)

H
@

._.
e

._
ot

=
@

N = = =
S © o =1

keep the protocol the same as during equilibration
if t mod 7 = 0 then

save current configuration

1=1+1
end if

: end while
=1
: while j < M do (performing M relazations)

N NN NN NN

run NVE simulation for ¢,
extract and save velocities to each slice at a given ¢
j=Jj+1

: end while

: compute the final T'(z,t) from stored velocities

: fit T'(z,t) with analytical solution and obtain x(t)

: perform running average over x(t) and obtain the final &.
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