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Abstract

Electrochemical impedance spectroscopy (EIS) is an accurate
electrochemical method able to identify various electro-
chemical steps that occur in complex electrochemical systems
such as battery cells. In order to extract the maximum infor-
mation from given battery system, systematic experiments that
combine EIS with other (complementary) techniques are
needed, as reported occasionally in the recent literature.
Additionally, a proper quantitative evaluation of measured
spectra has to be based on physical models which, however,
tend to be quite elaborate and frequently less accessible to the
wide battery community. In various cases of practical interest,
however, the models can be simplified as shown in this review.
One level of simplification reduces the full solution to the well-
known de Levie model and is frequently used for description of
the effects of porous electrodes. The ultimate level of simplifi-
cation, in turn, leads to a Randles-like equivalent circuit for
each insertion electrode and a pure resistor for the electrolyte
phase in separator. This review shows that care has to be
taken when using these simplifications in order to keep the
analysis consistent and physically sound.
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Introduction
In order to improve the performance of batteries
(power density, durability, etc.), a better understanding
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of the electrochemical mechanisms taking place during
their operation and storage is needed. Electrochemical
impedance spectroscopy (EIS) is a non-destructive
method that can give important information about
the main transport and reaction steps occurring in both
electrodes as well as in other cell components, i.e.,
current collector, electrolyte-filled separator, etc.

A potential obstacle towards more effective use of EIS
is that the measured spectra are notoriously difficult
to analyze in a satisfactory way. Although accurate and
quite complete physical models of processes occurring
in a battery cell have been known for a long time [1],
authors usually avoid using the corresponding analyt-
ical solutions [2,3], [4**] or numerical methods [5**]
to calculate the theoretical impedance response and
compare it to the actual measurements. This is
probably because both approaches are rather tedious,
so one has to dedicate a significant amount of time to
analyze large sets of measurements under vari-
able conditions.

On the other hand, there does exist a much simpler
and faster way to evaluate a typical EIS spectrum, i.e.,
the use of equivalent circuits [4**]. The main problem
with the latter is that they are frequently constructed
intuitively rather than derived from physical models so
one may doubt about their correctness. Fortunately,
since more than a decade accurate transcriptions from
the standard physical models for porous electrodes
(e.g., Newman’s model of porous electrode [1] or
Poisson—Nernst—Planck equations [6]) into trans-
mission line models have been reported [7,8]. Even if
such transmission lines are rather complex and may
contain contributions of little relevance for actual bat-
tery cells, they can serve as an excellent reference
point for evaluation of physical soundness of simpler,
more practical circuits. This article exploits this possi-
bility by referring to typical recent articles employing
EIS in the field of batteries. As demonstrated, there are
many cases of interest where simplified equivalent
circuits provide excellent and physically justified
description of processes in battery cells. By contrast, in
some cases more elaborate circuit variants taking into
account additional physical processes are needed in
order to explain the special features observed in
impedance spectra.
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Reference circuit model: Transmission line
model for porous electrodes derived from
physics equations

In most cases, contemporary battery electrodes are
porous by nature, as schematically depicted in Figure 1a
[9,10]. They consist of powdered active material (for
example, particles of transition metal oxides, graphite,
etc.) soaked with liquid electrolyte that contains mobile
ions, both active and non-active. During battery opera-
tion, active ions and electrons move simultaneously
from ionic reservoir in separator and current collector,
respectively, towards active particles where they un-
dergo electrochemical reaction and are then stored
inside active particle. All these steps can be physically
described using conventional models, among which the
Newman’s model [1] is the widest used. The latter
however, can be accurately transformed into an electric
transmission line [7,8]. An upgraded version of such
derived transmission line is shown in Figure 1b while its
general theoretical impedance response is depicted
in Figure 1lc.

Simplifications of the reference circuit
model

In general, the reference (full) model [9,10] contains all
the processes that are known or assumed to occur in a

Figure 1

porous battery electrode, regardless of the actual storage
mechanism [8]. In optimized battery cells, however,
some of those processes may generate very low imped-
ances so they can be neglected. Additionally, some of the
processes that occur outside the measurement region of
interest, for example at (very) low frequencies, can also
be neglected. Two typical simplifications that have been
most frequently used in the recent literature are shown
in FKigure 2b, ¢ with typical responses shown in
Figure 2f,g, respectively. The first simplification [9] is
also known as the de Levie model and neglects the
diffusional processes in the electrolyte phases in pores
of electrode and in separator, i.e., it assumes that only
the active species, for example, lithium ion in Li ion
batteries, is mobile in those phases. As shown in the
next chapter, such a model is appropriate in cases where
the impedance due to diffusional processes is small or
when the research focus is on frequencies above ca.
1 Hz.

In cases, when the resistance due to movement of ions
in the electrolyte in electrode’s pores (Ry3) as well as
the movement of electrons across the solid conductive
additive (Rp1) can also be neglected, one ends up with
the circuit and general spectrum shown in Figure 2c,g,
respectively. Indeed, this circuit is frequently the basis
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(a) Typical processes in a lithium-ion battery electrode and their physical meaning. (b) Physics based transmission line model describing processes in
scheme (a). (c¢) General impedance spectrum generated by transmission line model in panel (b) (Adapted from the studies by Moskon et al. [9,10]).
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(a) General physics based transmission line model for insertion electrode. (b) de Levie simplification of the general model by assuming that only the active
species is mobile in liquid phases. (c¢) Simplification of the de Levie’s model assuming that all the contact resistances, as well as the electronic and ionic
wiring inside porous electrode are negligible. (d) Simplified model for full battery cell containing anode, electrolyte and cathode. (e—h) Typical impedance

spectra generated by models (a—d), respectively.

for construction of simplified cell model containing
anode, electrolyte and cathode, as shown in Figure 2d
with a general spectrum shown in Figure Zh. For the sake
of generality, we denote the interfacial capacitive and
resistive elements Cintanodes Cint, cathode and Ringanodes
Rint, cathode>s respectively.

In continuation we show and comment on the recent
usages of the simplified models shown in Figure 2 for
analysis of porous battery eclectrodes or cells with
such electrodes.

Use of the de Levie simplification

(Figure 2b, f) for analysis of impedance of
porous battery electrodes

Morasch et al. [11**] used a modified de Levie model
to study the impact of ionic resistance inside pores of
graphite anodes on the impedance response while
changing systematically the electrode thickness. Due
to good electronic conductivity in such electrodes they
set the corresponding parameters, Ry and Rp1, to zero.
As they only focused on relatively high frequencies
(above 0.1 Hz), they could also neglect the effects of
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solid state diffusion by removing Zy, from the circuit. A
very good agreement between the theoretically ex-
pected trends and the measured ones was reported,
thus proving the suitability of the de Levie model for
such analyses.

A slightly more complex variant of the de Levie model
was also used for detailed study of charge-transfer in
NiyMnyCoj_x_y cathodes [12*]. In this case, the
electronic resistance, Ry, was not neglected and the
contact resistance between current collector and
electrode composite Rp was also taken into
account—in parallel with double layer element
Cp—which formed an additional high-frequency arc.
Again, the low frequency part accounting for solid state
diffusion inside NiyMnyCoj_yx_y was not taken into
account. Combining the EIS analysis with microscop-
ical date, the authors were able to provide very reliable
data related to the charge transfer process.

A similar de Levie type of transmission line model was
successfully used for analysis of the kinetics of all-
solid-state sulfur cathodes [13]. Wang et al. [14%]
also used a similar variant of the model, however, with
a blocking interface between the electrolyte and the
active particles (using a lithium-less electrolyte).
They were able to accurately determine the ionic
resistance inside the pores of various cathode mate-
rials, such as cobalt oxide, nickel-manganese-cobalt
oxide, lithium iron phosphate, and lithium titanate.
A de Levie type of transmission line model was also
used to study porous electrodes containing blended
active materials [15]. The special effects due multiple
types of active materials were taken into account by
using a large number of parallel transmission lines with
variable element values.

In cases, where the de Levie simplification is intended
to be used for analysis of the low-frequency part of
impedance spectra (e.g., below ca. 1 Hz), however, a
special care is needed. While the de Levie model can
describe the solid state diffusion (through Warburg
element, Z,), it does not include other possible
diffusional contributions, such as diffusion in the
porous part of electrode and in separator (compare
Figure 2e,f). All these diffusions can overlap in real-
istic spectra that have to be taken into account. Oc-
casionally, authors try to compensate for the lack of
additional diffusion in electrolyte phases by including
additional Warburg element in certain position in the
de Levie circuit [16,17]. However, the physical
background of such additions is usually unclear. It can
be advised that in such more complex cases, the
derived full model (Figure 2a) is used instead of
its simplifications.

Use of fully simplified circuit models
(Figure 2¢, d, g, h) for analysis of impedance
of porous battery electrodes and cells

As mentioned above, in fully optimized battery elec-
trodes or even whole battery cells, most of the imped-
ance contributions get very small and only a couple of
processes prevail in the measured spectra (Figure 2h for
half- and 2g for full cell). Although the derived models
get very simple (Figure Zc¢,d), the topology of individual
elements remains important if one wishes to get phys-
ically sound parameter values, as shown later on.

A typical EIS measurement of contemporary graphite-
NMC 18650 cell in a wide frequency range [18] gives
a spectrum that resembles very much the theoretical
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(a) General equivalent circuit based on simplification shown in Figure 2d
and used frequently in the literature for description of well-optimized
battery cells; (b) Alternative to circuit (a) which is also used frequently in
the literature but with less clear physical background; (c) A comparison
between the outputs of circuits (a) and (b) for the case of selected pa-
rameters values shown above the graphs. Note that the difference be-
comes progressively bigger with increasing ratio 7(Zy)/T2> where

T(Zw) = R(Zw)+ C(Zw) and R(Zy) and C(Zy) are the resistance and
chemical capacitance connected to Warburg impedance when the latter is
modeled as a finite-space Warburg element [9].
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case shown in Figure 2h, except that at highest fre-
quencies an inductive line extending to positive values
of imaginary impedance (below x-axis) is seen which is
due to inductive properties of leads and wound cell
geometry. Excluding the inductive part, the authors
proposed an equivalent circuit that is almost the same as
the one shown in Figure 2d, except that Zynede IS
missing. This leads to the typical circuit shown in
Figure 3a used in many recent articles. It should how-
ever be noted that while such further simplification can
be appropriate, one should nevertheless check whether
the diffusion impedance in anode (here graphite) is
really negligible compared to the diffusional impedance
in NMC. A very similar approach was used in the anal-
ysis  of  graphite—NCA  (lithium-nickel-cobalt-
aluminum oxide) and silicon-NCA pouch cells [19], in
analysis of all-solid-state-batteries [20], or in sodium
insertion batteries [21]—to mention only a couple of
typical recent examples.

Very frequently, however, the Warburg impedance due
to solid state diffusion, Zyy is taken out of the Randles-
like combination with a resistor and a capacitor
(Figure 3a, see also Figure 2g,h) and positioned in series
with two parallel R—C terms [22—29], as shown in
Figure 3b. Sometimes element repositioning facilitates
further analyses such as the use of distribution of
relaxation times [20]. Although from the physical point
of view the change of element topology may be highly
questionable, it is also true that in many cases it does not
affect the quality of parameter analysis [25%]. Namely,
the time constant for the low-frequency process
(determined by the rate of diffusion in insertion mate-
rial) is usually much bigger (e.g., more than ca. 1000
times) than the time constant of the parallel R—C
terms. If, however, the ratio between those time con-
stants gets smaller, the spectrum generated by the cir-
cuit in Figure 3b starts to deviate significantly from that
obtained from derivation (Figure 3a or Figure 2g,h etc.).
Thus, it is advised that authors check the degree of
coupling of individual sets of elements giving rise to
appropriate impedance features prior to using non-
derived (intuitive) circuit variants. In any case, it is
probably more reasonable to use directly the derived
variant in Figure 3a as it allows for the same level of
simplicity in analysis of measured spectra.

Conclusions and perspectives

Impedance spectroscopy is a valuable electrochemical
tool that can effectively decouple a multitude of elec-
trochemical processes taking place in given system, for
example, in a battery cell. Although detailed physics
based models of a battery cell predict many impedance
features (at least 10 for typical insertion anode-
electrolyte-insertion cathode cell), the measurements
on realistic battery cells only reveal a couple of arcs or
lines in a wide frequency range. We showed

Impedance spectroscopy of battery cells Gaberscek 5

systematically how the full theoretical solution repre-
sented as a complex transmission line can be gradually
simplified into simpler circuit variants and used on
practical cases of interest reported in recent literature.
Specifically, we underline the benefits of the so-called
de Levie simplification which accurately describes the
measured spectra from ca. 1 Hz to highest measurable
frequencies. We also demonstrated that the usage of
further simplifications in which the porous nature of
clectrodes is neglected may be quite appropriate for
well optimized battery cells. However, we also
emphasized the importance of correct topology of cir-
cuit elements which, if not taken properly into account,
may lead to erroneous evaluation of parameter values.

In perspective, it may be expected that the usage of EIS
in the field of batteries will see further development in
many directions. First, based on recent trends in the
literature, one may expect preparation of special cells
that enhance insight into particular feature of interest
(e.g., tortuosity [30,31], ionic conductivity in porous
electrode [14*] etc.). Further, measurement techniques
and models that allow monitoring of impedance during
cell operation (exploiting the so-called dynamic
impedance measurement [32*]) will be further devel-
oped and used. Finally, expansion of modeling possibil-
ities from predominantly 1D to 3D structures can also
be envisaged [5%*].
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