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Abstract: Worst-case scenario optimization deals with the minimization of the maximum output in
all scenarios of a problem, and it is usually formulated as a min-max problem. Employing nested
evolutionary algorithms to solve the problem requires numerous function evaluations. This work
proposes a differential evolution with an estimation of distribution algorithm. The algorithm has
a nested form, where a differential evolution is applied for both the design and scenario space
optimization. To reduce the computational cost, we estimate the distribution of the best worst
solution for the best solutions found so far. The probabilistic model is used to sample part of
the initial population of the scenario space differential evolution, using a priori knowledge of the
previous generations. The method is compared with a state-of-the-art algorithm on both benchmark
problems and an engineering application, and the related results are reported.

Keywords: worst-case scenario; robust; min-max optimization; evolutionary algorithms

1. Introduction

Many real-world optimization problems, including engineering design optimization,
typically involve uncertainty that needs to be considered for a robust solution to be found.
The worst-case scenario optimization refers to obtaining the solution that will perform best
under the worst possible conditions. This approach gives the most conservative solution
but also the most robust solution to the problem under uncertainty.

The formulation of the problem that arises is a special case of a bilevel optimization
problem (BOP), where one optimization problem has another optimization problem in its
constraints [1,2]. In the worst-case scenario case, the maximization of the function in the
uncertain space is nested in the minimization in the design space, leading to a min-max
optimization problem. Therefore, optimization can be achieved in a hierarchical way.

Min-max optimization has been solved by classical methods such as mathematical
programming [3], branch-and-bound algorithms [4] and approximation methods [5]. These
methods have limited application as they require simplifying assumptions about the fitness
function, such as linearity and convexity.

In recent years, evolutionary algorithms (EAs) have been developed to solve min-max
optimization problems. Using EAs mitigates the problem of making specific assumptions
about the underlying problem, as they are population-based and they directly use the
objectives. In this way, they can handle mathematically intractable problems that do not
follow specific mathematical properties.

A very popular approach to solve min-max problems with the EAs is the co-evolutionary
approach, where the populations of design and scenario space are co-evolving. In [6], a
co-evolutionary genetic algorithm was developed, while in [7], particle swarm optimization
was used as the evolution strategy. In such approaches, the optimization search over the
design and scenario space is parallelized, reducing significantly the number of function
evaluations. In general, they manage to successfully solve symmetrical problems but
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perform poorly in asymmetrical problems by looping over bad solutions, due to the red
queen effect [8]. As the condition of symmetry does not hold in the majority of the problems
[definition can be found in Section 2, they become unsuitable for most of the problems.

One approach to mitigate this problem is to apply a nested structure, solving the
problem hierarchically as for e.g., in [9], where a nested particle swarm optimization is
applied. This leads to a prohibitively increased computation cost, as the design and sce-
nario space is infinite for continuous problems. Min-max optimization problems solved
as bilevel problems with bilevel evolutionary algorithms were presented in [10], where
three algorithms—the BLDE [11], a completely nested algorithm, the BLEAQ [1], an evo-
lutionary algorithm that employs quadratic approximation in the mappings of the two
levels, and the BLCMAES [12], a specialized bilevel CMA-ES—known to perform well in
bilevel problems, were tested on a min-max test function and showed good performance in
most of the cases but required a high number of function evaluations. A recently proposed
differential evolution (DE) with a bottom-boosting scheme that does not use surrogates
proved to reach superior accuracy, though the number of functional evaluations (FEs)
needed is still relatively high [13].

Using a surrogate model can lower the computational cost. Surrogate models are
approximation functions of the actual evaluation and are quicker and easier to evaluate.
Surrogate-assisted EAs have been developed for min-max optimization, such as in [14].
In that work, a surrogate model is built with a Gaussian process to approximate the
decision variables and the objective value, assuming that evaluating the worst-case scenario
performance is expensive. This might be problematic when the real function evaluation is
also expensive. In [15], a Kriging-based optimization algorithm is proposed, where Kriging
models the objective function as a gaussian process. A newly proposed surrogate-assisted
EA applying multitasking can be found in [16], where a radial basis function is trained and
used as a surrogate.

As already explained, there are two ways so far to reduce the computational cost when
using EAs for min-max problems: the co-evolutionary approach and the use of surrogates,
which both come with the disadvantage that either cannot be applied in all the problems
or the final solution lacks accuracy.

The DE [17] is one of the most popular EAs because of its efficiency for global optimiza-
tion. Estimation of distribution algorithm (EDA) is a newer population-based algorithm
that relies on estimating the distribution for global convergence, rather than crossover and
mutation, and has great convergence [18]. Hybrid DE-EDAs have been proposed to com-
bine the good exploration and exploitation characteristics of each in several optimization
problems, such as in [19] for solving a job-shop scheduling problem and in [20] for the
multi-point dynamic aggregation problem. EDA with a particle swarm optimization has
been developed for bilevel optimization problems, where it served as a hybrid algorithm
of the upper-level [21].

In this paper, we propose a DE with EDA for solving min-max optimization problems.
The algorithm has a nested form, where a DE is applied for both the design and scenario
space optimization. To reduce the computational cost, instead of using surrogates, we
estimate the distribution of the best worst solution for the best solutions found so far. Then,
this distribution is passed to a scenario space optimization, and a part of the population
is sampled from it as a priori knowledge. That way, there is a higher probability that the
population will contain the best solution, and there is no need for training a surrogate
model. We also limit the search for the scenario space. If one solution found is already
worse than the best worst scenario, it is skipped.

The rest of this paper is organized as follows: Section 2 introduces the basic concepts
of the worst-case scenario and min-max optimization. A brief description of the general
DE and EDA algorithm is provided in Section 3, along with a detailed description of the
proposed method. In Section 4, we describe the test functions and the parameter settings
used in our experiments. In Section 5, the results are presented and discussed. Finally,
Section 6 concludes our paper.



Mathematics 2021, 9, 2137 3 of 22

2. Background

In this section, the definitions of the deterministic optimization problem and the
worst-case scenario optimization as an instance of robust optimization are presented.

2.1. Definition of Classical Optimization Problem

A typical optimization problem is the problem of minimizing an objective over a set
of decision variables subject to a set of constraints. The generic mathematical form of an
optimization problem is:

min
x

f (x)

subject to g(x) ≤ 0,
(1)

where x ∈ Rn, xL ≤ x ≤ xU is a decision vector of n dimension, f (x) is the objective
function and g(x) are the inequality constraints. The global optimization techniques
solve this problem, giving a deterministic optimal design. Usually, no uncertainties are
considered. This approach, though widely used, is not very useful when a designer desires
the optimal solution given the uncertainties of the system. Therefore, robust optimization
approaches are applied [22].

2.2. Definition of Worst Case Scenario Optimization Problem

When one seeks the most robust solution under uncertainties, then the worst-case
scenario approach is applied. Worst-case scenario optimization deals with minimizing
the maximum output in the scenario space of a problem, and it is usually formulated as a
min-max problem. The general worst-case scenario optimization problem in its min-max
formulation is described as:

min
x∈X

max
y∈Y

f (x, y) (2)

where X ∈ Rm represents the set of possible solutions and Y ∈ Rn the set of possible
scenarios. The problem is a special instance of a bilevel optimization problem (BOP), where
one optimization problem (the upper level, UL) has another optimization problem in its
constraints (the lower level, LL). The reader can find more about the BOPs in [1]. Here, the
UL and LL share the same objective function f (x, y), where UL is optimizing with respect
to the variables x of the design space and the lower level is optimizing with respect to the
uncertain parameters y of the scenario space. If the upper-level problem is a minimization
problem, then the worst-case scenario given by the uncertain variables y of a solution x can
be found by maximizing f (x, y). From now on, we will refer to the design space as upper
level (UL) and scenario space as lower level (LL) interchangeably. In Figure 1, a general
sketch of the min-max optimization problem as bilevel problem is shown, where for every
fixed x in the UL, a maximization problem over the scenario space y is activated in the LL.

When the problem holds the following condition:

min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y)

then the problem is symmetrical. Problems that satisfy the symmetrical condition are
simpler to solve since the feasible regions of the upper and lower level are independent.
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Figure 1. A general sketch of the min-max optimization problem as a bilevel problem, inspired by [16].

3. Algorithm Method

In this section, we briefly describe the differential evolution and estimation of dis-
tribution algorithms. Then, we explain the proposed algorithm for obtaining worst-case
scenario optimization.

3.1. Differential Evolution (DE)

DE [17] is a population-based metaheuristic search algorithm and falls under the
category of evolutionary algorithm methods. Following the standard schema of such
methods, it is based on an evolutionary process, where a population of candidate solutions
goes through mutation, crossover, and selection operations. The main steps of the algorithm
can be seen below:

1. Initialization: A population of NPop individuals is randomly initialized. Each indi-
vidual is represented by a D dimensional parameter vector, Xi,g = (x1

i,g, x2
i,g, ..., xD

i,g)

where i = 1, 2, ..., nPop, g = 1, 2, ...MaxGen, where MaxGen is the maximum number
of generations. Each vector component is subject to upper and lower bounds Xmin
and Xmax. The initial values of the ith individual are generated as:

Xi = Xmin + rand(0, 1) ∗ (Xmax − Xmin) (3)

where rand(0,1) is a random integer between 0 and 1.
2. Mutation: The new individual is generated by adding the weighted difference vector

between two randomly selected population members to a third member. This process
is expressed as:

Vi,G = Xr1,G + F ∗ (Xr2,G − Xr3,G) (4)

V is the mutant vector, X is an individual, r1, r2, r3 are randomly chosen integers
within the range of [1, NPop] and r1, r2, r3 6= i, G corresponds to the current gen-
eration, F is the scale factor, usually a positive real number between 0.2 and 0.8. F
controls the rate at which the population evolves.

3. Crossover: After mutation, the binomial crossover operation is applied. The mutant
individual Vi,G is recombined with the parent vector Xi,G, in order to generate the
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offspring Ui,G. The vectors of the offspring are inherited from Xi,G or Vi,G depending
on a parameter called crossover probability, Cr ∈ [0, 1] as follows:

Ui,G =

{
Vi,G, if rand ≤ Cr or t = random(i).
Xi,G, otherwise.

(5)

where rand ∈ (0, 1) is a uniformly generated number, random(i) ∈ 1, ..., D is a
randomly chosen index, which assures that Vi,G gives at least one element to Ui,G.
t = 1, ..., D denotes the t-th element of the individual’s vector.

4. Selection: The selection operation is a competition between each individual Xi,G and
its offspring Ui,G and defines which individual will prevail in the next generation.
The winner is the one with the best fitness value. The operation is expressed by the
following equation:

Xi,G+1 =

{
Ui,G, if f (Ui,G) ≤ f (Xi,G) .
Xi,G, otherwise.

(6)

The above steps of mutation, crossover, and selection are repeated for each generation
until a certain set of termination criteria has been met. Figure 2 shows the basic
flowchart of the DE.

Population
InitializationStart Mutation Crossover Selection

Termination

Stop

no

yes

Figure 2. Basic flowchart of the differential evolution algorithm (DE).

3.2. Estimation of Distribution Algorithms (EDAs)

The basic flowchart of the EDA is shown in Figure 3. The general steps of the EDA
algorithm are the following:

1. Initialization: A population is initialized randomly.
2. Selection: The most promising individuals S(t) from the population P(t), where t is

the current generation, are selected.
3. Estimation of the probabilistic distribution: A probabilistic model M(t) is built from S(t).
4. Generate new individuals: New candidate solutions are generated by sampling from

the M(t).
5. Create new population: The new solutions are incorporated into P(t), and go to the

next generation. The procedure ends when the termination criteria are met.
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Population
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Figure 3. Basic flowchart of the estimation of distribution algorithm (EDA).

3.3. Proposed Algorithm

In the proposed algorithm, we keep the hierarchically nested formulation of a min-max
problem, which solves asymmetrical problems. The design space (UL) decision variables
are evolving with a DE. For the evaluation of each UL individual, first the scenario space
(LL) problem is solved by the DE. This solution is then transferred to the upper level. To
reduce the cost, we apply an estimation of distribution mechanism between the decision
space search (UL) and the scenario space search (LL). In that way, we use a priori knowledge
obtained during the optimization. To further reduce the FEs, we search only for solutions
with good worst-case scenarios. If the objective function of a solution X1 under any
scenario is already worse in terms of worst-case performance of the best solution X2 found
so far, there is no need for further exploring X1 over scenario space. Therefore, the mutant
individual’s performance is checked under the parent’s worst-case scenario, and further
explored only when it is better in terms of the fitness function. Figure 4 shows the general
framework of the proposed approach. The main steps of the proposed algorithm for the UL:

1. Initialization: A population of size NPop is initialized according to the general DE
procedure mentioned in the previous section, where the individuals are representing
candidate solutions in the design space X.

2. Evaluation: To evaluate the fitness function, we need to solve the problem in the
scenario space. For a fixed candidate UL solution Xi, the LL DE is executed. More
detailed steps are given in the next paragraphs. The LL DE returns the solution
corresponding to the worst-case scenario for the specific Xi. For each individual,
the corresponding best Ybest = argmaxy∈Y f (Xi, y) solutions are stored, meaning the
solution y that for a fixed x maximizes the objective function.

3. Building: The individuals in the population P(i) are sorted as the ascending of the UL
fitness values. The best nPop/2 are selected. From the best nPop/2 individuals, we
build the distribution to establish a probabilistic model MG for the LL solution. The
d-dimensional multivariate normal densities to factorize the joint probability density
function (pdf) are:

F(x, µ, Σ) =
1√

|Σ|(2π)d
e−1/2(x−µ)Σ−1(x−µ)

′
(7)

where x is the d-dimensional random vector, µ is the d-dimensional mean vector
and Σ is the dxd covariance matrix. The two parameters are estimated from the best
nPop/2 of the population, from the stored lower level best solutions. In that way,
in each generation, we extract statistical information about the LL solutions of the
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previous UL population. The parameters are updated accordingly in each generation,
following the general schema of an estimation of distribution algorithm.

4. Evolution: Evolve UL with the steps of the standard DE of mutation, crossover,
producing an offspring Ui,G.

5. Selection: As mentioned above, the selection operation is a competition between each
individual Xi,G and its offspring Ui,G. The offspring will be evaluated in the scenario
space and sent in LL only if f (Ui,G, Yi,G) ≤ f (Xi,G, Yi,G), where Yi,G corresponds to
the worst case vector of the parent individual Xi,G. In that way, a lot of unneeded LL
optimization calls will be avoided, reducing FEs. If the offspring is evaluated in the
scenario space, the selection procedure in Equation (6) is applied.

6. Termination criteria:

• Stop if the maximum number of function evaluations MaxFEs is reached.
• Stop if the improvement of the best objective value of the last MaxImpGen

generations is below a specific number.
• Stop if the absolute difference of the best and the known true optimal objective

value is below a specific number.

7. Output: the best worst case function value f (x∗, y∗), the solution corresponding to
the best worst-case scenario x∗, y∗

For the LL:

1. Setting: Set the parameters of the probability of crossover CR, the population size
nPop, the mutation rate F, the sampling probability β.

2. Initialization: Sample nPop individuals to initialize the population. If β ≤ random(0, 1),
then the individual is sampled from the probabilistic model MGUL built in the UL with
the Equation (7). The model here is sampled with the mvnrnd(mu, Sigma) built-in
function of Matlab, which accepts a mean vector mu and covariance matrix sigma as
input and returns a random vector chosen from the multivariate normal distribution
with that mean and covariance [23]. Otherwise, it is uniformly sampled in the scenario
space according to the Equation (3). Please note that for the first UL generation, β
is always 0, as no probabilistic model is built yet. For the following generations, β
can range from (0,1) number, where β = 1 means that the population will be sampled
only from the probabilistic model. This might lead the algorithm to be stuck in local
optima and to converge prematurely. An example of an initial population generated
with the aforementioned method with β = 0.5 is shown in Figure 5. Magenta asterisk
points represent the population generated by the probabilistic model MGUL of the
previous UL generation. Blue points are samples uniformly distributed in the search
space. In Figure 6, the effect of the probabilistic model on the initial population of LL
for f8 during the optimization is shown. As the iterations increase, the LL members of
the populations sampled from the probabilistic distribution reach the promising area
that maximizes the function. In the zoomed subplot in each subfigure, one can see
that all such members of the population are close to the global maximum, compared
to the randomly distributed members.

3. Mutation, crossover, and selection as the standard DE.
4. Termination criteria:

• Stop if the maximum number of generations MaxGen is reached.
• Stop if the absolute difference between the best and the known true optimal

objective value is below a specific number.

5. Output: the maximum function value f (x∗, y∗), the solution corresponding to the
worst-case scenario y∗ = argmax( f (x∗, y)).
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Sample within Upper Level(UL) 
design space. Initialisation.

LL optimization for every UL sample 
point with DE with β=0.0

Sort UL Individuals. Find mean and 
covariance of the Best nPop/2 and 

build probabilistic model M_G
UL

If f(x_new,y_parent)<Parent 
Solution

LL optimization for 
each offspring with 

β.
Input: M_G

UL

If f(x_new,y_optimal)<Best Solution
Update UL Population.
Update Best Solution.

Terminate?

If β< rand(0,1)
individual sampled from 

M_G
UL

Else
individual sampled 
uniformly random

Generate UL Offspring x_new.

Return y = argmax f(x*,y*)

Return y = argmax f(x*,y*)

Evolve LL with DE

Start

Stop

Figure 4. General framework of the proposed algorithm.
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Figure 5. Balancing exploration and exploitation with the sharing distribution mechanism of the LL
population. Magenta asterisk points represent the population generated by the distribution of the
previous UL generations. Blue points are samples uniformly distributed in the search space. The idea
behind this is to keep the “knowledge” already gained in previous generations while also giving the
opportunity to the algorithm to search the whole search space. Here with β = 0.5.
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Figure 6. Effect of the probabilistic model on the initial population of LL for f8. As the iterations increase, the LL members
of the population that were produced from the probabilistic model reach the promising area that maximizes the function.
The area they are concentrated is shown in the zoomed plots of each plot.

4. Experimental Settings

In this section, we describe the 13 benchmark test functions used for this study and
provide the parameter settings for our experiments.

4.1. Test Functions

The performance of the proposed algorithm was tested on 13 benchmark problems
of min-max optimization. The problems used are found collected in [15] along with their
referenced optimal values. The first 7 problems f1– f7 are taken from [24] and they are
convex in UL and concave in the LL. The problems described as min-max are:

Test function f1:

min
x∈X

max
y∈Y

f1(x, y) = 5(x2
1 + x2

2)− (y2
1 + y2

2) + x1(−y1 + y2 + 5) + x2(y1 − y2 + 3) (8)
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with x ∈ [−5, 5]2, y ∈ [−5, 5]2. The points x∗ = −0.4833,−0.3167 and y∗ = 0.0833,−0.0833
are the known solutions of the f1, and the optimal value is approximated at
f1(x∗, y∗) = −1.6833.

Test function f2:

min
x∈X

max
y∈Y

f2(x, y) = 4(x1 − 2)2 − 2y2
1 + x2

1y1 − y2
2 + 2x2

2y2 (9)

with x ∈ [−5, 5]2, y ∈ [−5, 5]2. The points x∗ = 1.6954,−0.0032 and y∗ = 0.7186,−0.0001
are the known solutions of the f2, and the optimal value is approximated at
f2(x∗, y∗) = 1.4039.

Test function f3:

min
x∈X

max
y∈Y

f3(x, y) = x4
1y2 + 2x3

1y1 − x2
2y2(y2 − 3)− 2x2(y1 − 3)3 (10)

with x ∈ [−5, 5]2, y ∈ [−3, 3]2. The points x∗ = −1.1807, 0.9128 and y∗ = 2.0985, 2.666 are
the known solutions of the f4, and the optimal value is approximated at
f3(x∗, y∗) = −2.4688.

Test function f4:

min
x∈X

max
y∈Y

f4(x, y) = −
3

∑
i=1

(yi− 1)2) +
2

∑
i=1

(xi− 1)2 + y3(x2− 1) + y1(x1− 1) + y2x1x2 (11)

with x ∈ [−5, 5]2, y ∈ [−3, 3]3. The points x∗ = 0.4181, 0.4181 and y∗ = 0.709, 1.0874, 0.709
are the known solutions of the f4, and the optimal value is approximated at
f4(x∗, y∗) = −0.1348.

Test function f5:

min
x∈X

max
y∈Y

f5(x, y) = −(x1 − 1)y1 − (x2 − 2)y2 − (x3 − 1)y3 + 2x2
1 + 3x2

2 + x2
3 (12)

with x ∈ [−5, 5]3, y ∈ [−1, 1]3. The points x∗ = 0.1111, 0.1538, 0.2 and y∗ = 0.4444, 0.9231, 0.4
are the known solutions of the f5, and the optimal value is approximated at
f5(x∗, y∗) = 1.3453.

Test function f6:

min
x∈X

max
y∈Y

f6(x, y) = −y1(x2
1 − x2 + x3 − x4 + 2) + y2(−x1 + 2x2

2 − x2
3 + 2x4 + 1)+

y3(2x1 − x2 + 2x3 − x2
4 + 5) + 5x2

1 + 4x2
2 + 3x2

3 + 2x2
4 −

3

∑
i=1

y2
i

(13)

with x ∈ [−5, 5]4, y ∈ [−2, 2]3. The points x∗ = −0.2316, 0.2228,−0.6755,−0.0838 and
y∗ = 0.6195, 0.3535, 1.478 are the known solutions of the f6, and the optimal value is
approximated at f6(x∗, y∗) = 4.543.

Test function f7:

min
x∈X

max
y∈Y

f7(x, y) = 2x1x5 + 3x4x2 + x5x3 + 5y2
4 + 5y2

5 − x4(y4 − y5 − 5)+

x5(y4 − y5 + 3) +
3

∑
i=1

(xi(y2
i − 1))−

5

∑
i=1

y2
i

(14)

with x ∈ [−5, 5]5, y ∈ [−3, 3]5. The points x∗ = 1.4252, 1.6612, 1.2585,−0.9744,−0.7348
and y∗ = 0.5156, 0.8798, 0.2919, 0.1198,−0.1198 are the known solutions of the f7, and the
optimal value is approximated at f7(x∗, y∗) = −6.3509.
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Test function f8 [25]:

min
x∈X

max
y∈Y

f8(x, y) = (x1 − 5)2 − (y1 − 5)2 (15)

with x ∈ [0, 10], y ∈ [0, 10]. The points x∗ = 5 and y∗ = 5 are the known solutions of the
f8, and the optimal value is approximated at f8(x∗, y∗) = 0. This test function is a saddle
point function. The function along with the known optimum is plotted in Figure 7, and it
serves as an example of a symmetric function.
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Figure 7. Three-dimensional mesh and contour plots of the symmetrical test function f8. Green dot corresponds to the
known optimum. (a) A 3D mesh of the symmetrical test function f8. (b) Contour plot of the symmetrical test function f8.

Test function f9 [25]:

min
x∈X

max
y∈Y

f9(x, y) = min
{

3− 0.2x1 + 0.3y1, 3 + 0.2x1 − 0.1y1
}

(16)

with x ∈ [0, 10], y ∈ [0, 10]. The points x∗ = 0 and y∗ = 0 are the known solutions of the f9,
and the optimal value is approximated at f9(x∗, y∗) = 3. It is a two-plane asymmetrical
function. The contour plot and 3-D plot of this function, along with the known optima, are
shown in Figure 8 and serves as an example of an asymmetrical function.
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Figure 8. 3D mesh and contour plots of the asymmetrical test function f9. Green dot corresponds to the known optimum.
(a) 3D mesh of the asymmetrical test function f9. (b) Contour plot of the asymmetrical test function f9.
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Test function f10 [25]:

min
x∈X

max
y∈Y

f10(x, y) =
sin (x1 − y1)√

x2
1 + y2

1

(17)

with x ∈ [0, 10], y ∈ [0, 10]. The points x∗ = 10 and y∗ = 2.1257 are the known solutions of
the f10, and the optimal value is approximated at f10(x∗, y∗) = 0.097794. It is a damped
sinus asymmetrical function.

Test function f11 [25]:

min
x∈X

max
y∈Y

f11(x, y) =
cos (

√
x2

1 + y2
1)√

x2
1 + y2

1 + 10
(18)

with x ∈ [0, 10], y ∈ [0, 10]. The points x∗ = 7.0441 and y∗ = 10 or y∗ = 0 are the known
solutions of the f11, and the optimal value is approximated at f11(x∗, y∗) = 0.042488. It is a
damped cosine wave asymmetrical function.

Test function f12 [6]:

min
x∈X

max
y∈Y

f12(x, y) = 100(x2 − x2
1)

2 + (1− x1)
2 − y1(x1 + x2

2)− y2(x2
1 + x2) (19)

with x ∈ [−0.5, 0.5]x[0, 1], y ∈ [0, 10]2. The points x∗ = 0.5, 0.25 and y∗ = 0, 0 are the
known solutions of the f12, and the optimal value is approximated at f12(x∗, y∗) = 0.25.

Test function f13 [6]:

min
x∈X

max
y∈Y

f13(x, y) = (x1 − 2)2 + (x2 − 1)2 + y1(x2
1 − x2) + y2(x1 − x2 − 2) (20)

with x ∈ [−1, 3]2, y ∈ [0, 10]2. The points x∗ = 1, 1 and y∗ = any, any are the known
solutions of the f13, and the optimal value is approximated at f13(x∗, y∗) = 1.

4.2. Parameter Settings

The parameter setting used for all the experiments of this study are shown in Table 1.
The population size depends on the dimensionality of the problem, where for the UL
max(nx + ny, 5) ∗ 2 is used and for the LL max(ny, 5) ∗ 2, where nx, ny is the dimensionality
of the UL and LL, respectively.

Table 1. Control parameters used in the reported results.

Upper-Level Lower-Level

Population size max(nx + ny, 5) ∗ 2 max(ny, 5) ∗ 2
Crossover 0.9 0.9
Mutation uniformly (0.2, 0.8) uniformly (0.2, 0.8)
Desired Accuracy 1 × 10−5 1 × 10−5

Maximum Number of Generations - 10
Maximum Number of Function Evaluations 5000 -
Maximum Number of Improvement Generations 30 -
Least Improvement 1 × 10−5 -

All the simulations were undertaken on an Intel (R) Core (TM) i7-7500 CPU @ 2.70
GHz, 16 GB of RAM, and the Windows 10 operating system. The code and the experiments
were implemented and run in Matlab R2018b.
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5. Experimental Results and Discussion
5.1. Effectiveness of the Probabilistic Sharing Mechanism

To evaluate the effectiveness of the probabilistic sharing mechanism of the proposed
algorithm, we compare three different instances that correspond to three different β values.
The first algorithmic instance has β = 0, meaning that the estimation of distribution in the
optimization procedure is not activated, and the algorithm becomes a traditional nested DE.
This instance serves therefore as the baseline. The second algorithmic instance corresponds
to β = 0.5, where half of the initial population of the LL is sampled from the probabilistic
model. Last, for the third algorithmic instance, we set a value of β = 0.8, testing the
ability of the algorithm when 80% of the initial population of the LL is sampled from the
probabilistic model.

Due to the inherent randomness of the EAs, repeated experiments are held to assess a
statistical analysis of the performance of the algorithm. We report results of 30 independent
runs, which is the minimum number of samples used for statistical assessment and tests.
In Table 2, the statistical results of the 30 runs of the different instances of the algorithm are
reported. More specifically, we report the mean, median, and standard deviation of the
accuracy of the objective function. We calculate the accuracy as the absolute differences
between the best objective function values provided by the algorithms and the known
global optimal objective values of each test function. This is expressed as

Acc = | f ′ − f ∗| (21)

where f
′

and f ∗ are the best and the true optimal values, respectively.

Table 2. Accuracy comparison of the different instances of the algorithm over the 30 runs.

Problems β = 0 β = 0.5 β = 0.8

f1

Mean 3.45 × 10−1 2.77 × 10−5 2.29 × 10−5

Median 9.49 × 10−2 3.33 × 10−5 3.33 × 10−5

Std 6.55 × 10−1 3.43 × 10−5 1.53 × 10−5

p-value ≤0.05 NA >0.05
Median FEs 20,115 28,300 46,535

f2

Mean 1.11 × 10−1 1.25 × 10−3 1.28 × 10−4

Median 4.96 × 10−2 5.53 × 10−6 5.79 × 10−6

Std 5.38 × 10−1 4.27 × 10−3 5.43 × 10−4

p-value ≤0.05 NA >0.05
Median FEs 20,665 16,180 17,140

f3

Mean 1.64 × 100 2.27 × 10−3 2.35 × 10−2

Median 9.51 × 10−1 1.86 × 10−5 2.47 × 10−5

Std 2.29 × 100 1.30 × 10−2 8.35 × 10−2

p-value ≤0.05 NA >0.05
Median FEs 27,535 39,830 46,785

f4

Mean 3.49 × 10−1 2.93 × 10−5 1.64 × 10−3

Median 2.27 × 10−1 2.03 × 10−5 3.39 × 10−5

Std 4.49 × 10−1 4.41 × 10−5 8.88 × 10−3

p-value ≤0.05 NA >0.05
Median FEs 19,940 26,478 40,516

f5

Mean 6.23 × 10−2 9.95 × 10−4 8.43 × 10−6

Median 2.63 × 10−2 2.99 × 10−4 8.55 × 10−7

Std 1.05 × 10−1 4.18 × 10−3 5.08 × 10−5

p-value ≤0.05 >0.05 NA
Median FEs 38,694 78,444 97,506
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Table 2. Cont.

Problems β = 0 β = 0.5 β = 0.8

f6

Mean 2.16 × 10−1 1.96 × 10−3 1.19 × 10−2

Median 1.62 × 10−1 7.86 × 10−6 6.33 × 10−6

Std 2.67 × 10−1 6.74 × 10−3 6.50 × 10−2

p-value ≤0.05 >0.05 NA
Median FEs 55,740 69,798 77,356

f7

Mean 5.57 × 10−1 7.90 × 10−2 7.90 × 10−2

Median 4.76 × 10−1 7.90 × 10−2 7.90 × 10−2

Std 3.75 × 10−1 1.34 × 10−4 9.54 × 10−6

p-value ≤0.05 NA ≤0.05
Median FEs 143,580 360,460 541,940

f8

Mean 9.27 × 10−6 3.03 × 10−6 3.34 × 10−6

Median 6.16 × 10−6 1.17 × 10−6 2.12 × 10−6

Std 1.99 × 10−5 3.24 × 10−6 3.23 × 10−6

p-value ≤0.05 NA >0.05
Median FEs 9120 8150 8070

f9

Mean 0.00 × 100 0.00 × 100 2.96 × 10−3

Median 0.00 × 100 0.00 × 100 0.00 × 100

Std 0.00 × 100 0.00 × 100 1.62 × 10−2

p-value NaN NA >0.05
Median FEs 3435 3935 3715

f10

Mean 7.54 × 10−6 8.03 × 10−8 8.74 × 10−4

Median 2.86 × 10−7 2.98 × 10−7 2.95 × 10−7

Std 3.60 × 10−5 4.96 × 10−7 4.79 × 10−3

p-value NA >0.05 >0.05
FEs 4435 3995 3880

f11

Mean 5.11 × 10−3 3.62 × 10−3 1.43 × 10−2

Median 1.79 × 10−3 2.95 × 10−4 1.14 × 10−2

Std 7.44 × 10−3 8.06 × 10−3 1.25 × 10−2

p-value >0.05 NA ≤0.05
FEs 21,965 30,480 33,485

f12

Mean 3.72 × 10−1 5.21 × 10−1 7.05 × 10−1

Median 2.25 × 10−1 4.77 × 10−1 7.43 × 10−1

Std 5.98 × 10−1 5.23 × 10−1 1.42 × 10−1

p-value NA ≤0.05 ≤0.05
Median FEs 14,945 15,795 28,210

f13

Mean 3.99 × 10−2 2.42 × 10−2 1.98 × 10−1

Median 6.51 × 10−2 1.82 × 10−4 1.07 × 10−5

Std 7.29 × 10−1 1.21 × 10−1 1.04 × 100

p-value ≤0.05 >0.05 NA
Median FEs 22,430 56,880 61525

In order to compare the instances, the non-parametric statistical Wilcoxon signed-rank
test [26] was carried out at the 5% significance, where for each test function, the best instance
in terms of median accuracy used a control algorithm against the other two. The reported
≤0.05 means that it rejects the null hypothesis and the two samples are different, while >0.05
means the opposite. The best algorithm in terms of median accuracy is shown in bold. We
also report the median of the total number of function evaluations. In bold are the lowest
median FEs corresponding to the best algorithmic instance in terms of median accuracy. As
we can see, the proposed method outperforms the baseline in most of the test functions. More
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specifically, the second and the third instances are significantly better than the first in the
test functions f1 − f8 and f13. For these test functions, the results of these two instances do
not differ significantly, therefore there is a tie. What we can note though, is that instance 2
repeatedly requires fewer FEs to reach the same results. Therefore, it performs better in terms
of computation expense. For test function f9, all the instances are performing equally in terms
of median accuracy, while the baseline instance reports less FEs. The third instance is best in
test functions f5- f6. For test function f7, there is a tie between the second and third instance.
The first instance performs better in test functions f10 and f12, while for f11, the first and
second instance outperforms the third. In many cases, the baseline algorithmic case reports
a low number of FEs. These cases, where it does not reach the desired accuracy, indicate
premature convergence, when the “least improvement” termination criterion is activated and
the algorithm is terminated before reaching the maximum number of evaluations. In 11 out
of 13 test functions, instance 2 outperforms at least one instance or performs equally, which
makes selecting a β = 0.5 a safe choice.

In Figure 9, the success rate of each algorithmic instance and each test function is
reported. As a success rate, we define here the percentage of the number of runs where
the algorithm reached the desired accuracy of the total runs for each test function. It is
interesting to note that the baseline first instance did not at all reach the desired accuracy
in 9 out of 13 test problems. The performance of the algorithm improves dramatically by
the use of the estimation of distribution. On the other hand, the instance with β = 0.5
reaches the desired accuracy for at least one run in 11 out of 13 problems and, instance
with β = 0.8 in 10 out of 13 problems. The second instance reaches the accuracy of 100%
for asymmetrical functions f9 and f10. For test functions f7 and f12, none of the algorithms
reach the desired accuracy in the predefined number of FEs. f7 is one of the test problems
with higher dimensionality, and a higher number of function evaluations might be needed
in order to reach higher accuracy.
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Figure 9. Barchart of the success rate (%) of each algorithmic instance and each test function. The red
color corresponds to the instance where β = 0.0, magenta β = 0.5 and blue β = 0.8.

In Figure 10, the convergence plots of the accuracy of the upper level for each algo-
rithmic instance and test function are shown. The red color corresponds to the instance
where β = 0.0, magenta β = 0.5 and blue β = 0.8. The bumps that can be spotted in the
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convergence are probably because of inaccurate solutions of the worst-case scenario. This
can be mostly seen in Figure 10g, for test function f7, where the convergence seems to go
further than the desired accuracy. In Figure 10j for f10, algorithmic instance 2 and 3 seem to
converge in even earlier generations, in contrast to the baseline first algorithmic instance.
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(a) Convergence plot for f1
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(d) Convergence plot for f4

10
0

10
1

10
2

Generations

0

20

40

60

80

100

120

A
c
c
u
ra

c
y
 o

f 
B

e
s
t 
F

it
n
e
s
s

f5

0.0

0.5

0.8

(e) Convergence plot for f5
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(f) Convergence plot for f6
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Figure 10. Cont.
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Figure 10. Fitness accuracy convergence of the upper level of the median run for all the test functions and algorithm
instances. The red color corresponds to the instance where β = 0.0, magenta β = 0.5 and blue β = 0.8. Generations axes is
in logarithmic scale.

5.2. Comparison with State-of-the-Art Method MMDE

In this subsection, we compare the proposed method with one state-of-the-art min-
max EA. The MMDE [13] employs a differential evolution algorithm along with a bottom-
boosting scheme and a regeneration strategy to detect best worst-case solutions. The MMDE
showed statistically significant superior performance against a number of other min-max
EAs, so we only compared with the MMDE. For the comparative experiments, the following
settings are applied. For the proposed method, the DE parameters of UL are the same
as in Table 1, while for the LL, the population size was set to max(ny, 5) ∗ 3 and β = 0.5.
For the MMDE, the proposed settings from the reference paper are used and are crossover
CR = 0.5 and mutation F = 0.7. The MMDE also has two parameters Ks and T that
control the number of FEs in the bottom-boosting scheme and partial-regeneration strategy.
Here, they are set to 190 and 10, respectively, as in the original settings. To have a fair
comparison, the termination criterion for both algorithms is only the total number of FEs
and set to 104. Since the number of FEs is limited, an additional check was employed for
the proposed method, where if a new solution of the UL is already found in the previous
population, then it is not passed to the lower level, since the worst-case scenario is already
known. The algorithms are run 30 times on test functions f 8− f 13. For comparing the two
methods, we use the mean square error (MSE) of the obtained solutions in the design space
(UL) to the true optimum, a metric commonly used for comparing min-max algorithms.
More specifically, the MSE is calculated:

MSE(Xbest, Xopt) =
1

DX

DX

∑
n=1

(xn
best − xn

opt)
2 (22)

where Xbest is the best solution found by the algorithm and Xopt the known optimal solution,
while DX is the dimensionality of the solution. In Table 3, we report the mean, median and
standard deviation of the mean square error (MSE). In Figure 11, these values are illustrated
as boxplots. The Wilcoxon signed-rank test [26] was conducted at the 5% significance,
and we report if the p-value rejects or not the null hypothesis. The proposed method
outperforms the MMDE for the test functions f8 and f10, while it performs equally good
on asymmetrical test function f9. On the test functions f11– f13, the MMDE performs better
than the proposed method.
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Table 3. MSE Comparison with MMDE over 30 runs and 104 FEs.

Problems β = 0.5 MMDE

f8

Mean 2.0234 × 10−5 2.6618 × 10−5

Median 1.8269 × 10−7 9.5487 × 10−6

Std 7.5060 × 10−5 6.1841 × 10−5

p-value NA ≤0.05

f9

Mean 2.5849 × 10−1 3.3719 × 10−3

Median 0.0000 × 100 0.0000 × 100

Std 9.6251 × 10−1 1.1081 × 10−2

p-value NA >0.05

f10

Mean 1.0029 × 100 5.1712 × 10−1

Median 0.0000 × 100 0.0000 × 100

Std 2.8499 × 100 2.4408 × 100

p-value NA ≤0.05

f11

Mean 3.3428 × 10−1 7.9495 × 10−4

Median 5.5485 × 10−2 8.8027 × 10−5

Std 8.7588 × 10−1 1.4876 × 10−3

p-value ≤0.05 NA

f12

Mean 8.1786 × 10−3 1.1339 × 10−5

Median 9.6258 × 10−5 2.1344 × 10−6

Std 1.9804 × 10−2 3.2300 × 10−5

p-value ≤0.05 NA

f13

Mean 5.0537 × 10−2 5.5425 × 10−3

Median 1.9716 × 10−2 2.7037 × 10−3

Std 7.7093 × 10−2 7.7943 × 10−3

p-value ≤0.05 NA

Figure 11. Cont.
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Figure 11. Boxplots of MSE values of the proposed method and MMDE over 30 runs for the test functions f8– f13.

5.3. Engineering Application

To further investigate the performance of the proposed method, we solved a simple
engineering application that also serves a benchmark, taken from [27]. It refers to the
optimal design of a vibration absorber (Figure 12) for a structure where uncertainties occur
in the forcing frequency. A structure with mass m1 is subjected to a force and an unknown
frequency. Through a viscous damping effect, a smaller structure of mass m2 is employed
to compensate for the oscillations caused by this disturbance. The design challenge is to
figure out how to make this damper robust to the worst force frequency. The objective
function is the normalized maximum displacement of the main structure and is expressed
as [27]:

J =
1
Z

√
(1− β2

f req/T2 + 4 ∗ (ζ2β f req/T)2 (23)

where

Z2 =[β2
f req(β2

f req − 1)/T2 − β2
f req(1 + µ)− 4

ζ1ζ2β2
f req

T
+ 1]2

+ 4[ζ1β3
f req/T2 +

ζ2β3
f req(1− µ)− ζ2β f req

T
− ζ1β f req]

2

(24)

The fixed parameters for the specific problem are µ = 0.1 and ζ1 = 0.1. The decision
variables in the design space are ζ2 and T, while variable β f req is the decision variable in
the scenario space against which the design should be robust against. The problem can be
written as a min-max problem:

min
x∈X

max
y∈Y

J(x, y) = min
ζ2,T

max
β f req

J(ζ2, T, β f req) (25)

with ζ2 ∈ [0, 1], T ∈ [0, 1] and β f req ∈ [0, 2.5]. The points x∗ = (ζ∗2 , T∗) = 0.1986, 0.8619 and
y∗ = β∗f req = 1.043 are the known solutions of the J, and the optimal value is approximated
at J(x∗, y∗) = 2.6227 as reported in [28]. We run the problem 30 independent times for both
the proposed method and the MMDE algorithm with the same parameter settings as in the
previous subsection. In Table 4, we report the mean, median and standard deviation of
the obtained accuracy and MSE for the proposed method and the MMDE. Both algorithms
perform well at approximate the known global optima with an accuracy of ×10−2 and
MSE × 10−4. The statistical test showed that the proposed method performs equally well
with the MMDE for the engineering application.
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m1

m2

x

Figure 12. Vibration absorber.

Table 4. Statistical comparison with MMDE over 30 runs and 104 FEs for the engineering application.

Problems β = 0.5 MMDE

Acc(Jminmax) Mean 1.7100 × 10−1 1.0472 × 10−1

Median 6.4784 × 10−2 9.9247 × 10−2

Std 2.6084 × 10−1 6.0458 × 10−2

p-value NA >0.05

MSE(x) Mean 1.4668 × 10−2 7.6533 × 10−4

Median 6.4275 × 10−4 3.6815 × 10−4

Std 5.1909 × 10−2 7.6206 × 10−4

p-value >0.05 NA

6. Conclusions

In this work, we propose an algorithm for solving worst-case scenario optimization
as a min-max problem. The algorithm employs a nested differential evolution with an
estimation of the distribution between the two levels to enhance the efficiency of solving
the problems in terms of both accuracy and computational cost. A probabilistic model is
built from the best worst-case solutions found so far and is used to generate samples as an
initial population of the lower level DE to speed up the convergence. First, the efficiency
is investigated by comparing the nested algorithm with different probabilities of using
the probabilistic model on 13 test functions of various dimensions and characteristics.
To further investigate the performance of the algorithm, it is compared with the MMDE,
one state-of-the-art algorithm known to perform well on these problems on both bench-
mark functions and on an engineering application. The results show that, most times,
the proposed method performs better or equal to the MMDE.

In future work, the method could be tested with different population-based EAs in
UL or LL, as it is independent of the evolutionary strategy. The parameter, β, that defines
the probability that the probabilistic model will be used, could be adapted during the
optimization. Last, the method can be tested on higher dimensional test functions and/or
engineering applications.
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