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Abstract 

This technical report describes the analysis of land surface phenology through the use of space-borne 
optical sensors focusing on different forest types in different regions of Slovenia. Specifically, the 
objective of this study was to investigate the reliability of MODIS and Sentinel-2 satellite imagery for 
determining key phenological phases of different forest types in comparison with different types of field 
measurements, and to compare different algorithms for determining phenological phases from 
vegetation indices. In addition, we tested which spectral channels of Sentinel-2 imagery and vegetation 
indices provide the best detection of phenological phases, how they depend on each other, and how 
accurately they can identify key phenological phases of the multi-year growth cycles, especially of 
European beech (Fagus sylvatica). 
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Izvleček 

Tehnično poročilo opisuje analizo fenologije zemeljskega površja z uporabo satelitskih optičnih 
senzorjev,  s fokusom na različnih tipih gozdov v različnih regijah Slovenije. Natančneje, namen te študije 
je bilo preučiti zanesljivost satelitskih posnetkov MODIS in Sentinel-2 za določevanje ključnih fenoloških 
faz različnih tipov gozdov v primerjavi z različnimi vrstami terenskih meritev in primerjati različne 
algoritme za določanje fenoloških faz iz vegetacijskih indeksov. Poleg tega smo preverili, kateri 
spektralni kanali Sentinel-2 posnetkov in vegetacijski indeksi omogočajo najboljše določanje fenoloških 
faz, kako so odvisni drug od drugega in kako natančno lahko določijo ključne fenološke faze večletnih 
rastnih ciklov, zlasti evropske bukve (Fagus sylvatica). 
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1 Introduction 
The first phenological records date back to about 3000 years ago in China, and in Japan the 
phenomenon of cherry blossom has been recorded for 1200 years. Phenology as a science began to 
develop in the mid-18th century, when several records of phenological data appeared. Swedish botanist 
Carl Linne was the first to describe the methods used to create phenological calendars in his Philosophia 
Botanica, relating phenological phases (leaf unfolding, flowering, yellowing, and leaf fall) to weather and 
climate factors. Linne also founded the first phenological network in what is now Sweden and Finland. 
At the end of the 19th century, systematic phenological observations began on European soil and the 
first phenological maps were produced. With the establishment of a number of national phenological 
observation networks in Europe in the mid-20th century, the so-called modern era of phenology began. 
Most of them were created within the framework of national meteorological services. In 1953, the 
Commission for Agrometeorology of the World Meteorological Organisation (WMO) recommended its 
members to conduct regular meteorological observations. In 1993, the Global Phenological Monitoring 
(GPM) was established to expand the network of phenological observations worldwide. In 2001, the 
European Phenological Network was established to collect phenological data from international, 
national, regional, and local phenological networks in Europe and America. Its main task is to enhance 
phenological measurements collected over several decades to study the effects of global climate change 
on flora and fauna and possible adaptations (Žust et al., 2016). 

The Slovenian National Phenological Network was founded in 1951. Since 2001, phenological 
observations have been part of the regular activities of the Department of Agrometeorology at the 
Environmental Agency of the Republic of Slovenia (ARSO). Initially, observations were collected at 30 
phenological stations, later the number of stations exceeded 200, and today there are still just over 40 
active stations, evenly distributed, but still barely meeting the requirements for sufficient coverage of 
Slovenia's topographically diverse and rugged terrain (Žust et al., 2016). 

At phenological stations, the observer visually records the date of occurrence of phenological phases 
such as leaf growth, first budding, flowering, fall yellowing, and leaf fall in various plant species. More 
recently the observer has been replaced at some sites by permanently installed digital cameras that can 
monitor vegetation on a daily basis. The photos thus represent continuous observations that allow us 
to identify phenological phases based on the difference in relative reflectance in the red, green, and 
blue channels while performing even more similar phenological analyses (Vrieling et al., 2018). Over the 
past decade, with the development of space technologies, satellite sensors have often replaced images 
from fixed digital cameras in phenological studies. 

Remote sensing data offer great potential for monitoring vegetation dynamics, especially over large 
areas. Such data provide temporally repeated observations that allow a better understanding of the 
temporal and spatial dynamics of ecosystems (Sjöström et al., 2011). Most analyses of vegetation 
phenology using remote sensing techniques focus on plant chlorophyll content and can therefore be 
studied using seasonal changes in spectral and biophysical indices. Such analyses are used to determine 
the state of plant cover, from which various stress conditions (diseases, drought, sleet ) can be inferred, 
in agriculture for crop production planning and for planning agricultural interventions or for monitoring 
changes in biodiversity (Žust et al., 2016). They also show variability as a result of land-use change, 
climate change, or other changes (Eklundh and Jönsson, 2017). The description of growing seasons as 
part of vegetation phenology mainly involves the definition of phenological phases (or matrices or 
parameters), such as the beginning and end of the growing season. Phenological phases depend on the 
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type of vegetation observed, climatic location, air temperature, precipitation, duration of solar radiation, 
etc. 

Several authors have addressed the determination of phenological phases from optical satellite imagery 
(Eklundh and Jönsson, 2017; Garonna et al., 2016; Vrieling et al., 2018; Wessels et al., 2011; Zhang et al., 
2003). Each satellite sensor has a unique combination of spatial and temporal resolution. The most 
commonly used sensors for plant phenology observations are Landsat, Sentinel-2, and MODIS (Bolton 
et al., 2020; Younes et al., 2021). Phenology detection from satellite data depends not only on the sensor, 
but also on the amount of data available for the study and the environmental factors in the image (e.g., 
cloud cover). Some studies address plant phenology using one year of data (Kowalski et al., 2020), others 
examine the alleged phenology over decades (Garonna et al., 2016; Melaas et al., 2018). The amounts 
of data depend on the sensor being used, and successive acquisitions of images over an extended period 
of time are referred to as time series. 

Accurate time series are essential for monitoring and studying vegetation and its changes during the 
growing season. The dynamics of vegetation or the developmental phase of phenology is time-
dependent and is reflected in the time series of satellite imagery or its vegetation indices by changing 
values that increase in spring, peak in summer, and then decrease in early fall (Figure 1). 

 

Figure 1. The main phenological phases in the growing season and the values of the vegetation index 
during the year. 

To achieve good results, time series data from satellite imagery should be as consistent as possible or 
occur in as similar a temporal sequence as possible. The denser the satellite data, the more accurately 
the phenological phases can be determined. The satellite imagery that makes up the time series is often 
affected by atmospheric noise, so it is highly recommended for phenological studies to smooth or 
generalise the time series prior to analysis. A number of smoothing techniques are available to correct 
and smooth time series data and to aid in the estimation of phenological phases. 

The objective of this study was to investigate the reliability of MODIS and Sentinel-2 satellite imagery 
for determining important phenological phases of different forest types compared to different types of 
field measurements, and to compare different algorithms for determining phenological phases from 
vegetation indices. In addition, we tested which spectral channels of Sentinel-2 imagery and vegetation 
indices provide the best detection of phenological phases, how they depend on each other, and how 
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accurately they can identify key phenological phases of the multi-year growth cycles, especially of 
European beech (Fagus sylvatica). 
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2 Data used 
The data used for the analysis can be broadly divided into two classes: modelled data represented by 
satellite imagery and measured or field (in-situ) data. We also add other data to the overview, with most 
data coming from meteorological stations. 

Satellite data can be used to observe the phenology of individual plants, but these estimates are always 
more general than direct field observations, which are usually limited to small areas and short 
observation periods. 

2.1 Satellite data 

Different satellite sensors have different spatial resolutions, which determine the unit or size of the 
observation area. Low or medium spatial resolution imagery, such as MODIS with spatial resolution from 
250 m to 8 km and temporal resolution of one day, allows us to monitor phenology at global, national, 
and regional scales. This allows us to monitor plant communities, provided they are not growing in too 
many heterogeneous areas. The medium spatial resolution data usually do not reflect the actual 
phenological variability, nor can they be used to analyse individual plant species (Melaas et al., 2013; 
Vrieling et al., 2018). High spatial resolution imagery, such as Sentinel-1 and Sentinel-2, has great 
potential for detecting phenological phenomena also at the local or plot level. The following sections 
present the usefulness of MODIS and Sentinel-2 systems for phenology detection and analysis. 

2.1.1 MODIS 

In this study, we used MODIS (Moderate Resolution Imaging Spetroradiometer) images on board the 
Terra and Aqua satellites (NASA) to estimate vegetative phenological phases. MODIS observes the Earth 
in the visible and infrared range of the electromagnetic spectrum with 250 m spatial resolution, offering 
a long and dense time series. Thanks to its regular acquisitions (every two days, composites of every 8 
days) and good atmospheric corrections, it provides suitable data for vegetation studies (Zhang et al., 
2003). 

In our case, we used MODIS imagery, or the collection of NDVI products from 2000 up to and including 
2018, which resulted in a total of 812 usable NDVI images for the whole of Slovenia. The NDVI vegetation 
index is produced by the contractor as a 16-day average product of the two satellites' images with 
multiple spatial resolutions. NDVI was chosen for the analysis because it represents a strong correlation 
with green biomass and is often used to observe vegetation from remotely sensed data (Tucker, 1979). 
NDVI uses reflected radiation in the near-infrared and visible red wavelengths to quantify the density of 
vegetation cover. It is expressed as: 

𝑁𝐷𝑉𝐼	 = 	 !"#$	&'	(#!)	*	$")	(#!)
!"#$	&'	(#!)	+	$")	(#!)

  

NDVI values range between -1 and 1, with higher values indicating greater photosynthetic activity. 

Clouds and poor atmospheric conditions tend to lower NDVI values (Chen et al., 2004) and cause sudden 
drops in the time series, which are treated as noise and need to be removed from the time series by 
smoothing procedures (Pettorelli et al., 2005). It is common practise to use mathematical functions to 
smooth the time series curve of satellite imagery to obtain continuous data useful for phenology 
modelling (Noumonvi et al., 2021). Cai et al. (2017) tested several time series smoothing methods (e.g., 
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Savitzky-Golay method, locally weighted regression smoothing, spline smoothing, asymmetric Gaussian 
smoothing, double logistic function fitting) on MODIS NDVI time series and found that all methods 
reduce noise in the images and improve the quality of the observations, but no method always performs 
better than the others. Each method has its advantages and disadvantages, and the choice of model 
depends on the purpose of the study. 

2.1.2 SENTINEL-2 

Sentinel-2 multispectral optical satellite imagery has been available for the same area every 5 days since 
March 2017. The spatial resolution of the visible and infrared spectral bands used for Sentinel-2 is 10 m 
(channels B02, B03, B04, B08), 20 m (bands B05, B06, B07, B8A, B11, B12), and 60 m (bands B01, B09, 
B10). The major limitation in their use, similar to MODIS data, is the presence of atmospheric noise 
(clouds, haze, etc.). This increases the uncertainty in determining phenological phases when monitoring 
phenology. 

 

Figure 2. Spectral characteristics of Sentinel 2  

In our case, we downloaded and used all existing Sentinel-2 data (spectral band reflectance and cloud 
cover (%)) from 2017 to 2022, using the eo-learn library and the statistical API from the Sentinel-HUB 
platform. From these, we built dense time series (areas where the orbits of the Sentinel-2 satellites 
overlap are denser than 3 days) and added 22 vegetation indices (Table 1). The vegetation indices 
analysed were taken from various studies dealing with satellite imagery and phenology. They represent 
spectral transformations that combine two or more spectral bands and show different vegetation 
properties or biophysical parameters (e.g. pigment, water content, chlorophyll or vegetation structure) 
that can be used to objectively monitor vegetation dynamics on a regional or even global scale. 

Table 1. Overview of the vegetation indices used in the study. 

Index Formula (Sentinel-2) Reference 
NDVI (B08 - B04) / (B08 + B04); Tucker, 1979 
TNDVI sqrt((B08 - B04) / (B08 + B04)) + 0.5); Akkartala et al., 2004 
GNDVI2 (B07 - B03) / (B07 + B03); Lymburner et al., 2000 
PSSRa B07 / B04 Blackburn, 1998 
RVI B08 / B04 Pearson and Miller, 1972 
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Index Formula (Sentinel-2) Reference 
ARVI (B8A - B04 - y * (B04 - B02)) / (B8A + B04 - y * (B04 - B02)); y = 0.106 Tanre et al., 1992 
BWDRVI (0.1 * B07 - B02)/(0.1 * B07 + B02) Sonobe et al., 2018 
SAVI (B08 - B04) / (B08 + B04 + L) * (1.0 + L); L = 0.428 Huete, 1988 
EVI2 2.5 * (B08 - B04) / (1 + B08 + 2.4 * B04); Huete et al., 2011 
EVI 2.5 * (B08 - B04) / ((B08 + 6.0 * B04 - 7.5 * B02) + 1.0); Huete, 1997 
DSWI (B08 - B03)/ (B11 + B04) Hościło, 2016 
GCI (B08 / B03) -1; EOS Data Analytics, 2022 
GNDVI (B08 - B03) / (B08 + B03); Gitelson et al., 1996 
IRECI (B07 - B04) / (B05 / B06) Frampton et al., 2013 
NDI45 (B05 - B04) / (B05 + B04) Delegido et al., 2011 
SIPI (B08 - B01) / (B08 - B04); EOS Data Analytics, 2022 
NBR (B08 – B12) / (B8 + B12); García and Caselles, 1991 
MCARI ((B05 - B04) - 0.2 * (B05 - B03)) * (B05 / B04); Daughtry et al., 2000 
RGVI B03 - B04 / B03 + B04)) + 0.5 Löw and Koukal, 2020 
BNIR B08 / 5500 Löw and Koukal, 2020 
NDI45 (B05 - B04) / (B05 + B04); Delegido et al., 2011 
S2REP 705 + 35 * ((B04 + B07) / 2 – B05)/(B06 – B05) Frampton et al., 2013 
NDMI (B08- B11) / (B08 + B11); Gao, 1996 

2.2 In-situ data 

The field data used in this work were used to verify the phenological parameters obtained from the 
satellite images. It is important to note that different authors define phenological seasonal phases 
differently. The reference data used, either collected in the field or calculated from ground 
measurements, are listed in the following subsections. 

2.2.1 ARSO phenological data 

Source: ARSO Phenological Data Archive 

Because different phases of phenological development are measured for different plant species, we 
selected data from linden (Tilia platyphyllos) for comparison with MODIS data, and beech (Fagus 
sylvatica) for comparison with Sentinel-2 data. For linden, we used data at the time of first leaf 
emergence (when a few fully open and erect leaves appear on the observed tree, the leaves have the 
characteristic shape of the species but are not yet the final size), at the time of general yellowing, and at 
the time of general leaf drop (when more than half of the leaves on the observed tree have autumnally 
yellowed or dropped). For beech, we paid attention to the appearance of the first leaves (when 10% of 
the leaves on the tree have a final shape but not yet a final size or colour) and general leaf yellowing 
(when 50% of the leaves on the tree change colour from green to yellow, red, or brown). 

It is important to note that the data for each tree may vary depending on the actual location. Generally, 
a tree is located within 1 km, or more in exceptional cases, of the coordinates given. 

2.2.2 GIS ICP Forest phenological data 

Source: Slovenian forest institute 

These phenological data were collected on trees in ICP Forests Level II plots in Slovenia. The II level plots 
were established in some selected forest types that are of national greater importance. The ICP Forests 
programme (International Co-operative Programme on the Assessment and Monitoring of Air Pollution 
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Effects on Forests") was initiated in 1985 by the United Nations Economic Commission for Europe on 
the basis of the Convention on Long-Range Transboundary Air Pollution (CLRTAP). In Slovenia, the 
programme began in 1978 (Level I plots), but was not regulated until 2000 with the adoption of the 
Forest Protection Regulation. Level II plots, where phenological observations are also carried out, were 
established in 2003. 

Phenological data were collected for different forest tree species, including beech (Fagus sylvatica), oak 
(Quercus robur) and hornbeam (Carpinus betulus). According to the internationally harmonised ICP 
Forests methodology (Raspe et al., 2020) means the beginning of the phenological growing season of 
forests, when most of the first leaves of a tree open in the spring, and the end, when most of the leaves 
change colour in the fall. Each phenological phase (foliage, coloration, and leaf fall) is rated on a five-
point scale (< 1%, 1-33%, 34-66%, 67-99%, > 99%). 

 

2.2.3 ARSO meteorological data 

Source: ARSO National Mateorological Archive 

Meteorological data on the beginning and end of the growing season are available for the period 
beginning in 1991. The meteorological beginning of the growing season is defined by ARSO on the 
basis of an interval of five degrees Celsius in spring and autumn. This means that the beginning of the 
season in spring requires at least six consecutive days with an average temperature greater than 5° C, 
while the end of the growing season in autumn is characterised by six consecutive days with a measured 
average temperature lower than 5° C. These data were used as an additional observation to test whether 
satellite imagery, specifically MODIS data, is due to its median spatial resolution more responsive to 
meteorological than to phenological in-situ data. 

For the analysis with the Sentinel-2 data, we also used additional data from the meteorological data 
archive: daily maximum air temperatures (°C), daily minimum air temperatures (°C), daily average air 
temperatures (°C), daily average precipitation (mm), sunshine duration (h), snow depth/new snow, and 
cloud cover (%). 

2.3 Additional data 

In addition to all the data described above, additional data were also used for the study, namely digital 
elevation model data with a resolution of 25 m (source: GURS) and tree stand data (source: GIS, ZGS). 
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3 Study areas 
The study area includes  points throughout Slovenia. It should be remembered that most of the plant 
species considered in this study do not form large-scale pure stands. Due to the spatial variability of the 
landscape and climatic conditions, different lengths of vegetation periods can be observed, which are 
reflected in the spatio-temporal pattern of the NDVI. In all cases, only one phenological season is 
observed in Slovenia. For the MODIS and Sentinel-2 observations, we analysed different sites in Slovenia. 
The actual locations of these stations do not reflect the exact location of the stations. For example, for 
meteorological stations whose locations are known, a given coordinate may differ from the actual 
coordinate by more than 100 metres. 

 

Figure 3. Locations where we tested the usefulness of MODIS satellite imagery for determining 
phenological phases. 

Phenological phases were calculated from the MODIS NDVI time series for a total of 21 points: seven 
point locations for all three data types (see Figure 3). 

 

 

 



 

14 
 

 

Figure 4. Locations of study areas for phenological monitoring with Sentinel-2 satellite imagery and 
distribution of beech stands in Slovenia (in green). 

The beech observation sites are distributed among different ecological regions (Table 2), thus covering 
a heterogeneous sample of observations covering the topographically diverse and rugged terrain of 
Slovenia. The sites are characterised by pure beech stands (the proportion of beech in each stand is 
more than 90%) of 20 × 20 m size and are located in close proximity to the ARSO monitoring stations. 
The five monitoring stations were taken from the study "Prediction of plant phenological development 
on the basis of agrometeorological variables in Slovenia" (Črepinšek, 2002). There, the stations were 
selected on the basis of two criteria, namely that the selected meteorological station is also a 
phenological station and that the sample of selected stations covers climatically different parts of 
Slovenia. In our study, 5 stations were added that are not part of the above study. At all sites we searched 
for stands with similar meteorological and spatial characteristics as the phenological stations of the 
National Phenological Network (NPN). Each sample point was manually verified by visual interpretation. 
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Table 2. Observation sites in study areas with spatial and meteorological characteristics. 
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4 Methods for obtaining phenological phases 
The choice of method for determining phenological parameters depends on the vegetation index used, 
the phenological threshold chosen (e.g., what defines the beginning/end of the season), and how that 
threshold is converted to a vegetation index value or to a value for examining vegetation type (Eklundh 
and Jönsson, 2017). 

4.1 Extracting phenology from MODIS data 

To accurately determine the growing season and its characteristics using MODIS data for each year, we 
developed our own approach in the R programming language (for the workflow see Figure 5)and used 
the TIMESAT tool to compare the results. 

  
Figure 5. MODIS satellite image processing workflow for defining phenological phases. 

4.1.1 Seasonal midpoint method   

The approach to determining key phenological phases that we developed for this work in the R software 
environment works by determining the threshold of the NDVI curve and is relatively simple. To ensure 
that the data set does not contain additional noise, the time series MODIS NDVI is first smoothed with 
an adaptive Savitzky-Golay filter (Savitzky and Golay, 1964). This smoothing method is particularly 
suitable for smoothing NDVI time series because it can remove abnormally high and low values (Chen 
et al., 2004). 

After smoothing the time series for each year, we calculate the peaks (maxima) and valleys (minima) on 
the temporal histogram of NDVI values. To calculate phenological metrics, a specific threshold or limit 
is often set to define the beginning or end of the growing season. The beginning of the growing season 
usually refers to the date when NDVI values increase significantly, while the end marks the time when 
plant greening indicator values decrease significantly. The most commonly used threshold for their 
determination is 50% of the amplitude of the vegetation index considered in the given season. This 
means that the beginning (end) of the growing season is defined as the median or midpoint between 
the minimum and maximum values on the curve in an ascending (descending) histogram of NDVI values 
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in a given year (Figure 6), similar to Noumonvi et al. (2021) or Restrepo-Coupe et al. (2015). However, 
the choice of the median on the curve is a pragmatic decision because, as Noumonvi et al. (2021) note, 
the best threshold chosen to determine the beginning or end of the growing season may vary 
depending on the location of the station or the type of vegetation observed. Huang et al. (2019) noted 
that there is no optimal threshold that is suitable for all plant species. 

The seasonal midpoint method can be applied dynamically for each year, but it is very sensitive to snow 
cover, cloud cover, drought, and similar extremes that can cause large differences in the results. The 
results obtained are tabulated for each individual year as day of the year (DOY). 

  
Figure 6. Phenological (seasonal) phases calculated by the seasonal midpoint method based on NDVI 

values from satellite images. 

We further compared the results obtained with the described approach with the different approaches 
obtained with the TIMESAT tool. 

4.1.2  TIMESAT, version 3.3 

TIMESAT (Jönsson and Eklundh, 2004) is a widely used software package for determining a large number 
of phenological phases. It is a computationally simple but robust tool that is widely used in studies that 
investigate vegetation phenology using time series of satellite imagery (e.g. Cho et al., 2017; Davis et al., 
2017; O’Connor et al., 2012; Van Leeuwen, 2008; Wessels et al., 2011). The results come from different 
data smoothing approaches that influence the definition of the phenological phases (Savitzky-Golay, 
Assymetric Gaussian, Double Logistic, Coarse Seasonality). The final choice of method depends on the 
characteristics of the input data and is decided by testing the fit of the function to the original data. For 
testing purposes, we tried several different approaches to determine the most appropriate one. 

The determination of seasonal phases in TIMESAT is defined in such a way that the beginning of the 
vegetation period is determined when the values on the curve increase by 20% of the seasonal 
amplitude and vice versa, and the end of the vegetation period is calculated when the amplitude 
decreases by 80%. Although there are many other software packages for determining phenological 
phases (e.g., PhenoSat, QPhenoMetrics, Phenex, Greenbrown), in this study we tested the usefulness of 
the methods already integrated into TIMESAT. 
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4.2 Extracting phenology from Sentinel-2 data 

As can be seen from the schematic in Figure 7, in the case of the Sentinel-2 satellite imagery we are 
examining both the utility of spectral bands and vegetation indices and the extraction of phenological 
phases from preselected channels/vegetation indices. These are two seemingly separate parts that will 
be merged based on the results to provide a more comprehensive overview of the usefulness of 
Sentinel-2 data for phenological monitoring. 

 

Figure 7. Sentinel-2 satellite image processing workflow for defining phenological phases. 

4.2.1 Selection of key information for phenology monitoring from 
Sentinel-2 data 

The Sentinel-2 time series are processed and analysed in the open-source Python programming 
environment (version 3.7.3.), where a number of data processing libraries are available, such as numpy, 
pandas, matplotlib, seaborn, sentinelhub-py, rasterio, datetime, scipy.signal, etc. There, vegetation 
indices are first computed from the extracted reflectance values of spectral bands and cloud cover. Then, 
masking and cleaning of the data is performed, followed by smoothing and temporal interpolation. 

The time series are masked with a measure of cloud cover (> 0.15%) to exclude unusable data that are 
potentially covered by clouds (see Figure 8). The cloud masking threshold is determined experimentally. 
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Figure 8. Cloud masking in the time series. The red dots represent all measurements at the location, 
the blue line includes only the masked values. 

In time series, we check for breaks that are not expected, i.e., sudden drops/jumps immediately followed 
by a sharp rise/fall. Such values are called outliers and are removed from the time series (see Figure 9). 
The removal of outliers was developed by Löw and Koukal, 2020. The criterion for removing outliers is 
to remove from the time series all values where the difference in NDVI vegetation index is greater than 
or less than 0.33 and the time interval between consecutive observation days is less than 90 days. 

 

Figure 9. Clearing isolates from the time series. 

In the Savitzky-Golay method, the trends and the details of the upward and downward movements of 
the values are preserved, but no adjustment is made for each individual measurement. We use a window 
of dimension 31 and a polynomial of degree 3. We fill in the temporal gaps caused by clouds and isolate 
the clearing using the linear interpolation method and fit the time series to the temporal interval 
between each observation, in our case 5 days. The resulting time series (Figure 10) is the input for 
parameter analysis and the determination of phenological metrics using DATimeS. 
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Figure 10. Time series (green line) created to analyse the usefulness of spectral bands in comparison 
with vegetation indices and phenological parameters coverage. 

The time series include meteorological data, namely minimum/maximum and average daily 
temperature, precipitation, hours of sunshine, and snow cover. As is known from many studies 
(D’Odorico et al., 2015; Moon et al., 2021; Zhao et al., 2020), meteorological data have a decisive 
influence on phenological phenomena, so phenological metrics can be predicted from meteorological 
data alone using so-called agrometeorological models. It logically follows that phenological metrics can 
be correctly predicted from any time series of satellite imagery linearly linked to meteorological data. 

By calculating the correlation matrix (values of Pearson coefficient), we evaluate the utility of all Sentinel-
2 spectral bands (B01 - B12), the 22 vegetation indices, and the meteorological data for detecting the 
growing season and phenological phases. All spectral channels and vegetation indices that are found to 
be unsuitable are removed from the analysis. The vegetation indices that proved to be most useful for 
our purposes are used to determine the phenological phases with the DATimeS tool. 

4.2.2 DATimeS, version 1.10 

DATimeS is a time series decomposition and analysis software developed in MATLAB (Belda et al., 2020). 
DATimes allows performing a number of tasks related to time series, such as creating gapless linked 
spatio-temporal data (images) using machine learning methods (e.g., Gaussian Process Regression - 
GPR), merging multiple sensor data, and determining phenological phases in multi-year time series. The 
difference between DATimeS and the previously presented TIMESAT is that DATimeS offers 
sophisticated new machine learning techniques in addition to the usual methods and tools for time 
series processing. 

Input can be in the form of satellite imagery or a single time series in the form of a text .txt file. This is a 
time-consuming process, as each time series must be prepared and processed separately to obtain the 
final estimates of the phenological phases. 

DATimes determines the number of observed growing seasons by calculating the amplitude, the 
difference between the maximum value in the annual time series and the minimum value, separately for 
spring and fall, and seasonally decomposing the time series (seasonal decomposition). After the 
decomposition of the time series, each individual growing season is analysed, and the phenological 
parameters of the start of the growing season (SOS), end of the growing season (EOS), length of the 
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season, maximum value in the season, etc. are determined. For the detection of the phenological phases, 
DATimeS has implemented three different methods: (1) seasonal, (2) relative, and (3) absolute amplitude. 
In the first case, which is also used here, SOS/EOS is identified where the left/right part of the curve 
reaches a fraction of the seasonal amplitude (30%) along the rising/falling part of the curve (Figure 11).  

 
Figure 11. Example of phenological parameter detection with DATimeS. The purple and green colours 

indicate the areas under the SOS/EOS curve (red triangles) and the spring/fall minimum value, 
respectively. 
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5 Overview of results 
In this section, we present all the results obtained in this study accordingly.  

5.1 Linking meteorological data with Sentinel-2 time series 
and selection of products illustrating phenology 

Figure 12 shows that the time series of vegetation indices (e.g., NDVI) and reflectance values of spectral 
band B8A indicate four annual growing seasons between 2017 and 2021, as do the meteorological time 
series (e.g., mean and minimum temperature). This indicates that the data are correlated/correlated. 

 

Figure 12. Time series of the selected vegetation index NDVI (blue line), values of spectral band 8A 
(red line), and minimum and average daily temperatures (orange and yellow lines). 

For the correlation analysis, we selected two sites in climatically different parts of Slovenia, namely 
Rateče (Figure 13, a) in the northwest and Maribor (Figure 13, b) in the east. Both sites showed a high 
linear relationship between temperature and vegetation NDVI. The highest correlation between the data 
is obtained in the case of linear relationship between daily minimum temperature and NDVI. 

a)  
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   b)  

Figure 13. Linear relationship between mean (left), minimum (centre), and maximum (right) 
temperature and NDVI vegetation index. 

The correlation matrix in Figure 14 shows a linear relationship between the vegetation index time series, 
the Sentinel-2 spectral bands, and the meteorological data. The strong linear correlation, represented 
by the red colour, indicates that the data are suitable for determining phenological phases. We note 
that the meteorological data on temperature and number of sunshine hours are important for the 
recognition of phenology of beech. Spectral bands B06 and B07 (red edge) and bands B08 and B8A 
(near infrared) are important. Red edge is the abrupt change in reflectance in the range of 680 ± 740 
nm. The abrupt change is due to a combination of strong chlorophyll absorption and internal scattering 
by the leaves. The red edge, the point where red absorption transitions to the near infrared, contains 
information about chlorophyll content, nitrogen content, and growth status. 

The vegetation indices NDVI, TNDVI, GNDVI2, PSSRa, RVI, ARVI, BWDRVI, SAVI, EVI, EVI2, DSWI, GCI, 
GNDVI, IRECI, SIPI, NBR, MCARI, RGVI, BNIR, NDI45, S2REP and NDMI are important. 

The NDVI, SAVI, EVI2, IRECI, BWDRVI, and S2REP indices were found to be the most appropriate (highest 
linear correlation with field data). NDVI is the most commonly used index in vegetation studies. SAVI is 
one of the indices that reduce the influence of ground brightness (ground noise) on spectral vegetation 
indices, which include red and near-infrared (NIR) wavelengths. 

IRECI and S2REP are indices with red-edge wavelengths. In particular, S2REP is sensitive to vegetation 
condition (chlorophyll content) N and growth. In general, the higher the S2REP value, the higher the 
chlorophyll content. IRECI includes reflectance in four bands to estimate canopy chlorophyll content 
(Frampton et al., 2013). 

The latter are used for a detailed analysis of the detection of phenological phases with DATimeS. 
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Figure 14. Correlation matrix of time series used (meteorological data, Sentinel-2 spectral channels, 
and vegetation indices). Red values of the Pearson coefficient indicate that the data are strongly 

linearly correlated. 

5.2 Detection of phenological phases from Sentinel-2 data 

Comparison of field measurements (in-situ) and phenological parameters from time series of different 
vegetation indices (Figure 15) shows that the start of the growing season is detected by satellite imagery 
on average 2-3 weeks earlier than the observer records it in the field. The end of the growing season is 
detected on average two weeks later by satellite imagery than by field observations. This means that the 
phenological data obtained from satellite imagery cannot be directly compared in absolute terms with 
the data obtained in the field, since we are obviously observing and comparing different vegetation 
phenomena. 
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Figure 15. Detection of the beginning (a) and the end of the growing season (b) in all analysed study 
areas between 2018 and 2021. 

In absolute terms, the linear relationship between field-collected phenological data and satellite imagery 
data is weak (Figure 16). The correlation coefficient for the start of the growing season is 0.38, while the 
value for the detection of the end of the season increases to 0.45, but still does not show a statistically 
significant pattern between the data. 

 
Figure 16. The scatter plot shows the correlation (Pearson coefficient) between the phenological 

phases of the SOS (left) and the EOS (right) with in-situ soil measurements (x-axis) and phenological 
phases derived from the NDVI time series (y-axis). Both figures use DOY values and measurements 

from all analysed study sites during 2017-2021. 

Since we cannot achieve absolute correlation of the results, we want to check the relative correlation of 
the phenological phases at two locations (Rateče, Maribor), which are located in climatically different 
parts of Slovenia. Figure 17 shows the values of NDVI indices between 2018 and 2021, marking the start 
and end of vegetation periods. It can be observed that the growing season of beech in the Maribor 
region starts 2-3 weeks earlier than in Rateče. The end of the beech growing season is 2-3 weeks longer 
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in the Maribor region than in Rateče. The same results can be seen from the field data (see Table 3), 
which means that the phenological data obtained from the Sentinel-2 time series compare relatively 
well with the phenological data collected in the field. 

 

Figure 17. Collection of phenological phases with time series NDVI in the area of Rateče (a) and 
Maribor (b). 

Table 3. Start and end of growing seasons (corresponding to one week of the year) according to 
phenological data collected in the field (in-situ). 

Postaja Faza Leto NDVI S2REP BWDRVI IRECI EVI2 SAVI in-situ 

  
Rateče 

SOS 2018 15 16 15 16 16 16 17 

2019 14 12 13 16 14 14 16 

2020 16 19 17 18 17 17 17 

2021 15 17 16 19 17 17 / 

EOS 2018 43 43 43 42 42 43 39 

2019 43 40 42 41 42 42 41 

2020 41 42 40 40 40 41 40 

2021 42 41 42 41 42 42 / 

2018 13 14 12 9 12 12 15 
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Maribor SOS 2019 12 12 12 13 12 12 14 

2020 12 11 12 14 13 13 14 

2021 12 12 12 13 13 13 / 

EOS 2018 44 44 43 42 43 43 41 

2019 47 45 43 43 43 43 42 

2020 45 45 44 44 45 45 43 

2021 46 43 43 43 43 43 / 

5.3 Comparison of field data with MODIS-derived 
phenological phases  

The beginning and end of the growing season are expected to vary by a few days from year to year, 
which may be due to precipitation patterns and atmospheric circulation (Broich et al., 2014). In Table 4, 
we compare the mean values determined for all years for: 1.) the start of the growing season (SOS), 2.) 
the end of the growing season (EOS) and 3.) the length of the growing season (LGS) for all points, 
calculated from MODIS satellite imagery using the seasonal midpoint (SM) method, with field data 
(phenological, forestry, and meteorological). 

Table 4. Start and end of growing seasons (equal to specific day of the year) and length of growing seasons (total 
number of days) according to ARSO phenological (_pheno), GIS phenological (_forest), and meteorological 
(_meteo) field data, compared with data derived from MODIS satellite imagery and determined by the SM 
method. 

ARSO pheno SOS_pheno SOS_SM EOS_pheno EOS_SM LGS_pheno LGS_SM 

Bukovci 111 138 269 307 158 169 

Portorož 100 117 303 297 203 180 

Boh. Češnjica 119 123 277 303 157 180 

Vrhnika 109 101 273 276 164 174 

Luče 110 127 274 305 163 178 

Šmartno pri SG 110 137 289 318 179 180 

Zg. Jezersko 126 120 272 299 146 179 

GIS pheno SOS_forest SOS_SM EOS_forest EOS_SM LGS_forest LGS_SM 

Point 2 112 116 302 299 190 183 

Point 5 113 127 290 307 176 180 

Point 7 115 124 293 302 178 178 

Point 8 120 119 283 297 163 178 
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Point 9 115 133 286 317 171 184 

Point 10 101 100 297 284 196 184 

Point 11 102 103 309 288 207 185 

ARSO meteo SOS_meteo SOS_SM EOS_meteo EOS_SM LGS_meteo LGS_SM 

Ljubljana 68 98 330 278 262 180 

Bilje 54 129 339 311 285 182 

Novo Mesto 69 110 322 293 253 183 

M. Sobota 73 109 325 299 252 190 

Rateče 99 140 307 322 208 182 

Vipava 57 112 344 312 287 200 

Maribor 70 109 325 295 254 186 

 
A clear pattern can be seen in ARSO and Forest phenological field data in most regions: the start of the 
growing season is between May and June, and the end of the growing season is in September and 
October. Meteorological data show an earlier start of the season in March and April and a later end of 
the season in October and November, resulting in an overall longer meteorological season. 

The Table 4 shows that the determination of phenological phases using satellite imagery is the most 
appropriate compared to forestry phenological data, with minimal deviation in some cases (points 8, 10, 
and 11: the difference between the start of the growing season is only one day), and the absolute 
differences for forestry data are also the smallest compared to all field data reviewed (average of 8 days 
for SOS, 15 days for EOS, and 10 days for LGS). In contrast, comparisons of satellite and meteorological 
phenology data generally proved to be less accurate. Some measured stations have larger absolute 
errors, with the largest differences reaching as much as a 75-day difference at the beginning of the 
growing season (Bilje station) and even larger differences in the length of the growing season (the 
absolute difference between the two measurements averages about 70 days). However, the 
phenological data from ARSO are somewhere between the forestry and meteorological observations, 
reaching a difference from the MODIS measurements of 15 days on average for SOS and 23 days for 
EOS. For growing season length, the data differ by an average of 16 days. 

Pearson correlation was used to calculate the correlation of phenological phases between the satellite 
images and the three types of field data. First, we calculated the correlation between the start and end 
of the growing season between MODIS data obtained from the NDVI time series using the seasonal 
mean approach and the different types of field data (Table 5). The correlation between the variables 
proved to be a weak but statistically significant. A medium or moderate correlation between the 
variables is found only for the forestry data, where the correlation coefficient for the SOS is 0.44, while 
for these data there is a low or weak negative correlation (-0.27) for the EOS. 
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Table 5. Pearson correlation between phenological, forestry, and meteorological data compared to the 
method of seasonal midpoint method applied to MODIS NDVI time series. 

  Start of the growing season End of the growing season 

  p-value Corr. coeficient (R) p-value Corr. coeficient (R) 

ARSO phenological 
data 

0.20 0.11 0.32 0.087 

GIS phenological data 0.001 0.44 0.05 -0.27 

ARSO meteorological 
data 

0.021 0.23 0.61 0.05 

 

The scatter plot of SOS and EOS for all pixels and for all years considered is shown in the Figure 18 
below. When the data are compared with forestry field data, there is a slope of the curve indicating a 
(positive or negative) correlation. 

 

  Start of the growing season End of the growing season 

ARSO 
phenological data 

  

GIS phenological 
data 
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ARSO 
meteorological 
data 

 

 

 

Figure 18. Scatter plots of various field data compared with satellite-based data SOS and EOS. 

5.4 Comparison of the different approaches for the 
detection of phenological phases 

We compared the results of the determined phenological phases using different methods: the seasonal 
midpoint method and three different approaches integrated into the TIMESAT algorithm, focusing on 
the differences with the field data. This was done to rule out misinterpretation of results due to errors 
in the chosen approach and to test the usefulness of satellite imagery for determining phenological 
phases. The plots in Figure 19 show the differences between the values of the selected data. 

 

 
Figure 19. Comparison of the start and end of the growing season at the selected forest phenological 
point (Burst, LeafCol values) compared to the seasonal midpoint method (SOS, EOS values) and the 
results of various smoothing runs using the TIMESAT software environment (SOS _TS and EOS _TS 

values). The start and end of the season are given as dates in the calendar year. 

As can be seen from the results, there is some variation between the results of the different approaches. 
On average, the start of the growing season is between 100-140 days (April-May), while the end of the 
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growing season is between 290-325 days (October-November). Both graphs show that the start of the 
growing season based on satellite imagery is generally found to be later (by about 15%) than defined 
by forestry experts, as is the end of the growing season when the different approaches are applied.. 

We also reviewed the correlation between different methods of determining phenological phases from 
MODIS satellite imagery with forestry field data and ARSO meteorological data. ARSO phenological data 
were not compared with other methods in the TIMESAT software tool in this step because these data 
were not initially available. 

Table 6. Linking the various used methods that we applied to MODIS data with forestry and meteorological data 
for the beginning and end of the growing season. 

    Start of the growing season End of the growing season 

    p-value Corr. coeficient (R)  p-value Corr. coeficient (R)  

GIS phenological 
data 

SM method 0.001 0.44 0.05 -0.27 

TS_SavGol 0.55 -0.085 0.00003 -0.54 

TS_Gauss 0.047 0.28 0.38 -0.12 

TS_DoubLog 0.018 0.35 0.30 0.16 

ARSO 
meteorological data 

SM method 0.021 0.23 0.61 0.05 

TS_SavGol 0.1 0.16 0.56 0.059 

TS_Gauss 0.056 0.19 0.21 0.13 

TS_DoubLog 0.05 0.19 0.18 0.13 

As can be seen from Table 6 different methods lead to different results. In both cases, the best 
correlation with the reference field data is the SM method, which in the case of the forest  data has a 
correlation of 0.44 for the SOS and a negative correlation of 0.27 for the EOS. The other TIMESAT 
methods do not show significant correlation with the field data, but in almost all cases the comparisons 
are significant, as indicated by p-values of less than 0.05. The results obtained are consistent with the 
findings of White et al. (2009) and Misra et al. (2016), which indicate that calculated phenological phases 
can vary widely among different methods for analysing satellite imagery, suggesting that the choice of 
method for determining phenological phases is critical to obtaining meaningful results. 
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6 Conclusion 
The determination of phenological phases is important in several respects. The main advantage of 
satellite imagery compared to field data is that the determination of phenological parameters is not tied 
to the type of plant species observed and can be done simultaneously over a large area. Although some 
authors (e.g., Siłuch et al., 2022) claim that satellite imagery has an advantage over field data in providing 
vegetation information, we do not believe that this is necessarily true. The problem with comparing 
calculated phenological parameters from satellite imagery with reference data is that the data are not 
clearly comparable. For example, the start of the growing season may coincide with the seeding period, 
where 14 days may be added to the day of the year, or as many as are needed for the plant to visibly 
green. Similarly, field observations differ, and the start of the growing season is defined differently for 
phenological observations (GIS, ARSO) or meteorological observations (ARSO). Thus, from the examples 
described above, it is clear that there is a great deal of variability in the definition of the phenological 
phases themselves. When modelling phenology, care should be taken to ensure that the area of the 
observed pixel represents the phenology of the land surface or mixed vegetation in the area under 
consideration, and not necessarily any particular vegetation unless it occupies the entire area of the 
pixel. In addition, the modelling often does not take into account elevation, slope, and exposure, which 
have a visible influence on the phenological characteristics of the vegetation. At the same time, the end 
of the growing season is more difficult to determine from remote sensing data than the start of the 
growing season, and the results are much more heterogeneous than those of the start of the growing 
season (Piao et al., 2019). As highlighted in the previous section, the problem of choosing an appropriate 
method for determining seasonal phases from remote sensing data arises (Siłuch et al., 2022). 

In our study, forestry data proved to be the best compared to satellite imagery. These field data are 
measured in forested areas or forest edges and are most comparable to the satellite observations in 
terms of the type of surrounding land use. This is because satellite imagery not only observes a tree in 
the field at the point (pixel) level and compares its measurements, but also its entire surrounding area. 
In fact, the phenology of all tree species present in the pixel area is measured at the pixel level. To obtain 
meaningful results, one would need to calculate the proportion of vegetation for each pixel in the 
satellite image based on the points examined. 

Phenological data obtained with ARSO are less suitable for low- or medium-resolution satellite 
observations because individual trees of a given species are observed that are not representative in a 
single pixel, and consequently, instead of a single species in a pixel, several different species with 
different phenological behaviour are found. In addition, it should be remembered that phenological 
field data do not always refer to a specific coordinate, but to an area that is usually within a radius of 1 
km, or more in exceptional cases. Erroneous NDVI values can therefore lead to incorrect estimates of 
the start and end of phenological phases or their estimates. The low resolution of the products of MODIS 
NDVI (250 m) does not provide the homogeneous pixels needed to account for the large variability in 
vegetation phenology in the areas considered. This was also noted by Younes et al. (2021), who showed 
that the resolution of MODIS images is too high to study the phenology of a particular species and that 
these models cannot accurately describe the phenology of a particular type of vegetation, but they do 
provide useful clues to the phenology of the area under consideration. Therefore, in order to 
meaningfully determine phenological phases from coarse resolution data, we should observe 
monocultures that span a larger area. The higher spatial resolution of satellite imagery, e.g., from Landsat 
or Sentinel-2 sensors, allows for more accurate matching of time series parameters with data measured 
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in the field (Fisher et al., 2006; Jönsson et al., 2018; Melaas et al., 2013). Therefore, the increased number 
of observations with Sentinel-2 imagery, available in dense time series only since 2017, may further 
increase the accuracy of determining phenological phases (Jönsson et al., 2018). 

It should be noted that the ARSO meteorological data are not directly phenological data, the monitoring 
sites are located in areas where the pixel coverage of vegetation is lower (in urban areas), and 
consequently the NDVI results cannot reflect the vegetation condition in these areas due to the influence 
of other land uses. Nevertheless, the comparison is based on the assumption that vegetation 
development (mainly of deciduous trees) is related to ambient temperatures. These data were therefore 
used to compare how results obtained from satellite imagery relate to these data.  

However, comparison between observed remotely sensed vegetation indices and vegetation 
productivity values provides valuable insight into the usefulness of remotely sensed vegetation indices 
for validation, refinement, and general improvement of vegetation simulation.  
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