
Neurocomputing xxx (xxxx) xxx
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Data multiplexed and hardware reused architecture for deep neural
network accelerator
https://doi.org/10.1016/j.neucom.2021.11.018
0925-2312/� 2021 Elsevier B.V. All rights reserved.

⁎ Corresponding author.
E-mail address: skvishvakarma@iiti.ac.in (S.K. Vishvakarma).

Please cite this article as: G. Raut, A. Biasizzo, N. Dhakad et al., Data multiplexed and hardware reused architecture for deep neural network acce
Neurocomputing, https://doi.org/10.1016/j.neucom.2021.11.018
Gopal Raut a, Anton Biasizzo b, Narendra Dhakad a, Neha Gupta a, Gregor Papa b,
Santosh Kumar Vishvakarma a,⁎

aDepartment of Electrical Engineering, Indian Institute of Technology Indore, India
b Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

a r t i c l e i n f o
Article history:
Received 8 March 2021
Revised 26 August 2021
Accepted 7 November 2021
Available online xxxx
Communicated by Zidong Wang

Keywords:
Activation function
Embedded system design
Hardware reused architecture
Deep neural network
Data multiplexing
Programmable logic
Processing system
a b s t r a c t

Despite many decades of research on high-performance Deep Neural Network (DNN) accelerators, their
massive computational demand still requires resource-efficient, optimized and parallel architecture for
computational acceleration. Contemporary hardware implementations of DNNs face the burden of excess
area requirement due to resource-intensive elements such as multipliers and non-linear Activation
Functions (AFs). This paper proposes DNN with reused hardware-costly AF by multiplexing data using
shift-register. The on-chip quantized log2 based memory addressing with an optimized technique is used
to access input features, weights, and biases. This way the external memory bandwidth requirement is
reduced and dynamically adjusted for DNNs. Further, high-throughput and resource-efficient memory
elements for sigmoid activation function are extracted using the Taylor series and its order expansion
have been tuned for better test accuracy. The performance is validated and compared with previous
works for the MNIST dataset. Besides, the digital design of AF is synthesized at 45 nm technology node
and physical parameters are compared with previous works. The proposed hardware reused architecture
is verified for neural network 16:16:10:4 using 8-bit dynamic fixed-point arithmetic and implemented
on Xilinx Zynq xc7z010clg400 SoC using 100 MHz clock. The implemented architecture uses 25% less
hardware resources and consumes 12% less power without performance loss, compared to other state-
of-the-art implementations, as lower hardware resources and power consumption are especially impor-
tant for increasingly important edge computing solutions.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

The Deep Neural Networks (DNNs) have become a popular algo-
rithm in pattern recognition since the recent evolution of computer
hardware, which fulfilled the high computational power require-
ments of learning algorithms [1,2]. The main advantage of the
DNN over other prediction techniques is its capability to learn hid-
den relationships in data with unequal variability [3]. Further, DNN
is a popular choice due to its diverse applications and is applied to
various non-linear detection problems, some of which are lane
detection, pattern recognition, fault detection, and monitoring in
the industry [4,5]. However, these applications often require a
DNN and real-time processing, which need high computational
power.
In this article, the authors refer to a fully connected feed-
forward Artificial Neural Network (ANN) with multiple layers
between the input and output layers as a DNN. Deep learning
opens up a need for different platforms like GPU, CPU, ASIC, or
FPGA to accelerate the computation of the DNN algorithm. The
CPU and GPU-based DNN implementations are general-purpose
platforms with specialized hardware supporting various opera-
tions, including Multiply-Accumulate (MAC) operation. However,
the drawback of CPU and GPU is the low utilization of their
resources that reflects in high power consumption [6]. In compar-
ison, ASIC and FPGA devices provide fast multiplication operations
with minimal resources utilization and lower power consumption
than streaming pixels and learning features [7]. Further, FPGAs also
have a specialized hardware structure for MAC operation, but their
design is customized to DNN implementation; thus, they achieve
high resource utilization and lower power consumption. At the
same time, ASIC-based hardware accelerators are the fastest and
most energy-efficient. However, they are constrained by their
lerator,

https://doi.org/10.1016/j.neucom.2021.11.018
mailto:skvishvakarma@iiti.ac.in
https://doi.org/10.1016/j.neucom.2021.11.018
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
https://doi.org/10.1016/j.neucom.2021.11.018


G. Raut, A. Biasizzo, N. Dhakad et al. Neurocomputing xxx (xxxx) xxx
inability to reconfigure neural networks with different features and
the inferred network’s limited size [8]. Attractive FPGA implemen-
tation schemes, focusing on the usage of Xilinx families, are
described in the book edited by Ormandi and Rajapakse [9].
Besides, FPGA has hardware efficiency, resources utilization flexi-
bility, and reconfigurable logic design architecture to optimize per-
formance for any specific type of application [10].

In DNNs, each neuron performs two basic functions: sums
weighted input features using MAC and evaluates Activation Func-
tion (AF) from calculated sum as shown in Fig. 1. DNNs are compu-
tationally expensive for data-intensive applications that may
contain many neurons and several parameters. In a fully parallel
implementation of deep neural networks, each layer needs a dis-
tinct memory space for its weight and bias in order to maximize
performance efficiency. Previous works have rarely investigated
flexible hardware architecture that scales well with the size of a
neural network without compromising accuracy. The area-
efficient architecture is made using different design techniques
for MAC unit, AF, and layer architecture [8,10–13]. Moreover, the
implementation of the AF is challenging due to its non-linear nat-
ure. Therefore, its accurate design and implementation requires a
large number of hardware resources. An area-efficient design can
be made by configuring many arithmetic operations implementa-
tion such as MAC and AF on the same hardware at the cost of lower
throughput [12].

Despite the configurability, the design must scale in terms of
hardware due to a profound DNN realization. Our goal is to develop
an area-efficient architecture of a DNN that can reuse the AF within
the DNN to make it suitable for implementation on small FPGAs.
Considering the demands on trade-off in area, power, and speed
of the computational block, we propose a data-multiplexed and
hardware-reused DNN architecture with an efficient way of mem-
ory mapping. Further, compute efficient AF is optimized using Tay-
lor series expansion, and we reuse the AF within each layer by
multiplexing and serializing the data-flow using the Parallel-in
Serial-out (PISO) mechanism.

1.1. Motivation

The main bottlenecks of the FPGA implementations are limited
hardware resources and limited Programmable System (PS)-
Programmable Logic (PL) data transmission bandwidth. In order
to reduce the memory bandwidth of the DNN implementations,
the weights and bias constants should be stored as close to the pro-
cessing element as possible. Further, neural network MAC featur-
ing a single multiplier in each neuron will access the data
serially and compute iteratively. The final weighted sum of neu-

ron’s j-inputs is calculated by MAC unit after jth clocks considering
Fig. 1. Fully parallel feed-forward Deep Neural Network architecture.

2

that j accumulative iterations are required for the final desired out-
put. At the same time, implemented sigmoid AF at each neuron is

unused for j clocks and gets active at ðjþ 1Þth clock. Furthermore,
the parallel AF implementation in each layer takes more hardware
resources, and inherently unused hardware of the AF during MAC
accumulation for j clocks comes with static power dissipation.
We address some of these difficulties by developing and imple-
menting an FPGA-based DNN implementation that reuses the AF
in particular and is suited for systems where hardware resources
are limited.

Lesser hardware resources and lower power consumption are
significant for increasingly important edge computing solutions.
In this respect, we have designed an efficient DNN architecture
with better resource utilization and other performance parame-
ters. The proposed hardware implementation technique uses mul-
tiplexed and serialized data path that allows reusing the AF. We
have serialized output of the MAC array within the layer using shift
register in each layer and efficiently reused single AF for excitation.
The embedded design approach is divided into two parts: firstly, a
DNN core is designed for proposed hardware-reused architecture
with a control unit for weight/bias access that includes optimized
AF. An efficient log2 quantized scheme is used for serial data access
using FIFO. Secondly, an embedded block design is implemented
on the Zybo FPGA board to verify the design and compare physical
performance parameters. Additionally, to address the ASIC DNN
implementation, our AF is synthesized at 45nm technology, and
physical performance parameters are compared with the state of
the art.
1.2. Contribution

The proposed work focuses on efficient architecture in terms of
area and power overhead without performance loss. The contribu-
tion of the FPGA based DNN architecture is summarized in the fol-
lowing three points:

� In order to compute a more popular sigmoid AF, we implement
its computation through a memory element that uses a positive
exponential function with Taylor series expansion and uses
BRAM utilization to store the memory element that benefits
at higher precision. The AF model physical parameters are also
evaluated at the 45 nm technology node.

� In order to find the Pareto point in the Taylor series order
expansion for sigmoid AF implementation, accuracy is analyzed.
Also, accuracy versus bit precision is analyzed for different AF
design architectures.

� The performance-centric, resources-efficient fully connected
DNN is presented that reuses AF by multiplexing the data-
flow. The throughput and other physical parameters’ impact
are analyzed. Further, we present efficient memory addressing
scheme to read/write of weights and biases.

This paper confirms that DNN architecture with data multiplex-
ing that reuses hardware resources improves area utilization and
decreases energy consumption. Furthermore, the authors have ver-
ified the proposed architecture by implementing the 16:16:10:4

Deep Neural Network on Zybo xc7z010clg400 and evaluated its
performance parameters. The performance validation has been
done using the 16-level thermometer to four binary-level classifi-
cation applications.
1.3. Organization

The rest of this paper is organized as follows. Section 2 gives
related works and motivation. Section 3 describes the embedded



G. Raut, A. Biasizzo, N. Dhakad et al. Neurocomputing xxx (xxxx) xxx
system architecture. The proposed design of a hardware-reuse
technique for the neural network is presented in detail in Section 4.
Section 5 shows the experimental setup, followed by simulation
results and discussion in Section 6. Finally, the concluding remarks
are outlined in Section 7.
2. Background and related works

In this section, we discuss related works which target hardware
implementation for DNNs. DNNs contain one input layer, multiple
hidden layers, and one output layer. Conventionally a DNN can
either be efficient in terms of area/ power or inference accuracy/
throughput. Therefore, research has been done primarily on com-
putational arithmetic blocks such as MAC, AF, and neuron layer
interconnection within the network to optimize neural network
acceleration performance.
2.1. Related work for DNNs implementation and MAC computation
optimization

The mobile devices with resource-constrained hardware for
DNN deployment are attracting much attention. Further, the suc-
cess of AI drives Application-Specific Integrated Circuit (ASIC)
design for the area and performance-efficient DNN implementa-
tion [14]. DNNs perform computations for many layers, which
come with higher area and power demands [15], and hence the
area and power constraint in DNNs represent an increasingly major
challenge, especially in mobile devices and AI-enabled IoT applica-
tions. Significant research has scrutinized the efficient design
architectures at different abstraction layers to enhance the perfor-
mance of DNNs [16]. An ASIC design as Tensor Processing Unit
(TPU) [17] has been implemented for on-chip acceleration. An
ASIC/FPGA-based DNN framework such as Eyeriss [18], Gemmini
[19], Simba [20] have been proposed in the state-of-the-art. How-
ever, the reused hardware resources with no throughput loss have
not been addressed. Therefore, explorations of hardware efficiency,
such as hardware reuse, have prompted more attention to reduce
area utilization [21].

The fully connected neural network with reconfigurable nodes
within the layer has been designed in [22]. Furthermore, the con-
figurable layer reused DNN is designed for minimalist hardware
architecture and simplifies data movement between memory and
compute elements [8]. In [23,24], authors have implemented a
binarized neural network which drastically cut down the hardware
consumption at the cost of insignificant accuracy loss. Conse-
quently, a significant amount of research is focused on the lower
area utilization and power-efficient hardware-based neural net-
works while compromised with the throughput and accuracy
performance.

DNNs with a higher number of layers have been studied in the
last decade to improve DNN accuracy. Many architectures have
been proposed in the state-of-the-art FPGA-based neural network
implementations [25–28]. Such architectures substantially
increase the number of neurons that increase the MAC utilization
whichdemands more hardware resources, processing time, and
power consumption. Further, previous works have investigated
the efficient architecture for a MAC unit that can use minimum
resources without performance loss [8,11]. In [29], the authors
overcome this limitation by using dynamic partial reconfiguration
to reuse the FPGA resources. While this technique does improve
the resource utilization of the FPGA device, it significantly
increases the delay of the circuit. Another way to cope with this
increased resource utilization is to use approximate computing
techniques to implement MAC [30,31], if some degree of error is
tolerable.
3

The application-specific reconfigurable DNNs have been imple-
mented in [32]. The number of neurons in each hidden layer can be
configured within the DNN through which on-chip power has been
significantly saved. However, design can further explore hardware
reused architecture. An area-efficient method with layer multi-
plexing has been addressed in which physical implementation of
the number of hidden layers is halved [13]. Although, the network
implementation has lower area utilization, the design suffers from
lower throughput, halved compared to the fully parallel layer
architecture. The resource-hungry non-linear AF has been reused
by implementing the multiplexers between the parallel MAC units
and the AF within the layer [33]. This kind of architecture is effi-
cient for very low precision, and tiny neural networks as multiplex-
ers are hardware costly for higher precision and increase the
complexity in the data-flow, which comes with a higher critical
delay. However, we have presented an efficient hardware design
that reuses the AF with an insignificant throughput performance
loss in DNN, and the design technique can be efficient for all
fixed-point arithmetic precision implementations. Furthermore,
our propsoed architecture is adequate in the hardware design of
DNN with runtime configurable for many AFs [34].

The high-throughput MAC unit with a fully parallel array of
multipliers is shown in Fig. 2. Usually, the bit-width of MAC output
is the sum of input bits, trained weight bits, and extra overhead
bits to save the overflow bits generated during the accumulation.
The performance-efficient state-of-the-art neuron computational
unit having a MAC unit with a parallel multiplier and adder tree
followed by AF is shown in Fig. 2. However, it is impossible to
instantiate parallel multipliers in MACs for every neuron due to
the limited hardware resources. The hardware-costly multiply
and accumulate unit can be shared by the multiple consecutive
hidden layers at the cost of throughput loss [35,36]. Furthermore,
dedicated AF in each neuron is accountable for area overhead
due to its underlying non-linear nature. Primarily, MAC unit con-
sists of multiplier and accumulator block, whereas arithmetic rela-
tion between input and output of a nth neuron in the lth layer is
given by Eq. 1,

al
n ¼ f ð

XJ

j¼1

Wl
n;j � al�1

j þ bl
nÞ ð1Þ

where f is the Activation Function (e.g. simoid, tanh, ReLU),

wl
n;j is the weight of the jth input al�1

j , and bl
n is a bias of the nth

neuron. Note that the output of the layer ðl� 1Þth is the input to the
layer l. Computation of a whole layer formulated in matrix form is
given in Eq. 2.

al ¼ f ðWl � al�1 þ blÞ ð2Þ
The Deep Neural Networks have numerous layers, and more

MACs are a consequence that demand more hardware resources
for implementation. This problem will be more dominant when
the network processes the high-resolution images that need higher
precision computational elements. Therefore, DNN implementa-
tion on resource-constrained hardware mobile or edge devices is
attracting much attention. In previous works, multi-bit precision
(8, 16, 32, and 64-bit) data representation is used for MAC unit
arithmetic computation, considering the trade-off between accu-
racy and physical performance parameters. Furthermore, com-
pared to the floating-point, the fixed-point is preferred which has
maximized utilization density and throughput. However, it is also
prefered when the resources are limited, and some degree of error
is tolerable [37]. Therefore, a neural network design with 8-bit pre-
cision operands is preferable [12]. In this proposed efficient archi-
tecture of the DNN accelerator, we have used signed 8-bit fixed-
point arithmetic precision.



Fig. 2. The memory mapped neuron computational element design having parallel multipliers for J inputs, adder tree followed by AF. Considering N will be the number of
neurons in corresponding lth Layers.

G. Raut, A. Biasizzo, N. Dhakad et al. Neurocomputing xxx (xxxx) xxx
2.2. Related work for techniques used in hardware design and
implementation of AF

The state of the arts use different mathematical approaches to
implement sigmoid/tanh calculations, as summarized in Table-1.
One can notice that all these functions are different forms of the
same function but vary in terms of the requirement of arithmetic
operations. Further, it can use different on-chip memory resources
such as Lookup Tables (LUTs), Block RAM (BRAM), Distributed
FPGA memory, or even external DRAM for local storage of AF
parameters. Some of the implementation methods are summarized
below as

1. LUTs Based Implementation by Storing Function [38]
2. LUTs Based Implementation by Storing Parameters [39]
3. Approximation in Calculation into base-2 exploration
4. Coordinate Rotation Digital Computer (CORDIC) Algorithm

[12,27,40]
5. Digital/Combinational logic implementation

An exact calculation of the AF using hardware implementation
is complex due to its continuous and non-linear nature. Therefore,
Piece-Wise Linear (PWL) technique is used for these functions
implementation [38,42]. Moving from lower precision to higher
precision, such as 8-bit, 12-bit, and 16-bit, the number of quantiza-
tion states increases exponentially, leading to an exponential rise
in required memory elements. The error contribution due to
PWL-AF at different precision is expressed in [43]. Moreover, the
non-linear AFs such as sigmoid/tanh cannot be approximated effi-
ciently using only combinational logic [12]. However, using purely
combinational logic has the benefits of providing low latency with
small area overhead compared to conventional ROM-based
approaches. In [44], an approximation scheme for tanh AF imple-
Table 1
Sigmoid and tanh activation function computational equations with different
representation for its design exploration and evaluation.

Preliminary Activation Function Implementation

Work Sigmoid Tanh

[41,46,26] 1
ð1þe�zÞ 1� 2Sigmoidð�2zÞ

[47,48] 1
ð1þe�zÞ ðe2z�1Þ

ðe2zþ1Þ
[27,45] 1þtanhðz=2Þ

2
ðez�e�zÞ
ðezþe�zÞ

[6,12] ez
ð1þezÞ

sinhðzÞ
coshðzÞ

4

mentation has been proposed using combinational logic design
to explore sigmoid function evaluation further. However, the com-
plexity of circuit design will increase for higher precision AF imple-
mentation. The reuse of hardware resources with an improved
architecture for configurable AF implementation is investigated
in [45]. This technique achieves high utilization of the FPGA and
remarkably improves the physical parameters of FPGA but suffers
from low throughput.

In [11], the authors used a single multiplier and adder with iter-
ative accumulation for MAC computation, and AF has been used in
every neuron. In DNNs, each layer has many neurons, and it
requires more hardware resources due to parallel architecture
and consumes more on-chip power. Based on the concise review,
we address the hardware-efficient and performance-centric solu-
tion. We have designed a signed 8-bit dynamic fixed-point
hardware-reused DNN accelerator with insignificant loss in
throughput. In addition, we have resized the MAC output that
allows efficient use of AF with lower precision implementation.
Further, area-efficient Taylor series expansion is used for Piece-
Wise Linear AF implementation. Finally, we used Block RAM to
store pre-calculated values of sigmoid AF, which is beneficial at
higher precision.
3. Embedded system architecture

This section explains the methodology for the efficient design
and implementation of the DNN accelerator. The FPGA-based
embedded approach is the best option because of its good perfor-
mance, fast implementation, energy efficiency, and reconfigurabil-
ity [42,49]. In this context, we have developed an efficient
hardware architecture of the DNN that employs the AF reuse tech-
nique that reduces the hardware resource requirements. The pro-
posed system architecture is validated on a 16-level
thermometer to 4-bit binary code converter using four layers
16:16:10:4 DNN with a configuration of 1-input, 2-hidden, and 1-
output layers. In each layer, output values of an array of MACs
are serialized using a shift register (PISO) and iteratively passed
through a single AF.

We developed an efficient architecture that gives the required
performance within the overall system requirement (size, weight,
power, cost, etc.). The complete embedded architecture with the
DNN hardware accelerator is implemented on the Xilinx Zybo
board. The FPGA implementation have been performed using Xil-
inx Vivado HLx and Xilinx SDK for hardware design and data initial-
ization, respectively. The Advanced eXtensible Interface (AXI) bus



Fig. 4. Signed Fixed h8;7i precision representation used for the data representation
with binary point implication and arithmetic calculation.

G. Raut, A. Biasizzo, N. Dhakad et al. Neurocomputing xxx (xxxx) xxx
is used to connect the custom DNN core to the controlling CPU. The
AXI bus supports DMA data transfer and achieves high data
throughput. The hardware implementation have done using VHDL
hardware description language, and the external communication
through the Processing System (PS) is developed in ‘C’ for an
embedded architecture.

3.1. System overview

This work demonstrates the four-layer neural network on an
affordable Xilinx FPGA SoC. Since BRAM memory has low latency,
our architecture uses BRAMmemory for the FIFO buffer implemen-
tation, for storing weights, and for storing pre-calculated values of
the AF. The software control of the embedded processing system
has been implemented using Xilinx SDK. The software control
module is responsible for loading input features and weights into
FIFO buffers. The design of the embedded architecture DNN co-
processor is shown in Fig. 3.

FIFO buffers are efficiently implemented using internal BRAM
since it is dual-port memory and has low latency [50]. The weights
that are stored in the BRAM are loaded through FIFO buffers. The
data is serialized before AF, allowing the reuse of AF, and the inter-
nal hardware architecture is customized for the data-flow. The
weights are loaded serially into the FIFO buffer and out from it into
the MAC local registers. After processing all layers of the neural
network, the output of the last layer is stored in output FIFO buf-
fers. Thus, the runtime access of weights and biases, i.e.. loading
and accessing them, is efficiently designed. We devised an efficient
technique for loading all necessary weights into FIFO buffers in
sequence for all MAC computational elements. It allows the MACs
not to wait to load the weights and access the BRAM, which has
already been loaded in the local registers of the computational
element.

The h8;7i fixed-point format shown in Fig. 4 demonstrates the
arithmetic computations used in developed architecture. This 9-
bit field representation uses 1-bit as a sign bit, 1-bit for the integer
part, and 7-bits for the fractional part. Symbolically, this is written
as a signed ‘Fixed h8;7i’. Thus, it represents a signed 8-bit fixed-
point number of which seven rightmost bits are fractional. The
HDL hardware coded DNN architecture 16:16:10:4 is validated for
thermometer level to binary value conversion using ‘fixed h8;7i’
representation, and it achieves 98:9% accuracy with insignificant
throughput loss compared to fully parallel architecture.

3.2. Memory addressing scheme for reading/ writing of weights and
biases

In a fully connected neural network, DNN hyperparameters vary
with different applications. Hence, architecture should be upgrad-
Fig. 3. The DNN co-processor architecture in which DNN architecture and on-chip
BRAM memory banks, used to cache weights/biases, are implemented using
programmable logic.

5

able regarding the number of layers in the neural network and the
number of neurons in each layer. The weights/bias addressing
should have a viable scheme for memory allocation.

In fixed dedicated memory allocation in adaptable Deep Neural
Networks such as [51], several memory locations do not corre-
spond to any physical implementation. Hence, it should avoid read
or write operation on these unimplemented addresses. Thus, an
efficient scheme of memory addressing is required for the
weight/bias access. Here, we use FIFO for the temporary data stor-
age, and BRAM is used for the on-chip storage. An efficient address
mapping scheme for weight/bias memory for each neuron is
shown in Fig. 5. The scheme is derived using the following labels:

� L is the total number of layers of the DNN model,
� NðlÞ is the number of neurons or biases in lth layer,
� JðlÞ is the number of inputs to the lth layer.

Note that the number of neurons in current layer is a number of
inputs to the following neuron as given in Eq. 3.

Jðlþ 1Þ ¼ NðlÞ ð3Þ
Fig. 5(a) gives an addressing scheme to access the DNN param-

eters (weights and biases). In this scheme, a parameter is identified
by its layer ID, by its type (weight/bias), by its neuron ID, and in the
case of weights by the corresponding input ID. First dlog2ðLÞe MSB
bits represent the layer ID of the addressed parameter. The next bit
is called a select bit, and it determines the type of the parameter
given in subsequent bits. Select bit = ‘1’ denotes that the following
bits represents bias address, whereas ‘0’ denotes that the following
bits represents the weight address. Bits following the select bit rep-
resent weight or bias RAM address as shown in Fig. 5(b). The length
of the weight or bias address R addrðlÞ is the maximum of length of
the weight address and the bias address and is given by Eq. 4a.
Whereas the bias address consist only of neuron identifier with
length dlog2NðlÞe, the weight address includes also input identifier
with the length W addrðlÞ = dlog2JðlÞe. The required address length
including layer ID and parameter type AddrðlÞ for layer l is given by
Eq. 4b.

R addrðlÞ ¼ dlog2NðlÞe þ dlog2JðlÞe ð4aÞ

AddrðlÞ ¼ dlog2Le þ 1þ R addrðlÞ ð4bÞ
Since the required address length varies depending on the layer

and since fixed address length is used in the addressing scheme,
the address length Addr is the maximum required address length
over all layers l ¼ 1;2; . . . ; L, and is given by Eq. 5b.

R addr ¼ max
l¼1;2;...;L

dlog2NðlÞe þ dlog2JðlÞef g ð5aÞ

Addr ¼ dlog2Le þ 1þ R addr ð5bÞ
4. Hardware design and implementation of deep neural
network

This section presents the proposed performance-centric
hardware-reused DNN implementation. The proposed architecture



Fig. 5. Mapping scheme for address bits that requires to address weights and bias
for the individual neurons.

G. Raut, A. Biasizzo, N. Dhakad et al. Neurocomputing xxx (xxxx) xxx
reuses the resource-hungry non-linear AF using data multiplexing
and is area and power-efficient, and with minimal performance
loss compared to fully parallel implementation. It is implemented
and tested on FPGA; however, the proposed DNN core can also be
efficiently implemented in ASIC. The complete DNN core is written
in VHDL-hardware description language, and it is integrated using
block design of Xilinx Vivado Design Suite.

The dynamic h8;7i fixed-point arithmetic used in the developed
DNN architecture was selected through experimental evaluations
as a compromise between resource usage, performance, and accu-
racy. Compared to the floating-point format, the h8;7i fixed-point
format comes with two advantages. Firstly, fixed-point computa-
tional units are usually fast and consume minimal hardware
resources and power, i.e.. the logic design with fixed-point arith-
metic will allow more instantiating for the given area. Secondly,
memory footprint will be reduced, thus allowing larger models in
given memory capacity. In addition, it dramatically increases data
parallelism. The following subsections describe key features of the
accelerator design and implementation.
4.1. Integrated block design of DNN accelerator

Hardware-based implementations of Deep Neural Networks
face the challenges of memory bandwidth limits. Therefore, the
efficient addressing scheme for dynamic loading of the weights
and the bias constants in the local registers of the MAC unit is
required. All FIFO registers used to store trained weight/bias con-
stants are loaded using the scheme as discussed in Section 3.2.
The block design of the embedded architecture is shown in
Fig. 6. Annip_0 block, which is marked in orange, is the proposed
DNN core and is connected to PS by three slave and one master
AXI interconnects. The two slave AXI streams are used to access
the input features and weight/bias constants. The third slave inter-
face is an AXI lite interface used by the DNN core control module.
The control module manages data exchange, handshake signals,
and other configurable signals.
Fig. 6. Block design of system architecture with use of AXI interconnects. The proposed d
the external communication.

6

Ready, DNNInit, and DNNDone are three control signals at the
top-level module that control data exchange, initiate computing,
and acknowledge completed calculations to the top-level module.
The Ready signal initiates the loading of the weight/bias into the
local registers of the DNN core. The DNNInit signal triggers the
computation once the weight/bias loading is done. The DNNDone

is a control signal which indicates that the computation has fin-
ished and the DNN output is ready.
4.2. DNN architecture and layers’computation mechanism

In order to initiate the DNN computation, the DNNInit signal
becomes active once the weight and bias constants are loaded in
the local registers of the MAC units. Each layer has the LayerInit

input signal used to initiate the layers computation, whereas
LayerDone signal is generated by the layer which is used to
acknowledge that the output of the layer is ready. The top-level
DNN Core has two additional sub-modules which interacts with
the control module:

� Weight loading module: Due to the limited number of DMA
channels available in Zynq, we found a workaround for loading
the weight in sequence into corresponding FIFOs by multiplex-
ing the handshake signals based on the index of the DMA data
transfer request, i.e., neuron’s FIFO that accepts the data is
selected based on index of loading DMA request.

� Computational module: It is built from Layer modules which
perform calculations for individual DNN layers and are daisy-
chained by data and handshake signals. Each layer module is
controlled by two handshake signals: LayerInit and Layer-

Done. First is the input signal of the layer module that initiates
layer computation while latter is the output signal of the layer
module and indicates that the layer computation has finished.
Since the computation of subsequent layer has to start after
the computation of current layer has finished, the LayerInit

signal of the subsequent layer is connected to the LayerDone

signal of the current layer. Similarly, the output of the current
layer is connected to the input of the subsequent layer as
depicted in Fig. 7. The LayerInit signal of the first layer is con-
nected to the top-level DNNInit control signal, which initiates
the DNN computation. On the other hand the LayerDone signal
of the last layer is connected to the top-level DNNDone control
signal, which acknowledges the master AXI stream, which is
used to access the output of the DNN core as shown in Fig. 6,
that the DNN computation is finished.

In DNNs, each layer may have many parallel neurons. Each neuron
consists of a MAC computational unit followed by an AF. Thus, in a
fully parallel architecture, the layer with N neurons has N number of
MACs and AFs. In contrast to the fully parallel architecture, the pro-
posed architecture uses N number of MAC units and a single AF unit
shared through Parallel-In Serial-Out (PISO) unit placed in between
the MACs and AF. The serial output stream of the current layer is the
input feature i1; i2; . . .ij for the subsequent layer, i.e number of
esign DNN IP (Annip_0) is shown in orange color. Processing system (PL) is used for



Fig. 7. DNN architecture with efficient design of hidden layer’s architecture that reuses resources hungry Activation Function. The parallel output of array of MAC is serialised
using shift register and pass it in packets to the AF.

G. Raut, A. Biasizzo, N. Dhakad et al. Neurocomputing xxx (xxxx) xxx
inputs of the next layer is the number of neurons in the current
layer, as shown in Fig. 7. In order to achieve better performance,
the proposed design for each layer has the following key features:

1. FIFO Buffer: Each multiply-accumulate unit has an input buffer
and an output buffer to receive and send the input, weight, and
output data in FIFO.

2. Pipeline Accelerator: We use a stream-like data passing mech-
anism (AXI stream) to transfer data between the input data
and multiply-accumulate unit.

3. Neural Unit: Contains one FIFO and one MAC unit that is used
for computation of one neuron in correspondence with its
assigned index.

4. Data Quantization: The AF is implemented for limited precision
in order to have a minimum resources utilization. Hence the
output of the processing unit is resized into ‘Fixed h8;7i’.

5. Data Serialize: The output of the array of MAC unit available in
the single-layer are serialized to reused the single AF within the
layer.

The timing complexity of the proposed DNN code has been
elaborated by determining the number of clock cycles needed to
perform the computation. Let TR and TP represent the number of
clock cycles delay required to compute outputs for proposed AF
Reused and fully Parallel DNN architecture, respectively. The pro-
posed data-multiplexed layer architecture computes the MAC out-
put in j clocks, where j is the number of layers’ input features, and
computes the first neuron output at jþ 2 clock cycles while the
outputs of the following neurons within the layer are computed
in every clock cycle. One can notice that it is due to the sharing
of a single AF in each layer. Whereas in fully parallel layer architec-
ture, it computes outputs for all MAC in j clock cycles and com-
putes outputs of all neurons in jþ 1 clock cycles. It is important
to note that while parallel architecture computes all outputs at
jþ 1 clock cycles, the next layer reads them serially one per clock
cycle due to the iterative computational nature of the used MAC
unit. This implies that in the case of hidden layers the data multi-
plexed architecture introduces the delay of the PISO module, which
is one clock cycle as described in Eq. 6b.
7

TRðlÞ ¼ TMACðlÞ þ TPISO þ TAF ¼ jðlÞ þ 1þ 1 ð6aÞ

TPðlÞ ¼ TMACðlÞ þ TAF ¼ jðlÞ þ 1 ð6bÞ
On the other hand, the output layer does not have the next layer

and the serial computation of the AF unit must be taken into
account. Therefore, the computation time of the output layer of
the proposed architecture output requires additional n� 1 clock
cycles to compute all outputs. The computation time of the output
layer for both architectures is given in Eq. 7a and Eq. 7b.

TRðLÞ ¼ TMACðLÞ þ TPISO þ TAF ¼ jðLÞ þ 1þ nðLÞ ð7aÞ

TPðLÞ ¼ TMACðLÞ þ TAF ¼ jðLÞ þ 1 ð7bÞ
The computation time TR of the whole AF reused DNN architec-

ture is computed by summing the computational time of the indi-
vidual layers. The first layer is input layer and does not perform
computations and is omitted from the sum illustrated in Eq. 8.

TR ¼
XL�1

l¼2

TRðlÞ þ TRðLÞ

¼
XL�1

l¼2

jðlÞ þ 2Þð Þ þ jðLÞ þ 1þ nðLÞ
ð8Þ

By applying the property that number of neurons in a layer is
equal to the number of inputs in next the layer (Eq. 3) the equation
can be simplified to Eq. 9.

TR ¼
XL�2

l¼1

nðlÞ þ 2ðL� 2Þ þ nðL� 1Þ þ 1þ nðLÞ

¼
XL

l¼1

nðlÞ þ 2L� 3

ð9Þ

Similarly, the computation time TP of the fully parallel DNN
architecture is evaluated using Eq. 10.

TP ¼
XL�1

l¼1

nðlÞ þ L� 1 ð10Þ



G. Raut, A. Biasizzo, N. Dhakad et al. Neurocomputing xxx (xxxx) xxx
By comparing TR and TP computation time, it can easily be seen
that the computation delay of the AF Reused DNN architecture
requires more clocks which is equals to number of hidden layers
h ¼ L� 2 and by the number of DNN outputs nðLÞ as given in Eq.
11. Further, time delay of accelerator output can be computed by
simply multiplying clock time tCLK with the number of clock peri-
ods TR evaluated by using Eq. 9.

TR ¼ TP þ hþ nðLÞ ð11Þ
Let us illustrate how the computation time can be determined

on the evaluation example of the 16:16:10:4 feed-forward DNN
using proposed DNN architecture. First hidden layer with 16 neu-
rons has jð2Þ ¼ 16 inputs and its MAC units require 16 clock cycles
to compute weighted sum. The processing of the output of the first
neuron requires two additional clock periods: one by PISO unit and
the other for AF unit, hence the output of the first neuron is com-

puted in 18th clock cycle as given in Eq. 6a. Second hidden layer has
10 neurons and 16 inputs and can start processing after 18 clock
cycles. By the analogy, it requires additional 18 clock cycles. Thus,
the output of its first neuron is available after 36 clock cycles. The
output layer has four neurons and 10 inputs. Therefore, 10 clock
cycles are used for MAC units to compute weighted sum and one
clock is used by PISO unit. However, to complete the DNN compu-
tation, the outputs of all neurons must be determined. Due to serial
AF computation, it requires four clock cycles. Hence, 15 clock
cycles are required for the output layer. For this Example, 51 clock
cycles are required for DNN computation in this example. Simi-
larly, 45 clocks (i.e.. 17 + 17 + 11) are required to compute the out-
put of the fully parallel DNN.
4.3. Architecture design and implementation of w-bit precision
Multiply-Accumulate unit

Each neuron has a MAC computational unit followed by an AF
unit. The MAC unit with parallel multipliers and adder tree in each
neuron are hardware costly and burdensome on tiny FPGAs. Hence,
iterative MAC architecture that uses minimal resources utilization
at the cost of throughput loss [12] is preferred. The resources-
efficient iterative MAC unit used in this work is shown in Fig. 8.
It requires j clocks for the computation of weighted sum, where j
is the number of inputs at the MAC computation. The standard
multiplier and adder defined in IEEE library package are used,
and implemented using logic slices (CLBs) on FPGA. Here, we used
fixed-point 8-bit precision ‘Fixed h8;7i’ arithmetic for input feature
and weights/biases i.e, input[8:0], weight[8:0] and bias

[8:0]. The output of the MAC unit is the sum of input bits, weight
memory bits, and overflow bits required for the weighted sum
accumulations. Therefore, output of multiplier gets accumulated
using adder with extra overhead bits (k), i.e.. k=dlog2je. We use se-

lect_b to load the bias constant that gets added in first multipli-
cation, i.e.. at the first clock initiating the MAC computation.
Afterwards, it selects the accumulation path using the same se-

lect_b signal.
The neurons have MAC followed by non-linear transformation

over the weighted accumulated sum, and therefore, the precision
Fig. 8. Iterative Multiply-Accumulate (MAC) computation unit with resized output
data.

8

of an AF depends on the output bit-width of the MAC unit within
the neuron. The MAC used in the proposed design is shown in
Fig. 8. The output of the MAC unit has [2wþ k]-bits, whereas prac-
tically it is not desirable to keep the [2wþ k] bits precision AF for
hardware implementation. Hence, we have resized MAC output
into w-bits (9-bits) using numeric_std library package of VHDL. It
allows us to keep the same input and output precision for MAC
implementation with dynamic fixed-point arithmetic ‘fixed h8;7i’
as shown in Fig. 8. In most cases, it is beneficial to have the same
input and output format that we use and implies ib in = ib out

=ib; f b in= f b out = f b and win = wout ¼ w, where ib represents the
integer bits excluding the sign bit, f b represents the fractional bits
and w represents the total number of bits at input/output. How-
ever, in the case of fixed-point format, final choice must be based
on a target application that gives maximum accuracy with desired
precision [37].

4.4. Design methodology and implementation of activation function

In DNN, MAC output is the input for a non-linear transformation
function AF. Due to the non-linear nature of the AF, it demands
more hardware resources for implementation, and resources uti-
lization increases exponentially for higher precision. In addition,
the AF with 16-bit and higher precision requires more memory ele-
ments for PWL implementation, and therefore, it is very costly for
hardware utilization as the number of required memory elements
increases exponentially with the quantization precision at the
input of the AF. The sigmoid function is the extended version of
an exponential function, and the exponential function can be eval-
uated using Taylor series expansion. For example, the Taylor series
expansion for a hyperbolic and exponential function is shown in
Eq. 12c. Whereas, sigmoid AF can be implemented using these Tay-
lor series expansions, the higher order of Taylor series expansions
returns better accuracy but comes with high precision representa-
tion. Hence, performance-centric evaluations have been done
between the Taylor series order used in AF evaluation and DNN
accuracy. The analysis of the impact of Taylor series order on infer-
ence accuracy is shown in Fig. 9.

sinhðzÞ ¼ zþ z3

3!
þ z5

5!
þ z7

7!
þ z9

9!
þ :::: ð12aÞ

coshðzÞ ¼ 1þ z2

2!
þ z4

4!
þ z6

6!
þ z8

8!
þ :::: ð12bÞ

ez ¼ sinhðzÞ þ coshðzÞ ð12cÞ
Fig. 9. Inference accuracy for fully connected neural network with sigmoid
activation function. The network 784:256:128:128:10 is trained for MNIST dataset
and used sigmoid with different order of Taylor expansion. The results shown for
’fixed h8;7i’ precision.



G. Raut, A. Biasizzo, N. Dhakad et al. Neurocomputing xxx (xxxx) xxx
An exponential function has been evaluated using the sum of
the Taylor series for sinh and cosh function, as shown in Eq. 12c.
We have used an optimized sigmoid AF evaluation technique for
both negative and positive inputs. In this work, sigmoid function
is represented using positive exponential function as given f(z)
for positive and negative inputs. The elaborated equations for the
positive and negative half are shown in Eq. 13. The Pareto study
between series expansion order and accuracy shows that accuracy
gets saturated after the fifth-order of series expansion as shown in
Fig. 9. Hence, fifth-order Taylor series expansion has been used for
the memory elements extraction in the ‘Fixed h8;7i’ representa-
tion. Further, extracted memory elements for sigmoid AF are
stored in the BRAM for real-time function evaluation. The proposed
approach can easily be extended for tanh AF implementation sim-
ply by dividing the sinh and cosh. However, sigmoid and tanh AF
can also be implemented using a different approach as discussed
in Table 1.

f ðzÞ ¼ sigmoidðzÞ ¼
ez

1þez ; if z P 0
1

1þe�z ; otherwise

(
ð13Þ

The implemented sigmoid AF design is efficient in terms of
physical performance parameters such as area, power, and delay,
where we have used only positive exponential function for sigmoid
AF evaluation. We have analyzed the order representation of Taylor
series expansion for sigmoid AF. The order of Taylor series expan-
sion for AF versus inference accuracy for the proposed scheme and
state of the art is shown in Fig. 9. The accuracy results are evalu-
ated for the MNIST dataset on DNN configuration
784:256:256:128:10. The arithmetic representation of the integer
bits and the fractional bits have been presented using the ‘Fixed
h8;7i’ scheme. Here, we trained the model for 20 epochs and
stopped the training when the validation accuracy decreased con-
secutively for two epochs. Then,we evaluated the trained model on
a test set of MNIST and observed the accuracy. Conventionally
these equations computations represent the same output as shown
in Fig. 9; however, due to 8-bit fixed-point representation, num-
bers get quantized at every math operation involved in AF compu-
tations. Thus, results show the sigmoid with the proposed
technique has better accuracy compared with equations used in
previous works [48,52].

5. Experimental setup

The system architecture is represented at the RTL level using
VHDL language to evaluate the performance of the proposed
design. The RTL for our system architecture is synthesized using
Xilinx Vivado, and implementation results are produced for Zybo
FPGA hardware. Inference accuracy for sigmoid AF on DNN is eval-
uated through software evaluation. Further, for ASIC design, syn-
thesis results for an optimized sigmoid AF are extracted using
Synopsys Design Vision. Following experiments are done to validate
our proposed design:

1. The inference accuracy has been evaluated for different preci-
sion 8, 16, and 32-bit fixed-point arithmetic representations
of sigmoid AF implementation with different approaches to
finalize the precision selection for hardware implementation.

2. The DNN configuration 784:256:128:128:10 is designed for
‘Fixed h8;7i’ precision using QKeras. The Pareto study tuned
the Taylor series order expansion for the sigmoid AF implemen-
tation, which returns better accuracy and physical performance
parameters. MNIST dataset is used for evaluation and validation
of AF. Further exploration for ASIC, synthesis results for 8-bit
precision are presented at 45 nm technology.
9

3. The proposed hardware efficient data multiplexed DNN archi-
tecture implantation is validated on the Zybo board for network
size 16:16:10:4. Here, we have designed a custom IP for the
proposed architecture and show the implementation results
for the FPGA prototyping of the proposed resources-reused
(i.e., AF) design architecture.

6. Experimental results and discussion

We have evaluated the system architecture at different abstrac-
tion levels for setting the design parameter for hardware imple-
mentation. Finally, the embedded design of the DNN has been
implemented in hardware. The detailed analysis and evaluation
results are given in the following subsections.

6.1. Accuracy for multi-bit precision and Pareto study for Taylor series
expansion

The QKeras model is used for the training of the DNN as it
allows drop-in replacement for the quantized versions of the con-
ventional Dense and Activation layers. The accuracy has been
observed for the MNIST dataset on DNN configuration
784:256:256:128:10 with 8, 16, and 32-bit precision, as shown
in Table 2. Furthermore, our sigmoid AF design’s evaluated accu-
racy using MNIST dataset has been compared with the accurate
AF function of the Tensor library [53] and Piece-Wise Linear Acti-
vation Function [47]. From Table 2, it can be observed that there
is an insignificant accuracy loss (62%) between 8-bit and 32-bit
precision computation. However, 8-bit precision computation
leads to reduce memory computation demand by a factor of 4.
Hence, we have chosen the fixed-point 8-bit precision for hard-
ware implementation. We have also evaluated the optimal position
of the decimal point, i.e., one integer bit and the rest fractional bits
in the dynamic fixed-point arithmetic.

6.2. Data multiplexed DNN implementation and results comparison

The Xilinx Zybo (xc7z010clg400) FPGA hardware contains 4,400
logic slices; each logic slice includes four 6-input LUTs and 8-FF.
Additionally, it provides 240 KB of BRAM. In order to evaluate
the resources utilization and power consumption, we used Xilinx
Vivado tool. Through an efficient addressing scheme, local memory
registers with weights and bases are loaded. Architecture has been
implemented on Zybo. Furthermore, the DSP blocks have not been
used for logic implementation due to their fixed architecture for
higher precision and power consumption constraints.

We have implemented data multiplexed hardware reused
architecture and results are extracted. For the sake of comparison
with state-of-the-art approaches, we used the same design param-
eters which are ‘Fixed h8;7i’ arithmetic, DNN size, and evaluation
kit for the implementation of all the previous and proposed work.
We used DNN configuration 16:16:10:4 for the implementation
and results comparison. The hardware architecture has been
designed using VHDL and for DNN core extracted post-
implementation results on the Zybo FPGA board are shown in
Table 3.

In [22], authors have designed DNN with fully parallel layers.
The network has high throughput and flexibility to change the
number of nodes in the network, allowing us to configure the net-
work for different applications. However, the design architecture
has further scope to make it hardware efficient using the data mul-
tiplexed and AF reused scheme. An efficient hardware design has
been proposed where authors have reused the AF [33]. This work
has used a multiplexer between the parallel MAC units and AF in



Table 2
Network inference accuracy of DNN size 784:256:128:128:10 for Piece-Wise Linear (PWL) AF [47] and TenserFlow library based AF [53] at different bit-precision with dynamic
fixed-point representation @MNIST dataset.

Activation Inference accuracy (%) for different AFs

function ReLU Sigmoid tanh

precision Tensor [53] Proposed PWL [47] Tensor [53] PWL [47] Tensor [53]

32-bit 97.51 98.20 97.94 98.30 97.14 98.58
16-bit 96.71 97.63 97.86 97.58 96.90 98.53
8-bit 97.50 97.06 97.58 96.68 95.54 97.93

Table 3
Resource utilization and performance parameters for 4-layer (16:16:10:4) on xc7z010clg400 at 100 MHz.

Hardware Avail. Logic
Resources

DNN with AF
Reused [33]

DNN with Layer
Multiplexed [36]

DNN with Layer
Reused [11]

DNN with Fully
Parallel AF [22]

Hardware Reused
(AF) Proposed

% Utilized
Relative [22]

Slice LUTs (17600) 10439 6733 6127 9968 8858 88.86
Slice FFs (35200) 7573 6018 5904 10638 6219 58.46
BRAM (60) 6.5 9 13.5 11 6.5 59.09
BUFG (32) 8 8 8 8 8 –

On-chip Power (mW) 158.5 88:12� L 74:04� L 120.46 106.05 88.33
I/O Critical Delay (ns) 11.6 4:07� L 3:28� L 9.23 9.86 �6.82
Throughput (samples/

s)
T T=L1 T=L1 T T –

1L is the number of layers available in the implemented DNN.

G. Raut, A. Biasizzo, N. Dhakad et al. Neurocomputing xxx (xxxx) xxx
which MAC address is the input select line for the MUX. The hard-
ware implementation results show less LUT utilization as authors
have reused the AF through multiplexing shown in Table 3. How-
ever, these techniques are not efficient for a larger size of a DNN
as multiplexer increases the time complexity of the logic architec-
ture, and further bigger size multiplexer requires more hardware
resources. We have addressed this issue and proposed an efficient
AF reused technique using shift register following the Parallel-In
Serial-Out’s mechanism.

The proposed technique is efficient for any deep neural network
at very insignificant throughput loss, as we discussed in Section 4.2.
For the performance parameter comparison, we have synthesized
the different DNN architectures and proposed DNN core for
16:16:10:4. The implementation report for DNN core is shown
in Table 3. The hardware implementation results show that our
method uses 25% fewer resources and requires 12% less power,
without performance loss compared to the work proposed in [22]
at the cost of delay overhead compared to parallel architecture in
DNN as discussed in Section 4. Here, L is the number of layers avail-
able in the DNN. Therefore, L-1 clocks period delay occurs for the
first output in comparison with the fully parallel architecture.
However, after the first output, the network computes the output
at every clock, and hence, proposed hardware-reused architecture
has insignificant throughput loss, as we have discussed in Sec-
tion 4.2. Compared with AF reused architecture design in [33],
implementation results show 17.8% and 21.7% fewer LUT and FF
utilization respectively. Further, the proposed design has 17.6% less
critical delay. For the proposed design, the comparison numbers
will be adequate for the bigger sizes of DNNs.

In order to design resource-efficient architecture, state-of-the-
art works have proposed layer-reused architectures [11,36].
Though the design is hardware efficient, from Table 3, one can
see that layer-reused designs have L� lower throughput as com-
pared to fully parallel architecture. This architecture implementa-
tion will be efficient for less resources utilization at the cost of low
throughput. In [36], the author has used the multiplexer for pass-
ing the output data of the current layer to the input of the same
layer; using this, one can reuse the single layer at any number of
times within the DNN. However, the design suffers from low
throughput. Moreover, the design has used parallel AFs within
10
the layer. Therefore, this design has further scope to reduce
resources utilization using the AF reused technique by compromis-
ing throughput loss of one clock period in each layer computation.
The resources utilization for fixed parameters is shown in Table 3.
It can be observed that [11] has higher BRAM utilization compared
the [36]; as no quantization scheme was used in [11]. However,
these designs can adopt the proposed AF reused scheme to further
optimize hardware utilization.

The design’s performance parameters are in the trade-off for
area/power and throughput. However, the proposed design will
be the best choice for area/power and throughput-centered appli-
cations where resources and power are on a tight budget, such as
Mobile, edge-AI, IoT applications, etc.

6.3. Implementation results and Comparison of proposed AF at multi-
bit precision

In an AF, moving from 8-bit to 12-bit and 16-bit, the number of
quantization states is equal to 28 ¼ 256;212 ¼ 4096, and
216 ¼ 65;536 which leads to an exponential increase in the mem-
ory elements required. Therefore, we used the pre-calculated
memory element for AF implementation using the Taylor series
expansion approach and efficiently stored it in BRAM. Table 4
shows the resource utilization comparison at different precision
for our optimized architecture with the utilization of BRAM and
LUT-based approach [43]. Generally, tiny FPGA have limited slice
resources utilization, whereas it can be seen that 16-bit precision
sigmoid AF needs 2111 LUTs. Here, it can be observed that higher
precision AF implementation for LUT based approach is not the
appropriate method. Hence, our design uses BRAM, which is scal-
able for higher precision, has better access time, and saves LUTs
for other logic computations.

6.4. Comparison of AFs physical performance parameters at 45 nm
technology node

In order to evaluate the design performance of our optimized AF
for ASICs, we have synthesized design for fixed-point 8-bit preci-
sion at 45 nm TT Process Corner. The efficiently extracted memory
elements for sigmoid AF have been compared with sigmoid using



Table 4
Activation function implementation using LUT based and proposed technique for Zybo xc7z010clg400.

Resources Sigmoid Activation Function Resources Utilization

Utilization 8-bit 12-bit 16-bit

(Available) LUT [46] Proposed LUT [46] Proposed LUT [46] Proposed

LUT 16 1 370 1 2111 20
FF 0 1 0 1 0 5
BRAM 0 0.5 0 1.5 0 32
BUBG 0 1 0 1 0 1

Table 5
Performance parameter metrics of 8-bit precision proposed design for sigmoid AF and state-of-the-art @45 nm TT Process Corner.

Sigmoid AF Physical
Parameters

Digital Implement
[41]

Negative Input
[48]

Iterative CORDIC
[12]

Memory Elements
Proposed

Chip Area ðlm2Þ 846 483 377 671
St. Power ðlWÞ 27.6 121.7 96.77 21.6
Dy. Power ðlWÞ 121.3 209.4 189.3 38.2
Delay (ns) 7.41 5.93 4.38 4.86
EDP 1105 11,780 6,264 287
No. of Clock 1 6 5 1

G. Raut, A. Biasizzo, N. Dhakad et al. Neurocomputing xxx (xxxx) xxx
different design techniques. The RTL for our AF architecture is syn-
thesized, and results are produced by Synopsis Design Vision. The
physical performance parameters comparison is shown in Table 5.
Results show that compared to CORDIC-based AF, we have 4.8�
higher throughput at the cost of 1.9� of area overhead. Further,
it can be seen that the memory elements-based proposed method
has better physical parameters compared to the digital design
technique [41].

7. Conclusion

We presented a novel DNN architecture that reduces the
hardware-resource requirements and on-chip power consumption
without the loss in computational rate. Our architecture has struck
a demand of resource overhead in a Deep Neural Network by
exploiting the hardware-reused context. The contribution of the
work is twofold. Firstly, the activation function is designed effi-
ciently for higher accuracy, and quantized memory elements are
stored in BRAM for better utilization and higher throughput. Sec-
ondly, our experimental results demonstrate reused AF by serializ-
ing the output of the array of MAC in each layer. The efficient
memory addressing scheme is used to overcome the SoC through-
put limits. The implementation was verified at 100MHz for ther-
mometer level to digital conversion. Using extensive evaluation,
we show that our proposed design gives better results as compared
to other designs. Thus, the embedded system design with lower
hardware resources and power consumption can significantly ben-
efit edge computing solutions.

CRediT authorship contribution statement

Gopal Raut: Conceptualization, Methodology, Software, Writing
– original draft. Anton Biasizzo: Visualization, Investigation, Writ-
ing – original draft. Narendra Dhakad: Validation, Formal analysis.
Neha Gupta: Writing – review & editing. Gregor Papa: Visualiza-
tion, Writing – review & editing, Supervision. Santosh Kumar
Vishvakarma: Project administration, Resources, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
11
Acknowledgment

The authors would like to thank the University Grant Commis-
sion (UGC) New Delhi, Government of India under SRF scheme
with award No. 22745/(NET-DEC. 2015) for providing financial
support. And Special Manpower Development Program Chip to
System Design (SMDP), Department of Electronics and Information
Technology (DeitY) under the Ministry of Communication and
Information Technology, Government of India for providing neces-
sary Research Facilities. The authors also acknowledge the financial
support from the Slovenian Research Agency (research core fund-
ing No. P2-0098). The work is also part of a projects that have
received funding from the ECSEL Joint Undertaking under grant
agreements No 876038 (InSecTT) and No 101007273 (DAIS).

References

[1] J. Gama, R. Sebasti ao, P.P. Rodrigues, Issues in evaluation of stream learning
algorithms, in: Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM, 2009, pp. 329–338.

[2] K. Sun, J. Zhang, C. Zhang, J. Hu, Generalized extreme learning machine
autoencoder and a new deep neural network, Neurocomputing 230 (2017)
374–381.

[3] J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, V. Svetnik, Deep neural nets as a method
for quantitative structure–activity relationships, J. Chem. Inf. Model. 55 (2)
(2015) 263–274.

[4] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F.E. Alsaadi, A survey of deep neural
network architectures and their applications, Neurocomputing 234 (2017) 11–
26.

[5] E. Monmasson, L. Idkhajine, M.N. Cirstea, I. Bahri, A. Tisan, M.W. Naouar, FPGAs
in industrial control applications, IEEE Trans. Ind. Inf. 7 (2) (2011) 224–243.

[6] G. Raut, S. Rai, S.K. Vishvakarma, A. Kumar, A CORDIC based configurable
activation function for ANN applications, in: 2020 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), IEEE, 2020, pp. 78–83.

[7] M.C. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model, and D.
DiSabello, Achieving high performance with FPGA-based computing,
Computer 40(3) (2007)..

[8] E. Wu, X. Zhang, D. Berman, I. Cho, J. Thendean, Compute-efficient neural-
network acceleration, in: Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2019, pp. 191–200.

[9] A.R. Omondi, J.C. Rajapakse, FPGA implementations of neural networks,
Springer, vol. 365, 2006..

[10] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, D. Marr, Accelerating
binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC, in: Field-
Programmable Technology (FPT), 2016 International Conference on, IEEE,
2016, pp. 77–84.

[11] S. Himavathi, D. Anitha, A. Muthuramalingam, Feedforward neural network
implementation in FPGA using layer multiplexing for effective resource
utilization, IEEE Trans. Neural Networks 18 (3) (2007) 880–888.

[12] G. Raut, S. Rai, S.K. Vishvakarma, A. Kumar, Recon: Resource-efficient cordic-
based neuron architecture, IEEE Open J. Circuits Syst. 2 (2021) 170–181.
doi:10.1109/OJCAS.2020.3042743..

http://refhub.elsevier.com/S0925-2312(21)01693-3/h0005
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0005
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0005
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0005
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0010
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0010
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0010
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0015
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0015
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0015
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0020
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0020
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0020
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0025
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0025
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0030
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0030
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0030
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0030
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0040
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0040
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0040
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0040
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0050
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0050
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0050
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0050
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0050
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0055
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0055
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0055


G. Raut, A. Biasizzo, N. Dhakad et al. Neurocomputing xxx (xxxx) xxx
[13] K. Khalil, O. Eldash, A. Kumar, M. Bayoumi, An efficient approach for neural
network architecture, in: 2018 25th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), IEEE, 2018, pp. 745–748.

[14] H. Zhu, C. Chen, S. Liu, Q. Zou, M. Wang, L. Zhang, X. Zeng, C.-J.R. Shi, A
communication-aware DNN accelerator on imagenet using in-memory entry-
counting based algorithm-circuit-architecture co-design in 65-nm CMOS, IEEE
J. Emerg. Sel. Top. Circuits Syst. 10 (3) (2020) 283–294.

[15] Y. Zhang, C. Hu, B. Jiang, Embedded atom neural network potentials: Efficient
and accurate machine learning with a physically inspired representation, J.
Phys. Chem. Lett. 10 (17) (2019) 4962–4967.

[16] Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma, B. Yu, Recent advances in
convolutional neural network acceleration, Neurocomputing 323 (2019) 37–
51.

[17] N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S.
Bhatia, N. Boden, A. Borchers, et al., In-datacenter performance analysis of a
tensor processing unit, in: Proceedings of the 44th annual international
symposium on computer architecture, 2017, pp. 1–12.

[18] Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mobile devices, IEEE J. Emerg. Sel. Top.
Circuits Syst. 9 (2) (2019) 292–308.

[19] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao, D. Grubb, H.
Liew, H. Mao, et al., Gemmini: Enabling systematic deep-learning architecture
evaluation via full-stack integration, in: Proceedings of the 58th Annual Design
Automation Conference (DAC), 2021.

[20] Y.S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang, B. Keller, A.
Klinefelter, N. Pinckney, P. Raina, et al., Simba: Scaling deep-learning inference
with multi-chip-module-based architecture, in: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
14–27.

[21] Y. Qian, D. Wu, W. Bao, P. Lorenz, The internet of things for smart cities:
Technologies and applications, IEEE Network 33 (2) (2019) 4–5.

[22] K. Khalil, O. Eldash, B. Dey, A. Kumar, M. Bayoumi, A novel reconfigurable
hardware architecture of neural network, in: 2019 IEEE 62nd International
Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, 2019, pp. 618–
621.

[23] S. Liang, S. Yin, L. Liu, W. Luk, S. Wei, FP-BNN: Binarized neural network on
FPGA, Neurocomputing 275 (2018) 1072–1086.

[24] J. Vreca, I. Ivanov, G. Papa, A. Biasizzo, Detecting network intrusion using
binarized neural networks, in: 2021 IEEE 7th World Forum on Internet of
Things (WF-IoT), 2021, pp. 1–6 (in press).

[25] J. Han, Z. Li, W. Zheng, Y. Zhang, Hardware implementation of spiking neural
networks on FPGA, Tsinghua Sci. Technol. 25 (4) (2020) 479–486.

[26] G. Baccelli, D. Stathis, A. Hemani, M. Martina, NACU: a non-linear arithmetic
unit for neural networks, in: 2020 57th ACM/IEEE Design Automation
Conference (DAC), IEEE, 2020, pp. 1–6.

[27] T. Yang, Y. Wei, Z. Tu, H. Zeng, M.A. Kinsy, N. Zheng, P. Ren, Design space
exploration of neural network activation function circuits, IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 38 (10) (2018) 1974–1978.

[28] X. Fan, S. Zhang, T. Gemmeke, Approximation of transcendental functions with
guaranteed algorithmic QoS by multilayer pareto optimization, IEEE Trans.
Very Large Scale Integr. VLSI Syst. 28 (12) (2020) 2495–2508.

[29] F. Kästner, B. Janßen, F. Kautz, M. Hübner, G. Corradi, Hardware/software
codesign for convolutional neural networks exploiting dynamic partial
reconfiguration on PYNQ, in: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), IEEE, 2018, pp.
154–161.

[30] J. Han, M. Orshansky, Approximate computing: An emerging paradigm for
energy-efficient design, in: Test Symposium (ETS), 2013 18th IEEE European,
IEEE, 2013, pp. 1–6..

[31] V. Pejovic, Towards approximate mobile computing, CoRR, vol. abs/
1901.08972, 2019. [Online]. Available: http://arxiv.org/abs/1901.08972..

[32] K. Khalil, O. Eldash, A. Kumar, M. Bayoumi, N2OC: Neural-network-on-chip
architecture, in: 32nd IEEE International System-on-Chip Conference (SOCC),
IEEE, 2019, pp. 272–277.

[33] L. Prono, A. Marchioni, M. Mangia, F. Pareschi, R. Rovatti, G. Setti, A high-level
implementation framework for non-recurrent artificial neural networks on
FPGA, in: 2019 15th Conference on Ph. D Research in Microelectronics and
Electronics (PRIME), IEEE, 2019, pp. 77–80.

[34] J.G. Oliveira, R.L. Moreno, O. de Oliveira Dutra, T.C. Pimenta, Implementation of
a reconfigurable neural network in fpga, in: 2017 International Caribbean
Conference on Devices, Circuits and Systems (ICCDCS), IEEE, 2017, pp. 41–44.

[35] K. Khalil, O. Eldash, B. Dey, A. Kumar, M. Bayoumi, Architecture of a novel low-
cost hardware neural network, in: 2020 IEEE 63rd International Midwest
Symposium on Circuits and Systems (MWSCAS), IEEE, 2020, pp. 1060–1063.

[36] T.V. Huynh, Deep neural network accelerator based on FPGA, in: 2017 4th
NAFOSTED Conference on Information and Computer Science, IEEE, 2017, pp.
254–257..

[37] S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan, Deep learning with
limited numerical precision, in: International conference on machine learning.
PMLR, 2015, pp. 1737–1746.

[38] I. Tsmots, O. Skorokhoda, V. Rabyk, Hardware implementation of sigmoid
activation functions using fpga, in: 2019 IEEE 15th International Conference on
the Experience of Designing and Application of CAD Systems (CADSM), IEEE,
2019, pp. 34–38.
12
[39] I. del Campo, R. Finker, J. Echanobe, K. Basterretxea, Controlled accuracy
approximation of sigmoid function for efficient FPGA-based implementation
of artificial neurons, Electron. Lett. 49 (25) (2013) 1598–1600.

[40] K. Basterretxea, Recursive sigmoidal neurons for adaptive accuracy neural
network implementations, in: Adaptive Hardware and Systems (AHS), 2012
NASA/ESA Conference on, IEEE, 2012, pp. 152–158.

[41] S. Gomar, M. Mirhassani, M. Ahmadi, Precise digital implementations of
hyperbolic tanh and sigmoid function, in: 2016 50th Asilomar Conference on
Signals, Systems and Computers, IEEE, 2016, pp. 1586–1589..

[42] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, Optimizing FPGA-based
accelerator design for deep convolutional neural networks, in: Proceedings of
the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ACM, pp. 161–170..

[43] V. Saichand, S. Arumugam, N. Mohankumar, et al., Fpga realization of
activation function for artificial neural networks, in: 2008 Eighth
International Conference on Intelligent Systems Design and Applications, vol.
3, IEEE, 2008, pp. 159–164..

[44] G. Rajput, G. Raut, M. Chandra, S.K. Vishvakarma, VLSI implementation of
transcendental function hyperbolic tangent for deep neural network
accelerators, Microprocess. Microsyst. 84 (2021) 104270.

[45] G. Raut, V. Bhartiy, S.K. Vishvakarma, et al., Efficient low-precision CORDIC
algorithm for hardware implementation of artificial neural network, in:
International Symposium on VLSI Design and Test, Springer, 2019, pp. 321–
333..

[46] K. Leboeuf, A.H. Namin, R. Muscedere, H. Wu, M. Ahmadi, High speed VLSI
implementation of the hyperbolic tangent sigmoid function, in: 2008 Third
international conference on convergence and hybrid information technology,
vol. 1, IEEE, 2008, pp. 1070–1073..

[47] A. Armato, L. Fanucci, E.P. Scilingo, D. De Rossi, Low-error digital hardware
implementation of artificial neuron activation functions and their derivative,
Microprocess. Microsyst. 35 (6) (2011) 557–567.

[48] M. Alçi_n, _I. Pehlivan, _I. Koyuncu, Hardware design and implementation of a
novel ANN-based chaotic generator in FPGA, Optik-Int. J. Light Electron. Opt.
127 (13) (2016) 5500–5505.

[49] U. Legat, A. Biasizzo, F. Novak, SEU recovery mechanism for SRAM-based
FPGAs, IEEE Trans. Nucl. Sci. 59 (5) (2012) 2562–2571.

[50] H. Le, W. Jiang, V.K. Prasanna, Scalable high-throughput sram-based
architecture for IP-lookup using FPGA, in: International Conference on Field
Programmable Logic and Applications, 2008, pp. 137–142.

[51] N. Shah, P. Chaudhari, K. Varghese, Runtime programmable and memory
bandwidth optimized FPGA-based coprocessor for deep convolutional neural
network, IEEE Trans. Neural Networks Learn. Syst. 29 (12) (2018) 5922–5934.

[52] A. Kundu, A. Heinecke, D. Kalamkar, S. Srinivasan, E.C. Qin, N.K. Mellempudi, D.
Das, K. Banerjee, B. Kaul, P. Dubey, K-tanh: Efficient tanh for deep learning,
arXiv preprint arXiv:1909.07729, 2019..

[53] M. Abadi, A. Agarwal, et al., Tensorflow: Large-scale machine learning on
heterogeneous systems, 2015..

Gopal Raut received the B.Engg. in electronic engi-
neering and M.Tech. in VLSI Design from G H Raisoni
College of Engineering Nagpur, India, in 2015. He is
currently pursuing the Ph.D. degree with the Electrical
Engineering Department, Indian Institute of Technology
Indore, India. His research focus is compute-efficient
and configurable VLSI circuit design for low power IoT
and edge-AI applications.
Anton Biasizzo is a researcher at the Jožef Stefan
Institute, and an Assisting Professor at the Jožef Stefan
International Postgraduate School. He received his BSc,
MSc, and PhD in Electrical Engineering from the
University of Ljubljana in 1991, 1995, and 1998,
respectively. His research interests include design and
test of digital systems, reconfigurable systems and
embedded systems.

http://refhub.elsevier.com/S0925-2312(21)01693-3/h0065
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0065
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0065
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0065
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0070
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0070
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0070
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0070
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0075
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0075
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0075
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0080
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0080
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0080
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0085
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0085
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0085
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0085
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0085
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0090
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0090
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0090
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0095
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0095
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0095
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0095
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0095
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0100
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0100
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0100
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0100
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0100
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0100
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0105
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0105
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0110
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0110
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0110
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0110
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0110
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0115
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0115
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0120
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0120
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0120
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0120
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0125
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0125
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0130
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0130
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0130
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0130
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0135
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0135
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0135
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0140
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0140
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0140
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0145
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0145
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0145
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0145
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0145
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0145
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0160
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0160
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0160
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0160
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0165
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0165
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0165
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0165
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0165
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0170
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0170
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0170
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0170
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0175
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0175
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0175
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0175
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0185
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0185
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0185
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0185
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0190
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0190
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0190
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0190
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0190
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0195
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0195
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0195
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0200
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0200
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0200
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0200
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0220
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0220
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0220
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0235
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0235
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0235
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0240
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0240
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0240
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0240
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0240
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0240
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0245
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0245
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0250
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0250
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0250
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0250
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0255
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0255
http://refhub.elsevier.com/S0925-2312(21)01693-3/h0255


G. Raut, A. Biasizzo, N. Dhakad et al. Neurocomputing xxx (xxxx) xxx
Narendra Dhakad recieved B. E. degree in Electronics
and Communication Engineering from Indira Gandhi
Engineering College, Sagar in 2015 and M.Tech. degree
in Microelectronics and VLSI Design from Shri G. S.
Institute of Technology and Science, Indore in 2017. He
is currently pursuing PhD degree at IIT Indore, India. His
research interest includes in-memory computation,
edge AI Computing, SoC/FPGA based CNN hardware
accelerator.
Neha Gupta received the B.Tech in electronics and
telecommunication engineering from RGPV University
Bhopal and the M.E. degree in electronics engineering
from the Institute of Engineering and Technology, Devi
Ahilya University, Indore, India, in 2017. She got her Ph.
D. degree from IIT Indore, India, in 2021. Her research
interests include reliable VLSI circuit and SRAM design,
and low power high performance digital circuit designs.
13
Gregor Papa is a Senior researcher and a Head of
Computer Systems Department at the Jožef Stefan
Institute, and an Associate Professor at the Jožef Stefan
International Postgraduate School. He received his BSc,
MSc, and PhD degrees in Electrical Engineering from the
University of Ljubljana in 1997, 2000 and 2002,
respectively. His research interests include meta-
heuristic optimization methods and hardware imple-
mentations of high-complexity algorithms.
Santosh Kumar Vishvakarma is currently an Associate
Professor with the Department of Electrical Engineering,
Indian Institute of Technology Indore, India, where he is
leading Nanoscale Devices and VLSI Circuit and System
Design Lab. He got his Ph.D. degree from Indian Institute
of Technology Roorkee, India, in 2010. From 2009 to
2010, he was with the University Graduate Center,
Kjeller, Norway, as an Post-Doctoral Fellow under
European Union Project ‘‘COMON.” His current research
interests include nanoscale devices, reliable SRAM
memory designs, and configurable circuits design for
IoT application.


	Data multiplexed and hardware reused architecture for deep neural network accelerator
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Organization

	2 Background and related works
	2.1 Related work for DNNs implementation and MAC computation optimization
	2.2 Related work for techniques used in hardware design and implementation of AF

	3 Embedded system architecture
	3.1 System overview
	3.2 Memory addressing scheme for reading/ writing of weights and biases

	4 Hardware design and implementation of deep neural network
	4.1 Integrated block design of DNN accelerator
	4.2 DNN architecture and layers’computation mechanism
	4.3 Architecture design and implementation of w-bit precision Multiply-Accumulate unit
	4.4 Design methodology and implementation of activation function

	5 Experimental setup
	6 Experimental results and discussion
	6.1 Accuracy for multi-bit precision and Pareto study for Taylor series expansion
	6.2 Data multiplexed DNN implementation and results comparison
	6.3 Implementation results and Comparison of proposed AF at multi-bit precision
	6.4 Comparison of AFs physical performance parameters at 45 nm technology node

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References


