
This is the preprint version of the following article: 
 
 
Draškovič-Bračun, A., Potisk, T., Praprotnik, M., & Svenšek, D. (2022). Suspension of discrete microscopic 
oscillators as a model of an ultrasonic metafluid. Physical Review, 105(22), 224317-1-224317–14. 
doi:10.1103/PhysRevB.105.224317 
 

 
which has been published in final form at: 
 

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.224317?ft=1#fulltext 
© 2022 American Physical Society 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.224317?ft=1#fulltext


Suspension of discrete microscopic oscillators as a model of an ultrasonic metafluid
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We present a model of ultrasonic metafluids — acoustic metamaterials in the form of suspensions of
discrete microscopic oscillators coupled to the embedding fluid. Contrary to a common assumption
about metamaterials, and as already established in the field of metafluids, the metafluid concept
need not be based on position periodicity or correlation of the suspended micro-oscillators, and in
this case not even on ideally designed micro-oscillators. For the speculation that metafluids may
one day be produced as solutions of macromolecules, it is essential that the micro-oscillators be
allowed to be randomly distributed in the host fluid and generally have irregular (modal) shapes.
We formulate the detailed operating principle of such a metafluid model, give explicit formulae for
its effective dynamic moduli in terms of the modal structure of the micro-oscillators, and discuss
basic practical issues of performance optimization in terms of their mass and size.

This work builds on the fascination that suspensions of ir-
regular, possibly macromolecular or microprinted entities
that act as micro-oscillators could function as ultrasonic
metamaterials in certain frequency windows.

Mechanical acoustic metamaterials [1–3] realized in
practice are based on principles of waveguides with cavity
and membrane resonators [4–11], perforated plates [12],
coiled-up space in two- and three-dimensional labyrinths
[13, 14], and various synthetic (elasto)mechanical unit
cells [1, 3]. These are all artificial, elaborately con-
structed, spatially ordered systems that can induce neg-
ative phase velocity of airborne or structure-borne sound
waves, resulting in unusual wave propagation charac-
teristics such as negative refracion. In addition, active
acoustic metamaterials with electromechanical sensing
and transducing units have been realized [15–17], where
any desired response of the units is driven and controlled
by tailored electronic signals. Remarkably, a physiologi-
cal acoustic metamaterial has also been recently reported
[18] — moth wings are found to act as metamaterial ul-
trasound absorbers.

In soft materials, various models have been investi-
gated, mainly theoretically, from bubbles [19–25] and
elastic spheres [26–29] suspended in liquids or soft solids,
periodic fluid-solid [30, 31] or hard sphere-soft matrix
[32] composites. Scattering by monopolar resonances of
single bubbles or pairs of bubbles has been rigorously
treated in ref. [19], and a pair of spherical bubbles sub-
ject to general axisymmetric shape oscillations in ref. [33].
Acoustic metafluid with negative index over a wide fre-
quency range around 0.1 MHz based on Mie resonances in
suspended porous microbeads has been practically real-
ized [34] and compared against multiple scattering mod-
eling. An absorption metascreen in the form of a two-
dimensional bubble array with coupled monopolar res-
onances has been presented both theoretically and ex-
perimentally [22, 24]. Multiple scattering by monopolar
resonances of a large number of disordered bubbles was
computationally modeled [23], including the dipole re-
sponse for smaller bubble spacing [20].

In liquid systems, the dynamic bulk modulus is rela-
tively easily affected by bubble- or vesicle-like inclusions.
In medical ultrasound imaging, for example, such ob-
jects, e.g., encapsulated microbubbles injected into the
blood stream, are specifically used as contrast agents be-
cause of their strong scattering at monopolar resonances.
These contrast agents are typically 1–10µm in diameter
and comprised of a biologically inert gas, e.g, air or high
molecular weight gases (perfluorocarbon, sulfur hexaflu-
oride or nitrogen), stabilized within a lipid, protein, or
polymer shell [35–38]. Creating resonances that would af-
fect the dynamic density of the fluid, on the other hand,
is a more difficult task. In order to affect the density, the
inclusions must exert a force on the fluid, and therefore
the corresponding resonances must have a vectorial, i.e.
dipolar angular symmetry. Unlike mechanical systems
supported by a structure or frame, in fluid environments
there is no external reaction force on the wave-carrying
medium, i.e., recoil from the structure as, e.g., in the case
of membranes, is not possible. Thus, the lowest dipo-
lar modes of the inclusions are rigid translations with
zero frequency. Therefore, one must reckon with dipo-
lar modes of higher radial order [34, 39], in which, for
example, the central part of the object moves in the op-
posite direction to the outer regions. If the object is to
effectively recoil from the embedding fluid and thus ex-
ert a force on the fluid, the central part must be hidden,
i.e. effectively inaccessible to the fluid.

We should note that bubbles (unlike droplets, for ex-
ample) have no such dipolar modes at all. Their undu-
lations are completely described by an angle-dependent
radial displacement from the spherical equilibrium shape
and the normal modes are scalar spherical harmonics.
¿From their orthogonality it follows that there is only one
dipolar mode, i.e., trivial translation with zero frequency,
and only one breathing (volume-changing) mode. All
higher modes are strictly volume-preserving and do not
shift the center of mass of the surrounding fluid. Some
elasticity of the bubble shell is additionally required to
obtain higher modes with dipolar symmetry, which could,
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Figure 1. Schematic of a micro-oscillator working principle: a
macromolecular entity is excited by the acoustic field and gen-
erates local flow (arrows) of the host fluid; the contours indi-
cate the corresponding pressure. The dipole component of the
flow is associated with a “hidden” force on the fluid. Dipolar
contributions of many micro-oscillators add up to smooth flow
and hidden-force fields, while contributions of the monopole
component (which dominates in the long-wavelength limit and
is not shown) add up to a smooth volume source field. The
former change the effective density and the latter the effective
compressibility of the medium experienced by the ultrasonic
wave. For a continuous medium, these two effects are de-
scribed by Eqs. (1) and (4), respectively.

at least in principle, shift the center of mass of the sur-
rounding fluid.

Therefore, to avoid the need for dipolar modes, the
concept of dipolar resonances of dimers arising from
multiple scattering was invoked, with a very illustra-
tive demonstration using two-dimensional lattices of soda
cans as Helmholtz resonators [40]. In the case of bubbles,
this effect was theoretically exploited in ref. [21], showing
that multiple scattering due to monopolar resonances of
disordered but positionally pair-correlated bubbles can
lead to simultaneously negative values of the dynamic
mass density and compressibility. However, the design of
a disordered medium with pairwise spatial correlations
between the monopolar resonators is a prerequisite to
ensure the effectiveness of this pairwise coupling.

Higher dipolar modes that shift the center of mass of
the surrounding fluid are certainly present in droplets
and similar full objects with radial degrees of freedom.
When excited, they represent the source of the hidden
force on the fluid [39]. However, to obtain such higher
modes in the objects, which should be much smaller than
the wavelength in the host fluid, they must have a much
lower speed of sound than the host fluid. For objects
made of continuous media, this is a serious limiting fac-
tor. One way out is to use a heterogeneous, highly porous
inclusions [34] in which the speed of sound can be reduced
by more than an order of magnitude due to the high com-
pressibility of the air in the pores, while maintaining the
high mass density due to the skeleton.

With this work, we take a different approach and model
ultrasonic metafluids in the form of suspensions of dis-
crete microscopic oscillators with specific and inherently
irregular modal shapes. The model oscillator, described
in Sec. II, is represented by a quasi-spherical collection of
point masses interacting with harmonic springs. Because
of the possibility of specific and locally very different in-
teractions between the particles in this discrete network,
which do not occur in a continuum — one of these fea-
tures is the topology, the coordination number of impor-
tant connections between particles — the normal modes
cannot be categorized in advance and are susceptible to
qualitative changes resulting from changes in the local
connection rules. However, the main difference from the
continuum are the so-called floppy or soft modes [41–
45] with unusually low frequencies, known also in semi-
rigid elastic networks used in modeling proteins [43–48].
They arise from low-energy internal bond-rotational de-
grees of freedom that typically form in the undercon-
strained regions of the structure. Such anomalous floppy
modes could potentially extend the lower frequency end
of macromolecules, such as large proteins, into the super-
sonic range.

With this motivation in mind, we model the meta-
material behavior as a generic phenomenon that is not
restricted to regular objects such as bubbles or elastic
spheres, nor to a regular organization in the sense of a
particular spatial periodicity or correlation. For a poten-
tial metafluid without fully controlled design, these as-
pects are essential. Moreover, modal irregularity opens
up more possibilities for the realization of negative dy-
namic density, while preserving the convenient breathing
resonances of bubbles and vesicles. Practically, such a
metafluid could also consist of two components — the
somewhat simpler bubble- or vesicle-like component that
affects the dynamic compressibility, and another, more
complex component that affects the dynamic density.
Possible candidates for the latter are globular macro-
molecular structures such as large globular proteins, pro-
tein bubbles, multilamellar vesicles below the bilayer
gel-to-liquid transition, and other microscopic structures
without strong inherent damping. The possibility that
some of them could even be synthesized via a biologi-
cal pathway is very tantalizing. Today, microscopic os-
cillators with sufficient dynamic functionality could be
also microprinted in large numbers to obtain an artificial
acoustic suspension.

Acoustic response is not readily associated with the mi-
croscopic or even macromolecular world, and not so much
with soft matter in general. The aforementioned applica-
tions of encapsulated microbubbles [35–38] in MHz-range
medical ultrasound imaging show, however, that this is a
real option. The scaling ω ∝ 1/

√
m of molecular normal

mode frequencies ω with molecular mass m suggests that
sufficiently large macromolecules can exhibit acoustically
relevant frequencies. Indeed, breathing mode frequencies
of large proteins extend down to ∼ 1 GHz, where the
attenuation length of ultrasound in water is still about
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50 µm [49] and would thus allow miniature applications.
We will comprehensively explain the concept of such

metafluids and describe their principle of operation in
detail. It is schematically sketched in Fig. 1. ¿From the
normal modes of the micro-oscillator units coupled to
the surrounding fluid, we will calculate the response of
the units to acoustic excitation. We will also estimate
the width of the coupled modes due to viscous damp-
ing in the fluid. All this allows us to arrive at a self-
consistent continuum solution that explicitly defines the
two macroscopic effective moduli — dynamic compress-
ibility and density — that govern acoustic propagation in
this meta-medium. We demonstrate that both effective
moduli can indeed become negative and show when this
happens. Particular attention is paid to achieving neg-
ative dynamic density, which is the main challenge with
metafluids.

I. ACOUSTIC WAVE EQUATION OF A
METAFLUID

The metafluid is a two-component system — a host fluid
component (the main component, water), in which a
micro-oscillator component is randomly distributed. We
will treat it in the dilute limit, which means that the
micro-oscillators do not communicate directly with each
other, but only indirectly via their continuum (mean-
field) pressure and flow fields. Thus, ideally, we have two
separations of length scales: the micro-units are suffi-
ciently far apart (dilute limit), while their mean distance
is still small compared to the acoustic wavelength (the
usual limit for a metamaterial). Note that this idealiza-
tion is applicable for ultrasound in water up to about
100 MHz.

We describe the dynamics of acoustic waves in the
main component, while the micro-oscillator component
gives rise to “hidden” force [50, 51] and volumetric flux
source. This will result in an effective wave equation for
the main component with an effective dynamic density
ρeff(ω) and an effective dynamic compressibility χeff(ω).

With e−iωt as the time factor used from now on, the
linearized Euler equation for the main component is

−iωρ0u = −∇p+ f ′, (1)

where ρ0 is the density of the main component, u is its
acoustic (macroscopic) velocity, p is the acoustic pressure
and f ′ is the hidden force density. In the view of the two
component system, −∇p is an external force on both
components, while f ′ is an additional internal force of
the micro-oscillator component on the main component.
This separation is absolutely crucial — these two forces
are physically distinct and cannot be reduced to a single
quantity, i.e., the partitioning of the total force density
on the main component into both contributions is not a
matter of choice.

In the following part of this Section, dynamic density
and compressibility moduli are justified and systemati-

cally introduced. Readers familiar with the subject may
proceed directly to Section II.

The hidden force arises from the oscillation of the
micro-oscillators excited by the acoustic field, i.e., by the
local acoustic pressure or velocity or both, depending on
the coupling mechanism (pressure or viscous drive). Im-
portantly, in a linear system, the excited amplitude is lin-
ear in the amplitudes of the acoustic fields p and u (which
are themselves linearly related) and the resulting force
F1 of a single micro-oscillator on the fluid is also linear
in the excited amplitude of the micro-oscillator. There-
fore, in the homogeneous limit the hidden force density
f ′ = ρNF1 of the micro-oscillators with number density
ρN can be written in the form

f ′ ≡ iωρ′(ω)u, (2)

with ρ′ ∝ ρN . Eq. (1) then becomes

−iω [ρ0 + ρ′(ω)]u = −∇p, (3)

where ρeff ≡ ρ0 +ρ′(ω) is an effective dynamic density of
the metafluid.

The continuity equation for the main component, with
dρ0/ρ0 = χ0dp the equation of state of the main compo-
nent and χ0 its compressibility, is in the usual linearized
form

−iωχ0p+∇ · u = q′, (4)

where q′ is the additional, hidden volume source density
(volume flux per unit volume) due to the breathing os-
cillations of the micro-oscillator component. Again, the
volume source Q1 of a single micro-oscillator is linear in
its excited amplitude and thus linear in p, such that in
the homogeneous limit the hidden volume source density
q′ = ρNQ1 can be written in the form

q′ ≡ iωχ′(ω)p, (5)

with χ′ ∝ ρN . Eq. (4) then becomes

−iω [χ0 + χ′(ω)] p = −∇ · u, (6)

where χeff ≡ χ0+χ′(ω) is an effective dynamic compress-
ibility of the metafluid.

Finally, from Eqs. (3) and (6) follows the acoustic wave
equation of the metafluid,

∇2p+ ω2χeff(ω)ρeff(ω) p = 0, (7)

where χeffρeff = 1/c2 defines the speed of sound c in
the metafluid. The particularly interesting case of the
double negative metafluid occurs at frequencies where
both χeff(ω) and ρeff(ω) are negative and thus c2 is real.

In Secs. IV and V, we will determine the effective mod-
uli ρeff and χeff from the modal structure of the micro-
oscillator. In Sec. II, we must first determine these eigen-
modes, taking into account the coupling with the sur-
rounding fluid, which introduces a nontrivial additional
mass load.
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II. FLUID-COUPLED MICRO-OSCILLATOR

The micro-oscillator unit is generically represented by
a discrete globular, quasi-spherical ensemble of point
masses mi with harmonic expansion

Uij =
1

2
kij [êij · (xi − xj)]

2
, êij ≡

Ri −Rj

|Ri −Rj |
, (8)

of their distance-dependent quadratic pair potentials
Uij = 1

2kij(|Ri + xi −Rj − xj | − |Ri −Rj |)2 with force
constants kij , where Ri is the equilibrium position of
i-th particle and xi its fluctuation. Such a generic dis-
crete approach in the spirit of anisotropic network mod-
els [44, 46, 47] of proteins is convenient, since practically
any microscopic system can be modeled in this sense and
then always coupled to the surrounding fluid in the same
manner.

In the present study, we couple the dynamics of the
micro-oscillator with the surrounding host fluid by con-
sidering incompressible irrotational (potential) flow of
the fluid and neglecting its viscosity η. The inviscid
approximation is typical of an acoustic medium that is
sufficiently transparent to sound waves, while the incom-
pressibility assumption corresponds to the omission of
the radiation pressure applicable in the long-wavelength
limit.

To ensure that the viscous effects are small even for
the microscopic flow field v around the micro-oscillator
and the potential flow assumption is sufficient, the ra-
dius r0 of the micro-oscillator should not be too small.
The requirement that the inertial forces dominate over
the viscous ones, ρ0ωv � η∇2v, leads to the condition
r0 �

√
2η/(ρ0ω), i.e., the micro-oscillator must be large

compared to the penetration length of oscillatory shear
(∼ 0.18 µm for ultrasound with frequency ν ∼ 10 MHz in
water).

The values of the parameters are selected according to
the following strategy. The mean density of the micro-
oscillator is kept on the order of ρ0, which is also con-
firmed by the results as the relevant density scale. This
sets the mass of the micro-oscillator given its typical mi-
cron size. Finally, the constants kij are chosen such that
the relevant resonances occur at frequencies in the typi-
cal ultrasonic range of 10 MHz, which is also realistic for
micron-sized objects.

To ensure strong coupling of the micro-oscillator to the
surrounding fluid, it is assumed that the surface of the
micro-oscillator is impermeable to the fluid. In practice,
this may be a physical surface due to hydrophobicity, as
in the case of a lipid bilayer, or an effective surface de-
fined by a depletion layer. It is essential that the modeled
contact surface with the fluid, albeit discrete, is complete
and that pressure forces acting on it are described ex-
actly. Otherwise a homogeneous pressure field will lead
to a spurious net force on the micro-oscillator, which in
the long-wavelength limit will prevail over actual pres-
sure gradient force. Therefore, the interfacial part of the
mesh is triangulated and the pressure force F4 on each

triangle is distributed to its three vertices A,B,C by the
requirement of zero in-plane torque on the triangle,

FA = FB = FC = F4/3. (9)

Similarly, the velocity of the triangle’s center is expressed
with the velocities of the vertices as

v4 = (vA + vB + vC)/3. (10)

The velocity potential of the surrounding fluid with
velocity v(r) is of the general form

Φ(r, θ, φ) =
∑
lm

blm

(
r

r0

)−(l+1)

Y R
lm(θ, φ), v = ∇Φ,

(11)
where Y R

lm are real combinations of spherical harmonics1.
We will determine the multipole coefficients blm by relat-
ing the radial component vr(r0, θ, φ) = ∂Φ/∂r of the flow
velocity on a virtual sphere r = r0 to the motion of the
triangles. This sphere can be the average effective sur-
face of the micro-oscillator, or its circumscribed sphere as
illustrated in Fig. 1. In our examples, all surface points
will lie on this sphere, but this is not necessary in gen-
eral. By integrating over the sphere and considering the
orthogonality of Y R

lm,

blm = − 1

l + 1

1

r0

∫
dS vr(r0, θ, φ)Y R

lm(θ, φ). (12)

The knowledge of the continuous function vr(r0, θ, φ) is
required. In the simplest discrete approximation, we re-
place the integral by a sum over the triangles 4j , that is∑
4j Sj vr(r0, θ

4j

, φ4
j

)Y R
lm(θ4

j

, φ4
j

), where the super-

script4j denotes the values at the centers of the triangles
and Sj are their areas.

The single scalar boundary condition for potential flow
requires that the normal velocity of the center of the
triangle (i.e., the average normal velocity of the trian-
gle) be equal to the normal velocity of the fluid at that
point (whereas any rotation of the triangle about an axis
through its center is coupled only to the rotational com-
ponents of the flow). Stating this normal boundary con-
dition for the radial velocity components in Eq. (12) is
a convenient approximation. Then, with respect to out-
ward normals n̂j of the triangles, we obtain

blm = − 1

l + 1

1

r0

∑
4j

Sj
[(

v4
j

· n̂j
)
n̂j
]
·ê4

j

r Y R4j

lm , (13)

where ê4
j

r are radial directions at the centers of the tri-

angles and Sjn̂j · ê4j

r are radial projections of their faces.

1 A Green’s function boundary element formulation [52] is an al-
ternative. Here, the spherical harmonics expansion is preferred,
mainly because of the tractability of the dissipation integrals,
Appendix A.
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We thus see that in this approximation the coefficients
blm of the potential flow Eq. (11) are expressed by the vol-
ume fluxes through the virtual sphere r = r0 generated
by the normal translation of the triangles.

In Eq. (13), only the midpoint values of the spherical
harmonics are used instead of their complicated integrals
over the triangles. Thus, when l in Eq. (11) is brought
to high values, one gets sharper and sharper peaks of
Φ(r0, θ, φ) as the series reproduces this discrete function
more and more accurately. To avoid this artifact, it is
necessary to truncate the series at l = lmax such that the
number of terms (lmax+1)2, i.e., the number of degrees of
freedom, is of the order of the number of surface points.

Taking into account the linearized form of the
Bernoulli equation, p = −ρ0∂Φ/∂t, i.e.,

p = iωρ0Φ, (14)

the pressure force on a triangle, resulting from the flow

Eq. (11) of the surrounding fluid, is F4
i

= Si(−n̂i)p4i

=

−iωρ0S
in̂iΦ4

i

. In agreement with the radial direction
approximation assumed in Eq. (13), it turns out, how-
ever, that we must again introduce a radial projection,

F4
i

= −iωρ0S
in̂i
(
n̂i · ê4

i

r

)
Φ4

i

, (15)

which can be interpreted as the normal component of
the pressure force acting on the spherical cap belonging
to the triangle. Inserting the expressions Eqs. (11) and
(13),

F4
i

=
ω2ρ0

r0
Sin̂i

(
n̂i · ê4

i

r

)
× (16)

×
∑
lm

1
l+1

∑
4j

Sj
(
n̂j · ê4

j

r

)(
n̂j · x4

j
)
Y R4j

lm Y R4i

lm ,

we obtain a closed expression for the force F∆i

on a tri-
angle i in terms of a linear combination of displacements

x4
j

of centers of all triangles j. Importantly, the radial
projection in Eq. (15) ensures that in Eq. (16) the coeffi-

cient of x4
j

appearing in F4
i

and the coefficient of x4
i

appearing in F4
j

are identical and hence the effective
mass matrix in Eq. (19) will be symmetric.

We can now write down Newton’s law for a particle i,

−miω
2xi = −

∑
j

dUij
dxi

+ Fpi , (17)

where the pressure force

Fpi =
1

3

∑
4k3i

F4
k

(18)

is nonzero for the particles on the surface of the
micro-oscillator and is obtained by adding contributions
Eq. (16) of all triangles with vertex i, considering the
simple connections Eqs. (9) and (10).

In a clean matrix form for the “supervector” x = {xi}
of the particle vectors xi, Eq. (17) becomes

−ω2Tx = −Vx, (19)

where V is the interparticle force matrix defined by the
quadratic pair potentials Eq. (8), which is symmetric by
definition, and T ≡ M + A is the effective mass matrix
of the fluid-coupled micro-oscillator, with M the trivial
diagonal matrix of the point masses mi and A the addi-
tional effective mass matrix due to the fluid. The matrix
A results from Eqs. (16), (10) and (18), and is a full, sym-
metric matrix. The latter is ensured by the analogous
projections in Eqs. (13) and (15).

We can check a simple limit — that of a symmetric
breathing mode of a perfect sphere with amplitude ∆r0.
For this spherically symmetric velocity vr = −iω∆r0 of
the sphere surface, Eq. (12) yields the only nonzero coef-

ficient b00 =
√

4πiωr0∆r0, the velocity potential Eq. (11)
is then Φ(r) = iωr0(r0/r)∆r0 and the fluid pressure
Eq. (14) at the sphere surface is

p = −ω2ρ0r0∆r0. (20)

In passing, the fluid pressure can also be written in
terms of an effective mass load mfluid of the fluid, p =
−mfluid ω

2/(4πr2
0), which is thus three times the fluid

mass m0 displaced by the sphere,

mfluid = 3m0. (21)

Balancing the fluid pressure Eq. (20) and the pressure
p = −3χ−1∆r0/r0 inside the bubble, where χ is the
compressibility of the bubble, the natural (Minnaert
[53]) frequency of a bubble entrapped in the fluid is

ω =
√

3/(ρ0χ)/r0.

A. Coupled modes

For symmetric matrices T and V, the generalized eigen-
system Eq. (19) is solved by eigenvectors xi (denoted by
the superscript),

Vxi = ω2
iTx

i, xjTxi = 0 ⇐= ω2
i 6= ω2

j , (22)

which are, for different eigenvalues ω2
i , orthogonal with

respect to the scalar product with T. Note that for the
fluid-coupled micro-oscillator, T is a full matrix. Due to
the translational and rotational symmetry of the whole
system, there are 3 translational and 3 rotational degen-
erate modes with zero frequency. For a complete orthog-
onal basis, this 6-dimensional subspace (the null space of
V) must be orthogonalized with respect to T. Additional
degeneracies are present in the case of a symmetric (par-
ticle positions Ri, stiffness constants kij) micro-oscillator
and must be orthogonalized.

For a physical interpretation, one must keep in mind
that T maps from the space of displacements x to the
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space of forces, i.e., up to the factor ω2, Tx is the vector
of forces needed to generate the displacement vector x if
the forces Vx between the particles were not present. So
the scalar product yTx is between a displacement vector
y and the force vector giving a displacement vector x for
V = 0.

III. ACOUSTIC SOLUTION AND EXCITATION
OF COUPLED MODES

The dynamic equation Eq. (19) for the fluid-coupled
micro-oscillator has been written in the system where
the far-field fluid is at rest, i.e., the motion of the fluid
is due only to the motion x of the micro-oscillator. In
the presence of a long-wavelength acoustic wave with fre-
quency ω and amplitude a0, the total solution vector of
the micro-oscillator is

xtot(ω) = a0(ω) + x(ω), (23)

where a0 is the “supervector” of rigid translation, i.e., a0

for each particle. The corresponding solution in the fluid
component is v(ω) = −iωa0(ω) + ∇Φ, i.e., the back-
ground quasi homogeneous acoustic flow plus the local
flow generated by the micro-oscilator. By the ansatz
Eq. (23), x is still defined in the rest system of the fluid,
so the micro-oscillator–fluid coupling conditions of the
eigenvalue problem are not affected.
The dynamic equation for the complete solution Eq. (23),
i.e., an augmented version of Eq. (19), is

−ω2Ma0 − ω2Tx + Vx = F, (24)

where F is the excitation force acting on the coupled
system, i.e., the acoustic pressure force on the triangles
distributed to their vertices by Eq. (9). We have consid-
ered that for a rigid motion xtot = a0 (thus x = 0) there
is no force other than F between the micro-oscilator and
the fluid, and no force between the particles, Va0 = 0.
We thus have

−ω2Tx + Vx = F + ω2Ma0, (25)

where ω2Ma0 is interpreted as a system force — an ad-
ditional excitation force acting on all particles, while F
acts only on those on the surface. These forces gener-
ally excite relative motion between the interior of the
micro-oscillator and its surface, resulting in hidden reac-
tion forces on the fluid. As a check, in the case when the
densities of the micro-oscillator and the fluid are equal,
the sum of all force vectors in F (buoyancy) is equal
and opposite to the total system force, and according to
Eq. (25), x = 0 is indeed a possible solution (which takes
place when the excitation of the modes is negligible, e.g.,
for very low frequencies).

Writing x =
∑
i ci|xi〉 and using the bra–ket notation,

the excited amplitudes ci of the modes |xi〉 are obtained
by projecting the dynamic equation Eq. (25) onto the

modes. Taking into account the orthogonality Eq. (22),
the mode amplitudes are

ci =
1

ω2
i − ω2

〈xi|(F + ω2Ma0)〉
〈xi|T|xi〉

, (26)

provided that all degenerate modes, Sec. II A, have been
orthogonalized. We see that the effective mass matrix T,
which also contains the mass load of the coupled fluid,
appears in the denominator of Eq. (26) and reduces the
mode amplitudes compared to the uncoupled case.

We regularize the singularities in Eq. (26) at ω2 = ω2
i

by introducing an imaginary part of ωi, i.e., ω′i ≡ ωi−iβi,
while leaving the corresponding eigenmode unchanged.
This is the classical Rayleigh damping, which is an ade-
quate and standardly used approximation for the case of
weak damping. Examples of sufficient conditions [54] for
this type of damping are that the drag force supervector
is proportional to Tv or Vv, where v is the particle veloc-
ity supervector. Physically, this means that the damping
force of a given mode is distributed to all micro-oscillator
particles in proportion to their inertial or potential force
amplitudes in that mode. We estimate the damping coef-
ficients βi, Eq. (A13) in a perturbative way by integrating
from r = r0 to r =∞ the viscous dissipation for the un-
perturbed flow Eq. (11) coupled to the mode, Appendix
A.

IV. HIDDEN FORCE AND SELF-CONSISTENT
DYNAMIC DENSITY

To find the hidden force density f ′ of Eq. (1) which
defines the effective dynamic density of the metafluid
via Eqs. (2)-(3), we need to i) formulate the force of
the micro-oscillator on the fluid arising from its excited
modes Eq. (26) and ii) find a self-consistent excitation
force F in Eq. (26) coming from the action of the contin-
uous “sea” of other identical randomly oriented micro-
oscillators in addition to the original acoustic pressure.

We regroup the terms of the dynamic equation Eq. (24)
such that the form of Newton’s law for individual parti-
cles with displacements Eq. (23) becomes transparent,

−ω2M(a0 + x) = −Vx + ω2Ax + F. (27)

The interparticle forces −Vx are internal forces and drop
out, F are due to the effective acoustic force acting ev-
erywhere in the fluid, while ω2Ax are just the forces of
interest — the additional forces of the fluid on the sur-
face particles due to the coupled modes. Therefore, the
total force of the excited micro-oscillator on the fluid is
the negative sum of these force vectors,

F1 = −ω2
∑
i

A{xi}

= ω2
∑
i

M ({a0}+ {xi}) +
∑
i

{Fi}

= ω2m(a0 + x)− ω2m0a0, (28)
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Figure 2. Frequency dependence of dynamic density per vol-
ume concentration ρ′/φV for a simple micro-oscillator with
one central and 20 surface points; all masses are equal. Top:
the interactions between surface points are negligible, while
those with the central point are equal. Bottom: the inter-
actions with the central point are negligible, while all surface
points interact equally with their nearest neighbours; ρ = 2ρ0.
Shown are some of the corresponding normal modes: in the
upper case, the density effect results from the rigid relative
motion of the shell with respect to the central mass, while in
the lower case the effect is due solely to the motion of the
surface points. Top (color/dashed): the dependence of the
performance on the mass of the micro-oscillator with fixed
size r0 = 3 µm. The splitting of the resonances, observed
also in Fig. 3 (top), is due to a slight non-degeneracy of the
depicted mode.

where m is the mass of the micro-oscillator, x is the am-
plitude of the center of mass of the micro-oscillator modal
motion, and m0 is the mass of the fluid displaced by the
micro-oscillator. The latter is just Archimedes’ principle
— the pressure force on a closed region of the fluid drives
its acoustic motion a0; the equivalent continuous version
of this statement is Eq. (1).

The hidden force density that follows from Eq. (28) is

f ′ = ρNF1 = ω2ρN [mx + (m−m0)a0] . (29)

Finally, one needs to find the excited x. We assume that
x lies along the axis defined by a0, which is true for an
isotropic system, so in average it is also true for dispersion
of orientationally disordered generally anisotropic micro-
oscillators. The excited mode amplitudes Eq. (26) require
a0 as well as F, which requires knowledge of the pressure
p, which in turn, to be connected to a0 by one of Eqs. (3)
or (6), requires knowledge of the dynamic density or com-
pressibility. In contrast, to compute x in an isotropic lin-
ear system, only the gradient part of the local pressure is
needed, but not its constant (homogeneous) part, since
the excitation by homogeneous pressure cannot give a
preferred direction and thus x = 0 by symmetry. (In a
nonlinear system, the magnitude of x would in general
also depend on the homogeneous part of the pressure.)

¿From Eq. (1) it follows that the gradient of this local
fluid pressure is nothing but −∇p+ f ′ and is simply ex-
pressed by −ω2ρ0a0. Thus, for the calculation of x, one
obtains the excitation forces Fi on the surface particles,
required in Eq. (26), from the local pressure field of the
form

p∇ ≡ ω2ρ0a0 · r, (30)

where a0 is constant, which agrees with Archimedes’
principle considered in Eq. (28). With that, the force
supervector in Eq. (26) is

F = {Fi} = −ω2ρ0
1
3

∑
4k3i

{
Skn̂k

(
ê0 ·R4

k
)}

a0, (31)

where the sum runs over triangles with vertex i and ê0

is a unit vector in the direction of a0.
An important result is that the self-consistent exci-

tation of the mode amplitudes Eq. (26) and the self-
consistent hidden force density Eq. (29) with x =∑
j

∑
i cj(a0)mix

j
i , where xji is the displacement of par-

ticle i in mode j, are determined purely from the surface
geometry and the modal structure of the micro-oscillator
and are proportional to the amplitude a0 of the resulting
acoustic wave.

Thus, if we write x = (x/a0)a0 with the awareness
that x/a0 does not depend on a0 and is exclusively a
property of the fluid-coupled micro-oscillator, with the
hidden force density Eq. (29) we obtain a compact Euler
equation Eq. (1) of the acoustic metafluid,

−ω2

[
ρ0 + ρN

(
m
x

a0
+ (m−m0)

)]
a0 = −∇p, (32)

which in the square brackets explicitly defines an effective
dynamic density

ρeff(ω) = ρ0 + ρ′ = ρ0 + φV (ρ− ρ0) + φV ρ
x(ω)

a0
(33)
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in terms of modal structure, mean mass density ρ =
m/V1 of the micro-oscillator with volume V1, and their
volume fraction φV = ρNV1 in the dilute limit. In
Eq. (33), the first two terms reflect simple compositional
average, while the last term represents the dynamic ef-
fect.

To build understanding step by step, we start with a
minimal micro-oscillator model that produces the hid-
den force effect, Fig. 2 (top). It has both dipolar and
breathing resonances; in our particular example they are
around 9.5 MHz and 2.5 MHz in its basic design, but in
general it is important that they are in the relevant ul-
trasonic range. A single central mass interacts with the
shell, here represented by surface masses in an arrange-
ment of the Thomson problem [55] and with negligible
interactions between them. In other words, there is no
in-surface elasticity, as is the case for a bubble. The cen-
tral mass is needed in addition for the force effect, which
is not present in the bubble. A single ρ′ resonance is
observed (black), corresponding to the relative motion
of the central mass with respect to the surface. The
situation changes significantly already if the in-surface
elasticity is included, like in Fig. 2 (bottom), where the
interaction with the central mass is negligible and thus
this mass is irrelevant this time. Nevertheless, several ρ′

resonances take place, corresponding to different modes
of the surface particles alone.

This minimalistic example (and that of Fig. 4) is meant
to illustrate the increasing complexity of the dynamic
density response when the micro-oscillator becomes more
complicated. Here and in all other cases, orientational
averaging of the micro-oscillator was performed to de-
scribe an orientationally disordered metafluid and to can-
cel the artifacts (due to the discrete approximation of
Eq. (12)) of a particular orientation with respect to the
spherical basis. This ensures that x and hence the hid-
den force are exactly parallel to the acoustic polarization
a0 and a scalar effective density can indeed be defined as
in Eqs. (3) and (32)-(33).

A. ρ′ performance

To pursue the practically relevant question of which ob-
jects are better suited to generate a large negative dy-
namic density, heavier or lighter ones, Fig. 2 (top) also
shows the dependence of ρ′ on the mean density2 ρ of
the micro-oscillator with fixed size r0 = 3 µm, which is
to be examined together with Eq. (33). The interparti-
cle potential is rescaled proportionally to ρ so that the
normal frequency of the free micro-oscillator remains un-
changed. For the fluid-coupled micro-oscillator, the nor-
mal frequency therefore decreases slightly with decreas-

2 Here we discuss only the effect of density scaling, while the more
subtle effects of the distribution of mass and bond strength will
be the focus of a follow-up study.
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Figure 3. Dependence of ρ′/φV (top) and χ′/φV (bottom) on
the size r0 of the micro-oscillator, keeping its mean density
fixed at ρ = 2ρ0. The splitting of the resonances (top), al-
ready seen in Fig. 2 (top), is due to a slight non-degeneracy
of the eigenmode in Fig. 2 (top).

ing ρ, as expected. The weak ρ′ performance of low-
density micro-oscillators is dictated by the ρ factor of
Eq. (33), since the increasing x of lighter objects gets
saturated by the finite fluid mass load. On the other
hand, the performance of high-density micro-oscillators
goes into saturation quite quickly. So we learn that the
mean density of the micro-oscillator is not crucial as long
as it is not much lower (e.g., in the case of hollow shells)
than that of the host fluid.

Of practical interest is also the dependence of ρ′/φV on
the size r0 of the micro-oscillator, Fig. 3 (top), this time
at fixed mean density ρ. Again, the potential between the
particles was rescaled in proportion to their mass, leaving
the uncoupled frequencies unchanged. But the effective
fluid mass load also scales in the same proportion, so
the frequencies of the fluid-coupled micro-oscillator also
remain unchanged. What changes substantially is the
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damping coefficient, which scales as 1/r2
0 according to

Eq. (A13), as the coefficients Eq. (12) scale as r0. Con-
sidering x of the simple mode of Fig. 2 (top) as an os-
cillator with eigenfrequency ω0, damping coefficient β,
effective mass m, driving force F and dynamic equation
(ω2

0 −ω2− 2iωβ)x = F/m, the real part of its amplitude
x(F ) is Re(x) = (F/m)(ω2 − ω2

0)/[(ω2 − ω2
0)2 + (2ωβ)2],

which has the two extrema

Re(x)1,2 ≈ ±
F

m

1

4βω0
(34)

at ω2 − ω2
0 = ±2βω0. Since F/m is independent of r0 in

this case, the extrema of the dynamic part of ρ′ are thus
inversely proportional to the damping coefficient, so that
the performance falls sharply as the size of the micro-
oscillator decreases. This is indeed confirmed by Fig. 3
(top).

Recall that the estimate of the damping coefficient
Eq. (A13) is based on potential flow and is therefore an
overestimate for situations with strong damping. Never-
theless, the general message is that damping is a criti-
cal limiting factor for metafluid systems. As Fig. 3 (top)
suggests, this problem can be overcome with sufficiently
large micro-oscillators — a reasonable estimate of the
critical scale is 1 µm.

V. HIDDEN VOLUME SOURCE AND
SELF-CONSISTENT DYNAMIC

COMPRESSIBILITY

To find the hidden volume source density q′ of Eq. (4)
which defines the effective dynamic compressibility of the
metafluid via Eqs. (5)-(6), we need to formulate the vol-
ume source of the micro-oscillator arising from its excited
modes Eq. (26). This time the excitation with the actual,
full pressure of the fluid is relevant.

One sees that in the long-wavelength limit the local
pressure p′ exerting on the fluid the hidden force f ′ in
Eq. (1) is negligible with respect to p, although in the
metaregime f ′ is comparable to ∇p. This looks paradox-
ical at first glance, but it is not: p builds up from ∇p on
the length scale of the wavelength, whereas p′ builds up
from −f ′ on the length scale of the inter-micro-oscillator
spacing — the micro-oscilator pushes the fluid at the
front with increased pressure and pulls it at the back
with decreased pressure. From the point of view of the
continuum: to accelerate an extended region of the fluid,
a large pressure such as p must be applied to its bound-
ary, while no such pressure is required if the accelerating
force, like f ′, is distributed in the volume.

Thus, F in Eq. (26) is given by the pressure p. The
second term in this equation can also be expressed by p
via Eq. (3),

ω2Ma0 = ω2{mi}a0 = {mi}
ik

ρeff
p, (35)

which is out of phase with the first term. This would
make dynamic compressibility inherently complex and

would be a problem for the metaregime. However, one
sees two things. i) In a free micro-oscillator, this term ex-
cites only rigid translation modes with no volume change
and is orthogonal to all other modes. Only the cou-
pling with the fluid makes this term in general not per-
fectly orthogonal to other modes. ii) Comparing the force
on a surface particle from the second and first terms of
Eq. (26), the ratio of their magnitudes can be estimated
to ∼ (ρ/ρeff)kd, where d is an effective thickness of the
surface layer. Unless ρeff is close to zero, the ratio of the
magnitudes in the long-wavelength limit is tiny.

Therefore, we neglect the second term of Eq. (26),
while the force supervector of its first term is

F = {Fi} = − 1
3

∑
4k3i

{
Skn̂k

}
p, (36)

where the sum runs over triangles with vertex i. The
volume flux of the micro-oscillator is

Q1 = −iω
∑
4k

1
3

∑
i∈4k

Skn̂k · xi ≡ S1Q̃1, (37)

where the first sum is over all triangles, the second over
the vertices of a triangle and xi =

∑
j cj(p)x

j
i are pro-

portional to p. For a given dynamics, Q1 scales with the
surface area of the micro-oscillator, while its surface den-
sity Q̃1 = Q1/S1, where S1 is the total surface area of
the micro-oscillator, remains unaffected.

Knowing thatQ1/(iωp) does not depend on p and is ex-
clusively a property of the fluid-coupled micro-oscillator,
we write Q1 = iωpQ1/(iωp). With the hidden volume
source density q′ = ρN iωpQ1/(iωp) we obtain a com-
pact continuity/compressibility equation Eq. (4) of the
acoustic metafluid,

−iω

(
χ0 + ρN

Q1

iωp

)
p+∇ · u = 0, (38)

which explicitly defines an effective dynamic compress-
ibility

χeff = χ0 + χ′ = χ0 + φV
S1

V1

Q̃1

iωp
(39)

in terms of modal structure and volume fraction φV of
the micro-oscillators in the dilute limit. The surface
to volume ratio S1/V1 reflects the fact that for a given

volume flux density Q̃1 from the surface of the micro-
oscillator (the mean velocity of the surface) its relative
volume change rate is inversely proportional to its lin-
ear size. Alternatively, one can simply write in Eq. (39)
φV S1/V1 ≡ φS , where φS is the total surface area of the
micro-oscillators per volume of the metafluid, intuitively
suggesting that the “active region” is indeed the surface
of the micro-oscillators.

Fig. 4 (top) shows the dynamic compressibility spec-
trum of our simple model micro-oscillator from Sec. IV,
whose breathing mimics that of a bubble: there is no
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Figure 4. Frequency dependence of dynamic compressibil-
ity per volume concentration χ′/φV for the simple micro-
oscillator model of Fig. 2. Top: the interactions between sur-
face points are negligible. Bottom: the interactions with the
central point are negligible; ρ = 2ρ0. Shown are some of the
corresponding normal modes. Top (color/dashed): the depen-
dence of the performance on the mass of the micro-oscillator
with fixed size r0 = 3 µm.

surface elasticity and the compressional function of the
trapped gas is taken over by the isotropic interaction with
the central point, which is otherwise obsolete. A single
breathing mode results (black), and because of mode or-
thogonality, this is the only volume-changing mode that
exists for a bubble. But even simple surface elasticity re-
laxes this constraint, and many different resonances begin
to contribute to the volume change, Fig. 4 (bottom).

A. χ′ performance

We are again interested in the practical question of which
objects produce a larger negative compressibility, heavier

or lighter ones. Fig. 4 (top) shows the dependence of χ′ on
the mean density ρ of the micro-oscillator with fixed size
r0 = 3 µm. In this case, the interparticle potential was
rescaled taking into account the fluid mass load Eq. (21),
such that the normal frequency of a perfect fluid-coupled
breathing sphere would remain unchanged. It is well seen
that the damping coefficient decreases with increasing ρ,
which is in agreement with the factor 〈xi|T|xi〉 in the de-
nominator of Eq. (A13). Yet the peak height of χ′ shows
only a weak dependence on ρ. Why is this so? Similar
to our earlier consideration leading to Eq. (34), this time

we consider Q̃1/(iω) = −x of the simple breathing mode,
Fig. 4 (top), as an oscillator with x the radial amplitude

of the surface particles. Thus, the extrema of Q̃1/(iω)
are again given by Eq. (34). However, this time F is con-
stant there, while the product mβ in the denominator
is also constant according to Eq. (A13), as for a given
modal shape it depends only on r0. Therefore, the weak
density dependence observed in Fig. 2 (top) is actually
due to the factor 1/ω0 of Eq. (34). We can conclude that
the bandwidth of the χ′ performance decreases with in-
creasing the mean density of the micro-oscillator, while
the peak amplitude is independent of it.

Fig. 3 (bottom) shows the dependence of χ′/φV on the
size r0 of the micro-oscillator with fixed mean density ρ.
As in Fig. 3 (top), the potential between the particles has
been rescaled in proportion to their mass, leaving both
uncoupled and coupled normal frequencies unchanged.
Again, the damping coefficient scales as 1/r2

0. However,
unlike ρ′/φV in Fig. 3 (top), in our simple oscillator model
the driving force F of Eq. (34) is now proportional to
the surface area of the micro-oscillator rather than its
volume, so that Q̃1/(iω) gets a factor of F/m = 1/r0.
Together with the factor 1/r0 in Eq. (39) this compen-
sates for the inverse proportionality of χ′/φV peaks to
the damping, Eq. (34), making their heights exactly in-
dependent of r0. Physically speaking, the lower damping
of a larger micro-oscillator is cancelled out by a weaker
driving force relative to its larger mass. In effect, the
bandwidth of the χ′ performance decreases sharply with
the size of the micro-oscillator, while the peak amplitude
is again independent.

VI. TOWARDS A REALISTIC SCENARIO

To go beyond the pure examples shown earlier and get a
sense of a more realistic situation, Fig. 5 (bottom) shows
as an example the dynamic density performance of a
more complicated and less regular micro-oscillator con-
sisting of 30 surface and 50 internal particles with random
positions and varying potentials, Fig. 5 (top). The idea
behind this still rather simple example is to model a het-
erogeneous macromolecule, in which different structural
units with higher stiffness interact in a less stiff manner,
as is typical for proteins. In particular, due to the pos-
sibility of low-frequency floppy modes in such discrete
heterogeneous structures [41–45], their dynamic proper-
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Figure 5. Top: a heterogeneous micro-oscillator model con-
sisting of 30 surface (black) and 50 internal (color) particles
with random positions and varying potentials; dashed lines
indicate strong bonds. Bottom: the corresponding dynamic
density spectrum — real (black) and imaginary (color) parts
of the complex quantity ρ′/φV , Eq. (33). Inset: close-up of
the frequency response of the two parts near a resonance.

ties can differ significantly from those of uniform elastic
objects, and it is precisely such effects that one would
like to exploit in the development of a metafluid. We
will investigate these issues in future studies using exten-
sive micro-oscillator models of the type shown in Fig. 5
(top).

Fig. 5 (bottom) reminds us that in general there may
be many frequency windows of potential interest. This
time we also show the imaginary part of the dynamic
modulus, which was omitted in all previous figures. It
represents energy loss and cannot be negative. The in-
set shows the detailed behavior of the complex quantity
ρ′/φV near a resonance and unveils the standard resonant
response of the real and imaginary parts of the compli-
ance. Exactly at the resonance, where the real part is
zero and the imaginary part is maximum, there is only
damping, i.e., strong scattering and no wave propagation.
The frequency windows of a transparent metafluid lie to
the right of the resonances where the imaginary part of
ρ′ is already small while the real part is still large and
negative. Provided, of course, that in the same frequency

window the same is true for χ′.
In this work we have treated the suspension in the

dilute limit, where direct interactions between the oscil-
lators are neglected. For larger micro-oscillator densities,
one can resort to methods of mesoscopic simulations. In
a preliminary study, we have set-up a coupled molec-
ular dynamics (micro-oscillator)–Lattice-Boltzmann [56]
(solvent) simulation, where the interaction between the
micro-oscillator beads and the solvent is implemented by
the immersed boundary method [57, 58]. In qualitative
agreement with the harmonic analysis presented in this
work, we show that the pressure waves induce a motion
of the center of mass of the micro-oscillator, Fig. 6. At
the right frequency, the micro-oscillator moves in the op-
posite direction as the fluid, Fig. 6 (bottom), decreasing
the effective density of the system.

VII. SUMMARY AND CONCLUSION

Let us recapitulate the distinguishing features of the
presented metafluid model. i) It is a model of a fluid
metamaterial without the support of an external skele-
tal structure providing external reaction forces. Instead,
these come from the inner, hidden part of the micro-
oscillator, which must be effectively inaccesible to the
host fluid. ii) The operation of such metafluids is not
based on spatial organization of the micro-oscillators.
iii) The modal shapes of the micro-oscillators are gen-
erally irregular, as is normally true also for biological
or macromolecular objects. In principle, this general-
ization does not pose a problem for the meta-behavior
and opens more frequency windows as candidates for a
suitable meta-regime. Moreover, the discrete, irregular,
heterogeneous micro-oscillator structure with different
local connections (e.g. interconnected filaments, sheets,
clumps) is thought to allow for dynamic surprises not
expected from quasi-homogeneous elastic systems, such
as floppy modes, which extend the low-frequency range
and could also lead to anomalous, stronger hidden force
effects.

We should not overlook one characteristic feature.
The results show that the dynamic compressibility ef-
fect χ′/χ0 is much larger than the dynamic density effect
ρ′/ρ0, cf. Figs. 2 and 4. In our minimal models, this is
directly due to design, i.e., the choice of an appropri-
ately weak interparticle potential to keep the normal fre-
quencies low enough. But in reality it is similar — com-
pared to the displaced volume of the host fluid, complex
molecules have much lower breathing frequencies due to
voids and numerous ways to move orthogonally to strong
bonds. This means that such a (bio)macromolecular
metafluid will tend to have large negative effective com-
pressibility and smaller negative effective density rela-
tive to the moduli of the host fluid. This apparently
convenient circumstance allows the speed of the meta-
ultrasound c = (χeffρeff)−1/2 to be kept close to the orig-
inal ultrasound speed in the host fluid. For the same rea-
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Figure 6. Top: normalized pressure field p/p0 profile in
the xz plane of an acoustic wave traveling to the right at
ν = 0.05 MHz. A micro-oscillator of the type of Fig. 2 (but
with different masses, spring constant, and size) is located at
x = y = z = 14.5µm. Mean-subtracted center of mass of
the micro-oscillator xcms and the average displacement of the
fluid xf (evaluated at the initial center of mass of the micro-
oscillator) at ν = 0.05 MHz (middle) and ν = 0.17 MHz (bot-
tom). In the latter case, the micro-oscillator and the fluid
move almost out of phase.

son, however, the specific impedance z = (ρeff/χeff)1/2 of
a metafluid will be low — this seems to be a characteristic
property of metafluids of this type!

Not surprisingly, our results show that damping is
a crucial limiting factor for the metafluid systems de-
scribed. More precisely, as best seen in Fig. 3, it is only
crucial for the dynamic density mechanism, but not for
the compressibility. The reasons for this rather interest-
ing distinction were discussed in Sec. V A. This confirms
that a sufficient hidden force effect is the main challenge
in metafluids.

The specific intrinsic damping within the micro-
oscillator was not considered in our model. It should be
small or at most comparable to the viscous damping in
the solvent. Reasonable candidates for micro-oscillators
are therefore macromolecules. The damping of isolated
molecules is negligible compared to the damping caused
by contact with the solvent. Also suitable would be arti-
ficial, e.g., microprinted oscillators. Not to be excluded a
priori are lyotropic lipid bilayer structures such as multi-
lamellar vesicles if they are in the solid (gel) state, while
microbiological objects are generally overdamped.

Nevertheless, damping at the microscopic scale was
taken into account by integrating the dissipation down
to the size of the microoscillator r0. This also effectively
captures the specific dissipation at the contact between
the solvent and the microoscillator by slightly redefin-
ing r0. Here, the dissipation is primarily due to the
local reconfiguration of the trapped solvent molecules
in response to the changing configuration of the micro-
oscillator and should be sufficiently small. This require-
ment is compatible with the assumption in Sec. II that
the interior of the micro-oscillator should be inaccessible
to the solvent, which is necessary in the case of poten-
tial flow. In general, it is essential for the compressibility
effect, but perhaps not necessarily for the density effect,
which in principle could also be based on viscous coupling
with the fluid.
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Appendix A: Viscous dissipation and mode damping

The damping of the coupled modes Eq. (22) is estimated
by calculating viscous dissipation (time-averaged heat
production rate) P in the volume of the surrounding fluid
for the unperturbed potential flow Eq. (11) of the fluid,

P =
1

2

∫
dV σv∗ij vij = η

∫
dV v∗ijvij , (A1)
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where σij = 2ηvij is the viscous stress tensor, η is the vis-
cosity, and vij = 1

2 (∂ivj + ∂jvi) is the strain rate tensor.
Such a perturbation treatment is a good approximation
for the weak damping case.

The velocity field Eq. (11) is

v(r) = ∇Φ =
∑
l,m

blm(R′lYlmr̂ +Rl∇Ylm), (A2)

where Rl(r) = (r/r0)−(l+1), r̂ = r/r, and ∇ is the angu-
lar part of ∇, while the strain rate tensor is

vij =
∑
l,m

blm

(
R′′l Ylmr̂⊗ r̂ + 2R′l[∇Ylm ⊗ r̂]S

+
R′l
r
Ylm(I− r̂⊗ r̂) +Rl∇⊗∇Ylm

)
,

(A3)

where [ ]S denotes symmetrization. We use here the
usual complex spherical harmonics Ylm and the coeffi-
cients blm are now proper complex combinations of blm
and bl,−m of Eq. (11). However, since the final result is
independend of this transformation, we keep the notation
blm unchanged.

It can be shown that any tensor field (like vij) can be
expanded in terms of an orthogonal set of tensor spher-
ical harmonics [59, 60]. Following ref. [61], see the equa-
tions (2.28b), (2.30a)-(2.30d) therein, we write down the

dyadic terms of Eq. (A3):

Ylmr̂⊗ r̂ =

(
(l + 1)(l + 2)

(2l + 1)(2l + 3)

)1/2

T2,l+2,lm

−
(

2l(l + 1)

3(2l − 1)(2l + 3)

)1/2

T2,l,lm

+

(
l(l − 1)

(2l − 1)(2l + 1)

)1/2

T2,l−2,lm

− 1√
3
T0,l,lm, (A4)

r[∇Ylm ⊗ r̂]S = −
(
l2(l + 1)(l + 2)

(2l + 1)(2l + 3)

)1/2

T2,l+2,lm

−
(

3l(l + 1)

2(2l − 1)(2l + 3)

)1/2

T2,l,lm

+

(
l(l − 1)(l + 1)2

(2l − 1)(2l + 1)

)1/2

T2,l−2,lm, (A5)

Ylm(I− r̂⊗ r̂) = −
(

(l + 1)(l + 2)

(2l + 1)(2l + 3)

)1/2

T2,l+2,lm

+

(
2l(l + 1)

3(2l − 1)(2l + 3)

)1/2

T2,l,lm

−
(

l(l − 1)

(2l − 1)(2l + 1)

)1/2

T2,l−2,lm (A6)

− 2√
3
T0,l,lm,

r2∇⊗∇Ylm =

(
l2(l − 1)2(l + 1)(l + 2)

4(2l + 1)(2l + 3)

)1/2

T2,l+2,lm

+

(
3l(l + 1)(l − 1)2(l + 2)2

2(2l − 1)(2l + 3)

)1/2

T2,l,lm

+

(
(l + 2)2(l + 1)2l(l − 1)

4(2l − 1)(2l + 1)

)1/2

T2,l−2,lm

+
1√
3
l(l + 1)T0,l,lm, (A7)

where T2,l′,lm represent, for a given l and m, five sym-
metric basis tensors (l′ = l ± (0, 1, or 2)) while T0,l,lm =
− 1√

3
Y lmI. The expression Eq. (A7) is given explicitly in

equation (6a) of ref. [60].

The Tλ,l,LM basis tensor spherical harmonics are or-
thonormal [61] under the scalar product∫

dΩTλ
′,l′,L′M ′∗

jk Tλ,l,LMjk = δλλ′δll′δLL′δMM ′ , (A8)

where the integral is performed over the solid angle Ω.
The calculation of the dissipated power Eq. (A1) is there-
fore rather straightforward and after integrating from
r = r0 to r =∞ gives

P =
η

r0

∑
l,m

|blm|2(l + 1)(l + 2)(2l + 1). (A9)
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Assuming for an eigenfrequency, Eq. (22),

ω′i ≡ ωi − iβi, (A10)

the mode amplitude decays as e−βit and its total energy
W as e−2βit, thus

Ẇ = −2βiW. (A11)

Using in Eq. (A11) for −Ẇ the result Eq. (A9) and the
amplitude of the total kinetic energy of the coupled mode
(including the kinetic energy of the coupled fluid)

W =
1

2
ω2
i 〈xi|T|xi〉 (A12)

for its total energy, one gets the mode damping coefficient

βi =
P (ωi,x

i)

ω2
i 〈xi|T|xi〉

(A13)

=
η

r0

1

ω2
i 〈xi|T|xi〉

∑
l,m

|bilm|2(l + 1)(l + 2)(2l + 1),

where bilm ∝ ωi correspond to the mode |xi〉.
There is one detail to add. Due to the restriction to

irrotational flow Eq. (11), those normal modes, which on
the surface of the micro-oscillator happen to be mainly
tangential, are only weakly coupled to the fluid. Notwith-
standing the fact that these modes are less excited by the
pressure and their contribution to the micro-oscillator
volume source Q1 and force F1 is relatively insignificant,
it could be dangerous if their damping were unphysically
small. To eliminate this problem, we scale the dissipa-
tion P (ωi,x

i) of a mode — knowing that it comes only
from the radial components of the surface particles — by
the ratio of the sum of squares of radial components and
the sum of squares of full displacements of the surface
particles.
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