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A B S T R A C T   

A key component in the conversion process of concentrated solar power (CSP) into thermal energy is a solar 
absorber coating. Many experimental and simulated coatings for various substrates for CSP water/steam or 
molten salt absorbers have been developed. The main challenges today remain in the selection of a low-cost and 
effective fabrication method, appropriate for industrial production, and assessment of the degradation rate and 
service life of these coatings, which affect the efficiency of the plant and the LCOE. In this article, we review 
different types of mid- (100 < T < 400 ◦C) and high-temperature (>400 ◦C) absorber coatings and their 
fabrication methods. The emphasis is on the solar absorptance, thermal emittance and the long-term (>10 years) 
thermal stability of the coatings. Spectral selectivity of the coatings, which is more difficult and expensive than 
other means, was proven to be essential for a low-to-mid temperature range and low concentration ratios, yet for 
high temperatures and high concentration ratios, high solar absorptive coatings can achieve the same or even 
better performance than spectral selective ones. Important factors for an efficient CSP absorber are compatibility 
of the coating and substrate under cyclic temperature conditions and high heat transfer rate to a heat transfer 
medium.   

1. Introduction 

Within 6 h, the world’s deserts receive solar energy in an amount 
equal to the energy produced by mankind in a year [1]. According to the 
International Energy Agency, 49% of world’s energy demand in 2018 is 
in the form of heat for industrial processes and space and water heating 
in buildings and agriculture, while 29% of energy is used for transport 
and 21% is used as electricity [2]. 

These facts, among others, initiated the European Horizon 2020 
project called Forthcoming Research and Industry for European and 
National Development of Solar Heat for Industrial Processes (FRIEND
SHIP), with the aim to develop technology based on concentrated solar 
power (CSP), parabolic trough collectors (PTCs) and linear Fresnel re
flectors (LFRs) in order to provide heating and cooling for industrial 
demands [3]. 

CSP is a technology that uses large sun-tracking reflective surfaces to 
concentrate and direct solar radiation to an absorber with a small sur
face area. This results in an increased concentration of solar energy at 
the absorber surface, where it is converted to thermal energy and is used 
as a heat source for electricity production or industrial process heat. The 

CSP plays an important role as a part of the renewable energy sources 
producing 6128 MW of power worldwide [4]. In the near future, the 
increase in 3139 MW in power production is planned with the devel
opment and construction of new CSP plants. 

CSP technology is a way of concentrating sunlight divided into line- 
focusing (LFR, PTC) and point-focusing (ST, PD) systems with different 
absorber operating temperatures (Tabs) and concentration ratios (C) at 
which theoretical solar-to-thermal-to-mechanical conversion efficiency 
is the highest (Table 1) [5,6]. 

One of the strategies to raise the efficiency of a CSP plant with a solar 
tower absorber is to raise the operating temperature. This causes higher 
thermal loads on the materials, which need to have long-term stability at 
high temperatures and high heating and cooling rates due to day/night 
cycles [7]. 

Current operating temperatures of industrial power tower CSP plants 
are up to 838 K [8], but the thermal-to-mechanical (Carnot) efficiency 
for steam engines is temperature dependent: 

ηCarnot = 1 −
Τlow

Thigh
(1) 
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where Thigh is operating temperature and Tlow is ambient temperature; 
the increase in Thigh up to 1383 K would increase a CSP plant’s overall 
efficiency [9]. 

Another approach to raise the efficiency of CSP plants is to achieve 
high spectral selectivity of a solar absorber. Spectral selectivity of the 
absorber coating is determined by solar absorptance (αS) and thermal 
emittance (εT), which are defined as: 

αs ​ = ​
∫ 2.5 μm

0.25 μm Is(λ)(1 − R(λ))dλ
∫ 2.5 μm

0.25 μm Is(λ)dλ
(2)  

εT ​ = ​
∫ 16.5 μm

1.5 μm Ib(λ, ​ T)(1 − R(λ))dλ
∫ 16.5 μm

1.5 μm Ib(λ,T)dλ
(3)  

where Is (λ) is reference solar spectral irradiance AM 1.5 according to 
ISO standard ISO 9845-1, 1992, R (λ) is spectral reflectance and Ib (λ, T) 
is blackbody radiation at 80 ◦C [10]. Solar absorptance (αS) and thermal 
emittance (εT) values are calculated numerically from the measured 
reflectance spectra at room temperature. 

The efficiency of transformation of solar energy to thermal energy of 
the CSP absorber is described with eq. (4):  

where σ is the Stefan–Boltzmann constant, Tabs is the absorber’s oper
ating temperature, C is the solar concentration factor and IS is the AM 
1.5 solar spectral irradiance. The thermal conductive and convective 
losses of the absorber are neglected [10]. 

By multiplying eq. (1) by eq. (4), solar-to-mechanical conversion 
efficiency is obtained as a result: 

ηm = ηCarnotηt (5) 

Ideally, we want to have a CSP absorber coating with total absorp
tance of the solar spectrum and total reflectance of the absorber’s 
infrared radiation at an operating temperature as shown in Fig. 1 (ideal 
selective case). Real coatings show real selective behavior, such as the 
example (green) in Fig. 1. For a mid-temperature absorber, this repre
sents a big advantage compared to non-selective coating, due to the high 
absorption of solar spectrum and high reflection of blackbody radiation 
at 573 K (applicable for LFR and PTC types). 

On the contrary, at a high temperature of 1273 K, solar spectrum and 
blackbody spectrum overlap, so the αS is the more important factor for 
ST and PD. Consequently, the ideal absorption–reflection transition 
wavelength of the coating is shifted to the higher wavelength, in order to 
absorb most of the solar spectrum (Fig. 1), and the highest ideal oper
ational temperature for spectrally selective surface is reported to be 
1273 K, which is 110 K lower than the ideal temperature for not spec
trally selective absorbers [9]. Such a coating would still retain almost 

half of the absorber’s infrared radiation at 1273 K, which would 
otherwise be lost to the environment (Fig. 1). Theoretically, a maximum 
efficiency of 65% is possible for a CSP plant with real selective absorber 
according to the study of Vetter et al. [9]. 

At higher temperatures (e.g., 1273 K), increased overlapping of solar 
spectra and the absorber’s infrared emission spectra occurs (see Fig. 1), 
and therefore, it is possible to achieve high FOM with a high solar 

absorptive (HSA) coating. 
However, at a sun concertation factor exceeding 100 suns and tem

peratures up to 1273 K, the ideal transition wavelength is 2.4 μm. Since 
there are not many materials with the required optical properties and 
long term-durability at such conditions, the research for the best 
absorber coating is still on-going. Therefore, to support future research 
and development of spectrally selective coatings (SSCs), we conducted a 
review of the CSP absorber coatings produced and reported to date. 

2. Solar-to-thermal energy conversion efficiency 

The FOM for low C and mid-temperature absorbers (Fig. 2a) and for 
high C and high-temperature absorbers (Fig. 2b) were calculated from 
eq. (4). The first scenario (Fig. 2a, black symbol graph) predicts a not 
spectrally selective absorber with a constant high εT of 0.9, but the αS is 
changed from 0.6 to 1 to see the effect on the FOM. The second scenario 
(Fig. 2a, red symbol graph) predicts a spectrally selective coating with a 
constant high αS of 0.95, but εT is changed from 0 to 1. 

It is seen in Fig. 2 that at C = 10 and T = 573 K, increasing the αS for 
non-selective coating results in a slower increase in FOM in contrast with 
lowering the εT for selective coating, where much higher FOM can be 
achieved. Furthermore, for C = 1000 and T = 1273 K, increasing the αS 
for non-selective coating results in higher inclination (Fig. 2b, black 
symbol graph) and higher maximal FOM, while lowering the εT for the 
spectral selective case has a lesser effect on FOM for high C and T, 

Table 1 
Comparison of the four CSP types by absorber temperature, concentration ratio 
and solar-to-mechanical energy efficiency.  

CSP type Tabs (◦C) C (/) ηm 

Linear Fresnel reflector (LFR) 300 ~30 0.38 
Parabolic trough collector (PTC) 400 ~80 0.44 
Solar tower (ST) 850 ~500 0.67 
Parabolic dish (PD) 1100 ~2000 0.75  

Fig. 1. Solar spectrum AM 1.5, blackbody emission spectrum at 573 K in gray 
(mid-temperature) and 1273 K in brown (high-temperature) on the bottom-left 
axis. The reflection spectra of an ideal spectrally selective coating for high- and 
mid-temperature CSP absorber and reflection spectrum of a real spectrally se
lective coating on the bottom-right axis. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 

ηt = FOM=

∫ 2.5 μm
0.25 μm Is(λ)(1 − R(λ))dλ − 1

C

∫ 16.5 μm
1.5 μm Ib(λ, ​ T)(1 − R(λ))dλ

∫ 2.5 μm
0.25 μm Is(λ)dλ

= αS −
εTσT4

abs

CIs
(4)   
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although higher maximal FOM can be achieved. Increasing the CSP 
absorber operating temperatures above 1273 K would result in even less 
importance of spectral selectivity, and high solar absorptive (HSA) 
coating would be a reasonable choice to use in such case [9]. 

3. Spectrally selective absorber coating manufacturing methods 

In this section, we describe some of the methods that are used for 
production of various SSC types. It is important to mention that the 
thickness of SSC (layers) plays an important role in achieving optimal 
thermal emittance values. Different methods offer different thickness 
adjustment options. 

3.1. Spray coating 

Spray coating is based on the formation of tiny droplets (atomiza
tion), which are transformed back into a smooth film when they are 
deposited in the substrate. Atomization can be achieved pneumatically 
[11–19] or hydraulically by centrifugal forces or by electrical forces 
[20]. Electrostatic spray coating can achieve up to 98% of material yield, 
but pneumatic spray coating is far less efficient, sometimes below 40%. 
Increasing parameters such as paint flow, viscosity of paint and surface 
tension will increase the droplet size in a spray, but increasing the 
density of paint and air flow will decrease the droplet size. 

3.2. Spray pyrolysis 

Spray pyrolysis is a thin film fabrication process, which involves 
transformation of a metal salt solution into micro sized droplets, which 
are sprayed onto the heated substrate, where they form the shape of a 
disk [21–24]. This is followed by the solvent evaporation, thermal 
decomposition and conversion of metal salt into oxides [25]. The most 
important parameter of spray pyrolysis is the substrate temperature, 
which determines the microstructure of the film that can form cracks, 
pores or dense material. 

3.3. Dip coating 

Dip coating is a wet chemical thin film deposition process that con
sists of immersion of the substrate into the precursor solution followed 
by a dwell time to allow sufficient time for the complete wetting of the 
substrate [26–31]. After that, the substrate is pulled out from a solution 
at a constant speed for the deposition of a uniform film. Finally, the 
solvent evaporates from the fluid for the formation of a thin film. 
Additional heat treatment can accelerate evaporation, remove organic 
residues and induce crystallization of the oxides [32]. 

3.4. Spin coating 

Spin coating is used for rapid deposition of thin films on flat sub
strates [33–35]. The solution to be deposited is usually dispensed in the 

middle of the substrate and the spinning motion of the substrate causes 
the solution to spread out, leaving behind a uniform thin coating [36]. 
Dispense can be static before the rotation or dynamic during the rota
tion. The final film thickness is controlled by viscous flow and evapo
ration of the solvent. Longer spin times and higher spin speed result in a 
thinner film. 

3.5. Laser sintering 

Laser sintering is a process that allows surface sintering of the 
coating without overheating or oxidizing the substrate. Moreover, sin
tering runs in a scanning mode, where many parameters can be 
controlled, including pulse frequency, speed, energy density, laser 
wavelength, spacing between the scans, scanning repetitions and the 
atmosphere [17,37,38]. Laser technology besides sintering also enables 
the formation of laser-induced periodic surface structures (LIPSS), useful 
for the development of textured spectrally selective surfaces [39]. 

3.6. Chemical vapor deposition 

Chemical vapor deposition or CVD is used to produce coatings where 
most metals can be used as well as silicon, carbon and compounds such 
as carbides, nitrides, oxides, etc. CVD is the deposition of a solid on a 
heated surface from a chemical reaction in the vapor phase, where 
deposited species are atoms or molecules [40]. The advantages of CVD 
are its ability to cover 3D structures, recesses and holes on the substrate 
and a high rate of deposition [41–44]. It does not require high vacuum 
and it is possible to change the precursor composition during deposition. 
The disadvantages are a high operating temperature of 600 ◦C and high 
vapor pressure of precursors, which can be hazardous or extremely 
toxic. 

3.7. Atomic layer deposition 

Atomic layer deposition or ALD is an upgraded variation of CVD. 
Usually with CVD, a mixture of reactants in a vapor phase is introduced 
into the deposition chamber. The difference with ALD is that initially, 
only one reactant is introduced, deposited to the substrate and then 
pumped out. Then, another reactant is introduced, which reacts with the 
monolayer of the first reactant, adsorbed to the surface, forming one 
layer of a solid film with the reaction product composition. The process 
can be repeated many times to obtain the desired thickness [45–52]. The 
advantage of ALD is that reactants cannot react in the vapor phase, 
which results as a film with embedded solid particles [53]. 

3.8. Physical vapor deposition 

Physical vapor deposition or PVD is similar to the CVD atomistic 
deposition process in which a material is vaporized from a solid or a 
liquid source. The vapor is in a vacuum or a low-pressure gas or plasma 
and transported to the substrate, where it condenses to form a thin film 

Fig. 2. Comparison of the FOM of a not spectrally 
selective coating with the αS changing from 60% to 
100% (black symbol graphs) at a constant εT with the 
FOM of a spectrally selective coating with εT changing 
from 100% to 0% at a constant high αS (red symbol 
graphs). Graph (a) is calculated for the low concen
tration factor C = 10 and mid-temperature Tabs = 573 
K and (b) is for the high concentration factor C = 1000 
and high-temperature Tabs = 1273 K. (For interpre
tation of the references to colour in this figure legend, 
the reader is referred to the Web version of this 
article.)   
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in a thickness range from few nanometers to few micrometers [52, 
54–60]. Typical deposition rates are 1–10 nm per second. PVD pro
cessing can be divided into four categories: vacuum deposition, sputter 
deposition, arc vapor deposition and ion plating [61]. 

Pulsed laser deposition (PLD) is a vacuum deposition method, where 
a laser is used to vaporize surfaces and highly directed vapors can be 
ionized by laser radiation. These vapors provide the material to be 
deposited on a substrate to form a thin film. PLD was proven to be 
effective for deposition of multicomponent inorganic epitaxial thin 
films. The advantages of PLD are the stoichiometric transfer of the 
material from the target, the generation of energetic species, the 
hyperthermal reaction between ablated cations and the background gas 
in the ablation plasma, as well as compatibility with background pres
sures ranging from ultrahigh vacuum to 133 Pa [62]. 

3.9. Electroless plating 

Electroless plating is an autocatalytic chemical deposition method, 
where a metal is deposited from an aqueous solution with a redox reaction 
[63–65]. No external electrical power source is used; the electron source is 
a reducing agent in the solution. The simplest form of plating is a metal 
displacement reaction, where less noble metal atoms dissolve and are 
replaced by atoms of a more noble metal from the solution. The reaction 
involves electron transfer between reacting chemical species [66,67]. 

3.10. Electroplating 

Electroplating of metals and alloys uses an external power supply to 
provide the electrons for the reduction of metal ions to be deposited on a 
metal electrode from aqueous, organic and fused-salt electrolytes 
[68–70]. The reduction reaction can be described as: 

Mz+ + ze− = Mlattice 

The electroplating process is dependent on metal–solution interface 
properties, kinetics and mechanism of deposition, nucleation and 
growth process of the metal lattice and the structure and properties of 
the deposits [71–80]. 

3.11. Lithography, etching 

Photolithography or optical lithography is used to selectively remove 
parts from a thin film or the bulk of a substrate. By spin coating, the 
substrate is first coated with a thin film of photoresists. Using UV light, 
projected through a mask onto the photoresist film, the exposed area is 
changed and exposed or not exposed area can be selectively removed, 
leaving a pattern on the substrate [50,81,82]. In optical lithography, 
resolution is determined by the diffraction of light. Currently, the res
olution limit of optical lithography is at 193 nm [83]. 

Because of the industrial need for lower resolution, nanoimprint 

Fig. 3. Schematic representation of the different design types for the fabrication of spectrally selective coatings.  
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lithography was developed, which has a resolution limit below 5 nm 
[81]. The process consists of three steps: (1) mold fabrication, (2) 
imprint process and (3) subsequent etching. 

In research, PVD is the most commonly used method to produce SSCs 
for CSP absorbers. Its advantage is in high control over deposition pa
rameters and wide choice of precursor materials, which offer fabrication 
of well-defined compositions at nanoscale. Despite of higher production 
cost, PVD is already used at industrial level for mid-temperature PTC 
absorbers [84]. These coatings currently offer the highest 
solar-to-thermal efficiency in the CSP market. However, they are not yet 
stable enough to be used at high temperatures in air, mainly due to poor 
resistance to interlayer diffusion and oxidation, which causes mechan
ical and optical degradation of the coatings [85] [–] [88]. PVD can be 
used to produce all types of coatings described in Fig. 3. 

Next, second most commonly used methods of deposition are more 
conventional and low-cost, e.g. spray coating, dip coating and spin 
coating, which deposit materials dispersed or dissolved in solvents and 
need subsequent curing to form a solid coating. They are usually used to 
deposit composite coatings. With these methods it is possible to achieve 
higher long-term stability at high temperatures. Since less control is 
possible over deposition process, these methods are suitable to produce 
thicker coatings with high solar absorptance, but they also have higher 
thermal emittance in comparison to PVD coatings (Table 2) [89,90]. 

4. Spectral selectivity and thermal stability of SSC 

One of the first reports on spectrally selective coatings is a patent by 
Tabor from 1955, which is about a spectrally selective absorber for solar 
energy collectors [91]. He discovered that anodizing a bright nickel 
surface creates a thin film of dark nickel with αS of 0.8 and εT of 0.12, 
with good thermal stability at 400 ◦C. 

There were many material designs developed with the purpose of 
achieving the outstanding spectral selective properties of solar absorber 
coatings. The most important among them are intrinsic selective mate
rials, semiconductor–metal tandems, multilayers, multi-dielectric com
posites, textured surfaces and a selectively solar-transmitting coating on 
a blackbody-like absorber [92]. Nanostructured metamaterials [93] and 
photonic crystals [94] can be considered as a subclass of textured 
surfaces. 

4.1. Intrinsic selective materials 

Intrinsic selective materials can have a suitable spectral selectivity, 
even 0.15 of εT/αS ratio, but they do not have high enough αS (≥0.95) 
and are thus uncompetitive with other SSC types. Some of them also lack 
thermal oxidation resistance in air, despite of having high melting 
temperatures. However, the use of these materials for the fabrication of 
structured or composite coatings could increase their spectral 
selectivity. 

4.2. Semiconductor–metal tandems 

The semiconductor part of a tandem coating has the function of high 
solar absorption, which is dependent on a semiconductor bandgap. The 
metal part of a tandem has a property of low εT to reduce thermal losses. 
Semiconductor–metal tandem coatings can achieve very high αS up to 
99%, but are not thermally stable at high temperatures in air for longer 
time periods. 

4.3. Multilayers, multi-dielectric composites 

Multilayer absorber coatings consist of multiple thin layers, which 
can have antireflective, dielectric, metal, IR reflective, solar absorptive 
and other optical properties. With this kind of coating, it is possible to 
manipulate the optical properties in many ways and achieve both high 
solar absorptance and low thermal emittance. The disadvantages of such 

coatings are the high cost of fabrication and, similarly to tandem coat
ings, they are not stable at high temperatures for longer periods. 

4.4. Textured surfaces 

Surface texturing increases the number of reflections of incident 
light, leading to higher solar absorption. It is reported that the nano
structures on the surface act as a trap for light, which reflects inside of 
them many times until it is absorbed. The structures can be of different 
shapes and sizes. With textured surfaces, it is possible to achieve high αS 
of 95% and low εT of 5%, but long-term thermal stability is not yet re
ported for them. 

Photonic crystals can be classified as a special type of textured sur
faces. These are periodic optical structures that can control the flow of 
light. Multiple reflections from surfaces separated by a distance similar 
to the wavelength prevent an optical beam from propagating through 
the crystal. Therefore, photonic crystal devices can force light around 
sharp bands or even trap it entirely [95]. 

4.5. Metal/metal compound–dielectric composite 

Metal dielectric composite or cermet has a ceramic matrix with 
embedded metal particles. In the UV/VIS wavelength range, the com
posite has ceramic properties with high αS and in IR wavelengths, it has 
metallic properties with low εT. High αS can be achieved with smaller 
particle size and thicker coatings, whereas increasing the particle size 
decreases αS. Thermal emittance can be lowered by decreasing the 
coating thickness and increasing the concentration of embedded metal 
particles [96]. 

Cao et al. report on double cermet coating deposition, which consist 
of two layers; the top layer has low metal volume fraction (LMVF) and 
bottom layer has high metal volume fraction (HMVF). The top layer 
contributes to high αS and the bottom layer to low εT of the coating. 
Instead of pure metal particles, they used TiN embedded in SiO2 to 
fabricate a composite [97]. 

High-temperature resistant paints can be considered a subclass of 
this category, where inorganic pigment nanoparticles, which can be 
metallic oxides, are embedded in a ceramic binder, forming a pig
ment–ceramic composite. 

4.6. A selectively solar-transmitting coating on a blackbody-like absorber 

This design combines a high solar absorptive coating (e.g., black 
paint) with a solar selective transmitter coating on top. Selective 
transmitter thin films can be made of different types of materials. One 
category is dielectric/metal/dielectric stacks, where TiO2, ZnS and 
Al2O3 can be used as dielectrics and metals such as Ag, Au, Cu, Al. 

Another category of candidates for thin film solar selective trans
mitters contains low energy band gap oxides of In, Sn, Cd and Zn, which 
are doped with elements such as Sb, F, Sn, B, Al, etc. 

5. Thermal aging and long-term stability characterization of the 
industry CSP absorber coatings 

After excellent optical properties (high αS, low εT) of a CSP absorber 
coating are achieved, service lifetime is the next important property to 
consider. Factors affecting the service life of a coated CSP absorber are 
resistance against diffusion of the species from a substrate to a coating 
and/or vice versa; resistance against oxidation when the absorber is 
exposed to air; resistance against corrosion due to morning dew, acid 
rain, chlorides in the air moisture, if a plant is located close to the sea, 
etc. 

Furthermore, rapid heating and cooling due to day and night cycles 
and thermal shocks due to cloud shading strongly affect the physical 
stability of the CSP absorber. When considering these facts, several 
studies have been carried out to assess long-term stability and service 
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Table 2 
Types of spectrally selective coatings, differentiated by design, substrates and deposition method used, and the results of 
optical and thermal stability characterization [37,49–51,67,85,87–89,93,97,107,108,111–182]. 
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life of CSP absorber coatings, which are important contributions both to 
technical development and to the levelized cost of electricity (LCOE) 
estimation [98]. 

Extensive research with service-life predictions of isothermal and 
cyclic thermal loads on industrial high solar absorptive (HSA) coating 
deposited on Inconel 617 substrate was published by our group in 2019 
[99]. The duration of the isothermal load was more than 3500 h at three 
different temperatures, 730, 750 and 770 ◦C, in an air furnace. An 
additional isothermal test at 750 ◦C with increased oxygen concentra
tion was carried out in parallel to accelerate substrate oxidation. 

Regarding cyclic conditions, three different peak temperatures, 
530 ◦C, 640 ◦C and 700 ◦C, were chosen with a heating rate of either r1 
= 8 ◦C/min or r2 = 12 ◦C/min. Additional cyclic tests were conducted 
with the furnace purged with steam when, after each cycle, the samples 
cooled down to room temperature to simulate morning dew precipita
tion at the industrial site. Each week, samples were taken from the 
furnace to perform the coating characterization, which involved crack 
length and width evaluation, pull-off testing, evaluation of the oxide 
thickness, determination of the spectral selectivity and XRD, FIB and 
TEM analysis. 

Data from the absorptivity measurements, the crack length and 
width, the oxide thickness, the ratio between the oxide and the coating 
thickness and the pull-off results were used to develop theoretical 
models for the oxide growth rate and solar absorptance degradation, 
resulting in the service life estimation of the absorber coating studied, 
which was estimated to be 11 ± 2 years under the operating conditions. 
To calculate the estimation accurately, isothermal and cyclic data were 
merged, which gave the estimation of the lifetime. Furthermore, optical 
and mechanical degradation were considered separately to determine 
which is more progressive to reach the threshold value, and optical 
degradation was found to be dominant. 

The recent review by Zhang et al. [100] on the thermal stability of 
high-temperature solar absorber coatings report the diffusion process as 
the main concerning issue. They divided diffusion into outer diffusion of 
oxygen, which oxidizes the substrate, and inner diffusion, which is 
divided further into internal segregation and internal penetration. The 
latter is reported to be the main reason for coating failure. 

Pyromark 2500 can be considered as an industrial standard coating, 
which is used on high-temperature CSP absorbers. However, as seen 
from Fig. 2, due to its non-selective nature, Pyromark is not suitable for 
low-temperature absorbers. Too high thermal emissivity at a low tem
perature results in very low solar-to-thermal conversion efficiency 
(<40%). For this reason, other fabrication methods (PVD, CVD, ALD, 
electroplating, etc.) and materials are used to produce industrial PTC 
absorber coatings with high spectral selectivity, i.e., electroplating of 
Co–Cr coatings by Absolicon [101] or PVD-fabricated Ti/Cr/AlTi
N/AlTiON/AlTiO multilayer coatings by Rioglass [102]. 

Boubalt et al. developed the LCOE metric to characterize industrial 
absorber coatings for CSP [103]. They also introduced two new pa
rameters: LCOC (levelized cost of coating) and LCOC efficiency. Their 
estimation of coating reapplication intervals was from one to five years 
and their finding was that SSC absorber coatings could reduce the LCOE 
by up to 12%, compared to the value obtained for an uncoated absorber. 

The properties of Pyromark 2500 are used by many authors as a 
comparison to newly developed absorber coatings. Ho et al. character
ized Pyromark 2500 used as a solar absorber coating at a high temper
ature [104]. They reported that the coating achieved αS of 0.97 at a 
near-normal incidence angle and εT of 0.8 at 100 ◦C. However, exposure 
of the coating to 750 ◦C (300 h) caused a drop in the αS of 3%. The cause 
for the drop was stated to be high temperature-induced crystal structure 
change and/or diffusion of cations from the substrate into the coating. 

Another more recent study about degradation mechanisms of 
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Pyromark 2500 was published by Torres et al. [7], where non-linear 
thermal cycling effects were considered in the study. Rapid cycling, 
cycle-and-hold and isothermal (850 ◦C, 100 h) experiments were con
ducted on the Inconel 625 samples, coated with Pyromark 2500. The 
results showed that cycle-and-hold conditions significantly differed 
from isothermal and rapid cycling cases, resulting in larger crack widths 
due to sintering and oxidation of the substrate. Furthermore, Ni and Cr 
diffusion from the substrate was observed, forming spinel structures. 

Furthermore, despite the intensive research and development of new 
solar absorber coatings, there is still no commercial substitute for 
Pyromark paint for high-temperature applications [105]. For this 
reason, Martinez et al. studied means of improving the durability of 
Pyromark 2500 by controlling consolidation procedures. In their ex
periments, Pyromark-coated T22 substrates were exposed to different 
oven temperatures and times. Subsequently, polymerization was 
induced by infrared radiation, using different radiation powers and 
exposure times. The results showed that the thickness of the paint and 
substrate was not affected by thermal treatments. Local wear rate 
analysis was used to assess paint durability and relaxation function was 
measured with depth sensing indentation. The correlation between 
relaxation times, wear rate, the (hardness)2:(equilibrium modus after 
relaxation) ratio and the glass transition temperature (Tg) was formed. It 
was found that the Tg and relaxation times can be controlled by strategic 
curing and vitrification procedure, and it was proposed that Pyromark 
be cured for 2 h at 125 ◦C followed by vitrification for 1 h at 250 ◦C. 

Reoyo-Prats et al. studied accelerated ageing of absorber coatings for 
CSP absorbers under real high solar flux with high rates of flux (350 kW/ 
m2s to 640 kW/m2s) and temperature variation [106]. In their study, 
T91, T22, VM12 and Inconel 617 alloys were coated and tested with 200 
accelerated solar ageing cycles using a concentrated solar facility (SAAF) 
under two different cycle regimes. In the first regime, the samples were 
exposed to a concentrated solar flux of 500 kW/m2 and a maximal 
temperature of 650 ◦C, and in the second regime, to a flux of 700 kW/m2 

and Tmax of 800 ◦C. 
After 200 cycles, there was no significant degradation of the samples. 

In some cases, thermal cycling even resulted in improved αS of the 
coating, resulting in higher optical efficiency, such as for the coated T22 
sample and the coated VM12 sample, due to a curing phenomenon. It 
was concluded that 200 cycles were insufficient to observe a higher 
degree of coating degradation. 

The rapid progress in the spinel oxide pigmented silicone coatings for 
high-temperature CSP absorbers operating under high solar concentra
tion was reported by X. Wang et al. [107–109] They used a four-flux 
radiative theoretical model in order to predict the optical properties of 
nano particle pigmented coatings. The theoretical results were a good 
match with an experimental absorber coating containing small load of 
spinel oxide nanoparticles. They achieved αS of 93% and εT of 52% with 
MnFe2O4-pigmented coating on stainless steel 310. Furthermore, 
absorber coatings were isothermally aged for 1000h at 750 ◦C in air with 
subsequent 19 day-night thermal cycling. The results of aging showed 
the drop of αS to 90.8% and increase of εT to 57.6%, but the optical 
degradation was mainly due to the CrOx microflake formation from the 
SS 310 substrate thermal oxidation rather than the coatings itself [107]. 
With a proper substrate oxidation protection, these absorber coatings 
are shown to be good candidates for high-temperature Generation 3 CSP 
systems [110]. 

Table 1 contains an overview of spectrally selective coatings with 
used fabrication methods, substrates, αS and εT values and thermal sta
bility in air and/or vacuum. State-of-the-art CSP-TR coatings can quickly 
achieve a high solar absorptance greater than 95%, but according to our 
literature review, coatings for CSP-TR systems that provide a low ther
mal emittance (<50%) over a long period of time (1000 h) at temper
atures of 700 ◦C or higher in the air have not been reported. 

The αS with a threshold of 95%, εT with values lower than 50% and 
1000 h of isothermal stability or cycle equivalent testing in an air at
mosphere of CSP absorber coatings were chosen from Table 2 and are 

summarized in Table 3. One can observe that only metal/non-metal
–dielectric composite coatings achieve high spectral selectivity and 
long-term high-temperature stability in the air, but even these coatings 
usually do not have both features. Other coating designs report insuffi
cient thermal stability for industrial use or, in the case of semi
conductor–metal tandems, thermal stability was not reported, according 
to our knowledge. The threshold for high αS as a more important factor 
was not achieved with the intrinsic and textured surface coating designs, 
but low εT, at least for as-deposited coatings, was reported for all design 
types. Despite the suitable initial optical properties of many fabricated 
coatings, they are not industrially feasible unless they show appropriate 
thermal and mechanical stability at operating conditions and low cost of 
large-scale fabrication. 

6. Conclusions and future prospects 

Absorber coatings are the key component in the solar-to-thermal 
energy conversion process. Six basic types of SSCs have been devel
oped to date, with the aim of designing an efficient CSP absorber system. 
For low-to-mid temperature (<400 ◦C) applications, the choice of suit
able materials for SSC production is larger, and thermal stability in air is 
easier to achieve in contrast to very high temperature (>800 ◦C) ap
plications, for which some refractory materials could be the best can
didates in order to achieve a degradation-resistant coating for a longer 
period of time (>10 years). 

A spectrally selective coating can reduce the LCOE by up to 12% 
compared to an uncoated absorber [103]. In the case of producing heat 
for industry, the reduction in the levelized cost of heat production is 
even higher, since there is no loss of energy due to the transformation of 
heat to mechanical and electrical energy. 

For temperatures higher than 1273 K, high FOM is possible with high 
solar absorptive (HSA) coating only, and spectral selectivity plays a 
minor role. More attention should be dedicated to the thermal conduc
tivity of the absorber system and heat transfer coefficient of the heat 
transfer fluid boundary layer [183]. 

Among the fabrication methods for the production of spectrally se
lective absorber coatings, the emerging technologies are CVD and PVD 
and methods evolved from them. Due to higher LCOC in comparison 
with cheaper deposition methods (e.g., spray coating), there is always a 
search for the next best industrially feasible fabrication process. With 
PVD or CVD techniques and the right choice of materials and parameters 
of fabrication, it is possible to achieve very high αS as well as extremely 
low εΤ of SSCs. However, the main weaknesses of all SSC types are 
chemical and physical degradation under high-temperature cycling 
conditions, which are present at the CSP absorbers under operation. 

Table 3 
Assessment of reported optical properties and thermal stability, required for 
effective high-temperature CSP spectrally selective absorber coatings, which 
are arranged by design types. 
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Degradation and high temperature-induced oxidation and diffusion 
result in the loss of excellent optical properties and demands reap
plication or replacement, which increases the operating costs. 

Future efforts should be focused on the lifetime assessment of the 
coatings with suitable spectral selectivity to choose the most stable 
coatings for further development into industrial applications operating 
either at low, medium or high temperatures. 

Characterization methods should be used in a manner that ap
proaches the real industrial absorber conditions as much as possible, and 
theoretical models should be developed and used to predict long-term 
degradation behavior [146]. 
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