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a b s t r a c t

Home energy-management systems can optimize performance either by computing the next step
dynamically e online, or rely on a precomputed strategy used to introduce the next decision e offline.
Further, such systems can optimize based on only one or several objectives. In this paper, the multi-
objective optimization of offline strategies for home energy-management systems is addressed. Two
approaches are compared: the common timetable-based versus our approach based on decision trees.
The timetable-based strategy is optimized using a multi-objective genetic algorithm, while the tree-
based strategy is optimized using multi-objective genetic programming. As a result, a set of rules that
comprise the trees for efficient management of an energy system is generated automatically. First, the
approaches are addressed theoretically, with the finding that the tree-based approach is more powerful
than the timetable-based approach. Second, the performance of the tree-based approach is compared
with the performance of the timetable-based approach and manually defined strategies in an experiment
involving real-world data. A performance increase of up to 17% in terms of the cost objective was
confirmed for the tree-based approach. This is achieved without changing the user habits, i.e., there is no
need of having to adapt the appliance usage to the energy-management system.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As users become more concerned about the environment,
regulating authorities are increasingly restricting the consumption
of non-renewable energy, while the deployment of smart grids [1]
continues to increase. In addition, methods and systems for smart
electrical energy management in homes, industrial facilities and
office buildings are becoming ever more important.

This work is motivated by the lack of an energy-management
system that:

1. Can be automatically personalized to a particular home energy
system deployment.

2. Can outperform standard timetable-based energy-management
systems.

3. Can take into account several conflicting objectives.
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4. Is not computationally expensive and can be deployed on low-
cost hardware.

5. Does not require the user to change the user habits.

Current smart-home systems, especially the ones that are
commercially available, use relatively simple and predefined con-
trol mechanisms for home energy management. Even the solutions
that can be personalized by learning user habits and adjusting the
performance of the smart home accordingly, usually perform the
optimizationwith respect to a single objective only, e.g., decreasing
the costs.

Energy-management systems [2] for smart homes typically
model the problem of energy management as a scheduling prob-
lem. First, predictive models for solar irradiation [3], wind speed
[4], consumption [5] and/or prices [6], are computed and then used
in the optimization of an energy-management schedule for the
next time horizon. One day is the usual time horizon used. Since the
re-computation is required for every time horizon, such strategies
are classified as rolling time horizon strategies and sometimes
referred to as “classical” strategies [7].

The result of some energy-management system optimization
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Istandard standard irradiation
Tstandard standard temperature
Chargei energy input into the battery in the i-th time interval
Dischargei energy output out of the battery in the i-th time

interval
SoCi battery’s state of charge at the end of the i-th time

interval
k correction coefficient
kd discharge coefficient for battery self-discharging rate
Balancei energy balance in the i-th time interval
Cost total operation cost for running the energy-

management system strategy
Costbuyi buy price for the i-th time interval
Costselli sell price for the i-th time interval
Green total green factor for running the energy-

management system strategy
Gridin

i amount of electrical energy sold to the grid in the i-th
time interval

Gridout
i amount of electrical energy bought from the grid in

the i-th time interval
Lossi the amount of energy lost in the i-th time interval
PVreceive

max maximum electrical power that can be sent the grid
PVi photovoltaic module average power production in

the i-th time interval
PVdeclared declared power of the photovoltaic module
TMi average photovoltaic module temperature in the i-th

time interval
fmax coefficient for limiting the total power that can be

sent to the grid
Ii total irradiation in the i-th time interval
Li electrical load in the i-th time interval
Ti average temperature in the i-th time interval
Wi average wind speed in the i-th time interval
HEMS home energy-management system
MORL multi-objective reinforcement learning
NSGA-II non-dominated sorting genetic algorithm II
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methods are the schedules for a set of managed appliances [8]. This
impacts the user comfort, since the user has to adapt to the time of
allowed appliance usage in order to meet the optimization objec-
tive. To address this problem, some approaches [9] take into ac-
count certain aspects of the user comfort, such as indoor
temperature, illumination of the occupied room, electric vehicle
range and preferred time window for appliance operation.

Recently, deep neural networks have been used to model the
energy consumption and weather, indicating the possibility for
accurate predictions when large amounts of diverse data are
available. Deep neural networks with multilayer perceptron were
used for short-term power probability density forecasting in
Ref. [10], while recurrent neural networks were assessed for short-
term building energy prediction in Ref. [11]. In order for these
techniques to work well, the predictions have to be rather or even
extremely accurate, which is hard to achieve in real life due to the
uncertainty associated with external factors and parameters,
mainly the local weather, but also the energy consumption that
results from users’ activities at any particular time. Furthermore,
predictivemodels and optimization strategies are tightly coupled in
such systems [12]. However, this is rarely addressed, e.g., the
deficiency of predictive models is not taken into account during the
optimization phase. Since the weather and the users’ activities
directly influence the production and consumption of energy in the
home, predefined scheduling might not be an appropriate tech-
nique for optimum energy-flow management.

Some studies present energy-management systems that do not
use scheduling. For example, in Ref. [13] Markov decision processes
are used, and in Ref. [14] fuzzy-logic expert systems are deployed,
with the claim of near-optimally managed energy flows. Fuzzy
logic-based energy-management system is proposed in Ref. [15],
where a rule set for energy management is generated bymeans of a
hierarchical genetic algorithm with the aim of profit optimization.
All three papers indicate the deficiencies of using schedules for
energy-consumption optimization, such as increased computa-
tional costs due to frequent optimization runs, an inability to adapt
to new, unexpected situations, increased computational costs due
to complex prediction models such as deep neural networks, and
an inability to run a high-quality energy-management program on-
site using cost-efficient equipment.

While themajority of approaches address only one optimization
criterion, others, such as [16], acknowledge the need to optimize
the system according to multiple contradictory criteria. The reason
is that often-used and practically relevant criteria, such as energy
consumption, carbon emission, self-consumption, and costs, are
usually conflicting in the sense that improving one objective can
worsen the other. For instance, if selling the energy is economically
beneficial, then increasing the energy sales to the grid lowers the
operational costs and thereby enhances the profit, but at the same
time reduces the self-sufficiency rate. The common techniques
transform the multiple criteria into a single objective, usually
applying a weighted-sum approach, and then perform single-
objective optimization.

Energy storage and management system design optimization
for a photovoltaic-battery energy storage system using both
weighted sum approach and Pareto-based multi-objective optimi-
zation is addressed in Ref. [17]. Further, a complex rule-based en-
ergy-management strategy is proposed, indicating that designing
such strategy by hand is a laborious process without guarantees on
optimal performance.

Another way of transforming multiple objectives into a single
objective is to define optimumpoints in the objective space that the
strategies try to achieve. This is called steering. Steering approaches
to Pareto-optimal multi-objective reinforcement learning of stra-
tegies for the control of local battery storage for a residential solar-
power system are presented in Ref. [18].

The parameter-based optimization of energy-management
systems according to multiple objectives is described in Ref. [19],
where the daily optimization of the operational schedule using
optimized timetables is performed, and in Ref. [20], where the
reference points for lower-level controllers are dynamically
optimized.

Some approaches [21] construct a thermal and an electrical
model based on existing data and other inputs, such as energy
rules, to derive an overall energy model that is then used to predict
electrical and thermal demand and production. The optimization
that takes into account the overall energy model is then performed
in order to generate suggestions for additional energy rules that can
be applied to the energy-management system by the building
managers.

However, to the best of our knowledge, no system presented in
the related work can perform a robust, well-performing offline



Fig. 1. An example tree-based strategy.

J. Zupan�ci�c et al. / Energy 203 (2020) 117769 3
strategy optimization for an energy-management system and
provide multiple trade-off solutions in configurations with con-
flicting objectives, which is the case in the presented approach. The
contributions of this work are as follows.

1. The proposed tree-based solutions are computationally less
expensive than some of the online approaches, which require
recomputation for each next time period. The computationally
intensive step for the proposed tree-based strategies can be
performed only a few times in a year and can be executed off-
site, preferably in a cloud. Only the tree-based solutions can
then be transferred on-site. The solutions can then be easily
implemented on a home energy-management system hard-
ware, since they comprise only simple arithmetic operations
and if-then rules.

2. The proposed tree-based strategy outperforms other often-used
strategies, those based on timetables and manually defined
strategies, by up to 17% in terms of the cost objective while
keeping the green objective fixed, as evident from the experi-
mental results.

3. The superiority of the tree-based strategies over the timetable
based strategies with respect to the expressive power is proven
theoretically.

4. The proposed approach is based on the true Pareto-based multi-
objective optimization, where the user can pick the solution
with the preferred trade-off after the trade-offs are clearly
presented to him or her. This is an advantage over the weight-
based multi-objective approaches where the weights are usu-
ally chosen beforehand, when the trade-offs are not yet evident.

5. The user of the proposed approach does not have to change his
or her habits and can use any appliance at any time. This is in
contrast with some of the methods that prescribe time intervals
for appliance usage, which have to be considered by the user in
order to achieve the optimal criteria values.

The advantage of the presented approach, based on a tree-based
strategy (an example is provided in Fig. 1), over a timetable-based
strategy (an example is provided in Fig. 2) is presented in the
following example. Assume that the price of electrical energy
changes dynamically throughout the day. This is known as real-
time pricing and is already available in certain parts of the world
[22]. Assume that, generally, the price for electrical energy starts
increasing in the morning. Since this is a typical behavior, the cost-
effective, robust, timetable-based strategy would learn to sell the
surplus energy in themorning instead of storing it in the battery for
later use. Now assume that on a particular morning it is very sunny
and windy. In this case, the solar and wind farms produce a large
amount of electrical energy, which becomes available on the energy
market, thereby lowering the price of electrical energy. A robust,
timetable-based strategy would continue to sell the energy at a low
price, since it only takes into account the time of the day, and selling
the energy is beneficial on a typical day. A tree-based strategy,
however, also takes into account the low (or even negative) price.
At times of an exceptionally low price, the selling of energy is not
beneficial and an optimized, tree-based strategy, which would
learn this, would deffer the selling of energy to a later time. The
advantage of the tree-based strategy is three-fold. First, the energy
stored in the battery could be used by a smart home, thereby
increasing its independence from the grid. Second, the cost would
be lower, since the profit made from selling the energy at a low
price is surpassed by the cost of buying more expensive energy at a
later time. Third and overall, the tree-based strategy is more flex-
ible and enables adaptation to the current situation based on the
previous construction of potential decisions needed in most rele-
vant situations.
The rest of the paper is structured as follows. In Section 2, the
energy-management system optimization problem is introduced,
and in Section 3, energy-management strategies are discussed. In
Section 4, the presented framework is described. In Section 5, the
experiments and results are presented, while Section 6 discusses
the case-study results and Section 7 concludes the paper.

2. Problem formulation

The problem of managing electrical energy in a smart home that
has one or more sources of electrical energy, an electrical energy
storage option, a smart grid, and an electrical energy consumption
or load is addressed. The proposed Home Energy-Management
System (HEMS) does not manage the devices by turning them on
or off or by setting different modes of operation.

The HEMS problem is, therefore, to find one or a set of the best
(according to one or multiple objectives) strategies that decide on
how much energy to buy from or sell to the grid or how much
energy to store in the battery based on the past, present and
predicted-future states (regarding the price of electrical energy, the
production and consumption of electrical energy, and the state of
charge of the battery).

The overall schematic that illustrates the problem of managing
the electrical energy in a smart home is presented in Fig. 3. The
historical data is first retrieved and used as an input for the opti-
mization procedure. The result of optimization is a set of near-
optimal strategies with respect to multiple criteria, e.g., green and
cost criteria. The user or the HEMS operator then chooses a solution
strategy that is preferred by the user, which is then uploaded to the
HEMS central unit and utilized to manage the energy flows within
the system. Additional data is recorded and can be reused in the
event of another optimization run.

2.1. Model

The home energy system (Fig. 4) comprises components that are
only energy sources (photovoltaic modules and wind generators),
only energy consumers (load), or both (grid, battery). The HEMS is
responsible for managing the energy flows between the home
energy system’s components. For the purpose of this paper, all the
hardware details are abstracted away, and only the logic of the
control of the energy flow is addressed.

Photovoltaics. A regressionmodel [23] is used to determine the
energy generation for the given weather conditions. Given the
declared power of the photovoltaic modules (PVdeclared), the total
irradiation (Ii), where subscript i denotes the i-th time interval, the
average wind speed (Wi) and the average temperature (Ti), the
power output (PVi) can be approximated as follows:

TMi ¼0:943,Ti þ 0:0195,Ii � 1:528,Wi þ 0:3529 (1)



Fig. 2. An example timetable-based strategy.
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PVi ¼PVdeclared ,
Ii

Istandard
,ð1þ k , ðTMi � TstandardÞÞ; (2)

where TMi is the average photovoltaic module temperature,
Istandard ¼ 1000 W=m2 is the standard irradiance, Tstandard ¼ 25+C is
the standard temperature, and k ¼ �0:004 is the correction
coefficient.

Battery. The battery’s state of charge at the end of the i-th time
interval (SoCi) is calculated from the previous state of charge
(SoCi�1), the battery charge (Chargei), the discharge (Dischargei),
and the self-discharging rate kd:

SoCi ¼ kd,SoCi�1 þ Chargei � Dischargei: (3)

During each time interval, the battery can either charge or
Fig. 3. The flow for managing the electrical energy in a smart home.
discharge:

ci;Chargei ,Dischargei ¼ 0: (4)

Further, that energy cannot be transferred between the grid and
the battery.

The smart grid sends the price signals to the HEMS. Buy and sell
prices are denoted with Costbuyi and Costselli , respectively. During
each time interval, the HEMS sends Gridin

i to or receives Gridout
i

electrical energy from the grid:

ci;Gridini ,Gridouti ¼ 0: (5)

Sending the energy to the grid can be limited by coefficient
fmax2½0;1�, determined by the national law:

ci;Gridouti �PVreceive
max ¼ fmax,PVdeclared: (6)

Electrical load. The energy consumption of all the electrical
devices in a residential home during the i-th time interval is
aggregated into the electrical load (Li). The loadmanagement [24] is
not covered in this paper.

2.2. Objectives

Often-used objectives in HEMS include running costs, CO2
emission, self-consumption rate, maximum peak load, total energy
consumption and battery life expectancy. The objectives considered
in this paper are the running costs and the green factor.

The running costs (Cost) comprise the cost of buying and the
profit of selling the electrical energy during each time interval:

Cost¼
Xn

i¼0

�
Gridouti ,Costbuyi �Gridini ,Costselli

�
; (7)

where Gridouti and Gridin
i denote the amount of electric energy

bought from or sold to the system, respectively. Further, Costbuyi
and Costselli are the prices for buying and selling the electric energy
to or from the system.

The green factor (Green) represents the level of independence
of a home with the HEMS from the grid:

Green¼
P n

i¼0

�
PVi � Lossi � Gridini

�
P n

i¼0Li
; (8)

where subscript i indicates i-th time interval, PVi is the amount of
energy produced, Lossi is the amount of energy that is not sold or
used in the HEMS e effectively being lost, Gridin

i is the amount of
energy sold to the grid, and Li is the electrical energy load.

2.3. Simulator

The simulator models the energy flows in the home energy
Fig. 4. Home energy-system model.
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system in discrete time intervals with respect to the given energy-
management strategy and is used to evaluate the performance of
the strategy according to the specified objectives. The following
simulator components are considered: photovoltaic module, smart
grid, battery, load, and HEMS. For each time interval, the simulator
receives the following input data:

1. Grid energy prices.
2. Energy production.
3. Load.

Additionally, the home energy system’s configuration consists
of:

1. Battery: maximum charge rate, maximum discharge rate, min-
imum state of charge, maximum state of charge, initial state of
charge, self-discharge rate, charge efficiency, discharge
efficiency.

2. Photovoltaics: peak power (the maximum power of a photo-
voltaic module in a standardized test).

3. Grid: efficiency of selling energy to the grid, peak power sell
coefficient (specifying the maximum power allowed for trans-
mitting the electrical energy from the home energy system to
the grid).

The remaining energy balance (Balancei) in each time interval is
denoted with:

Balancei ¼PVi � Li; (9)

where PVi is the electrical energy production and Li is the electrical
energy load. There are two options during each time interval: either
the HEMS first uses the battery in order to store/obtain energy or it
uses the grid in order to sell/buy the energy. If the balance is pos-
itive, there is energy excess, and in the case of a negative balance,
there is a lack of energy.

In each time interval the HEMS executes a control action and
receives the values of the objectives (cost and green factor).
3. Strategies for home energy-management systems

Two types of controllers or strategies were developed and tested
for the purpose of this study: the timetable-based strategy and the
tree-based strategy. The HEMS strategy maps the current HEMS
state into the control action. In this paper, both strategies use the
same control actions:

1. a0 e use battery first:
(a) If the balance < 0: Try to use the energy from the battery

first. If this is not sufficient, supply energy from the grid.
(b) If the balance � 0: Try to put the extra energy into the

battery first. If the production is greater than the maximum
charge rate, sell the energy to the grid up to the grid sell
limit and discard the rest.

2. a1 e use grid first:
(a) If the balance < 0: Get all the required energy from the grid.
(b) If the balance � 0: Try to sell the energy to the grid up to the

sell limit. If there is energy left, charge the battery. If there is
still some energy left, discard it.

Although the control actions are the same, the HEMS strategies
differ in how the automatic decisions to choose one particular
control action are taken, i.e., they use different mappings from the
HEMS state space into the control action state space.
Definition 1. (HEMS strategy). The HEMS strategy 4 is a mapping
from the HEMS state space S to the action space A.

Definition 2. (Optimum HEMS strategy). The optimum HEMS
strategy is defined as:

4*¼ argmin42FfDð4Þ; (10)

where f is an objective function that depends on the parameters D, and
F ¼ f4;S/4Ag is a set of all the mappings from S to A.

For the purpose of this study, f is a simulator that computes the
running costs and the green factor as two conflicting objectives.

3.1. Timetable strategy

In the timetable strategy, the action is specified for each time
interval. Using only the time-based decisionmaking can be efficient
in domains where the working conditions are periodic, e.g., a user
goes to work at a specific hour on a workday, which is partially the
case in the energy-management domain, and not much other data
is available. Because of its simplicity it is often used in control-
strategy problems.

Often, the timetable strategy is used in combination with some
prediction mechanism trained on a training dataset. Next, for each
time interval, where the HEMS states are partially predicted using
the previously built predictive models, the problem of finding the
optimum timetable(s) is solved. This kind of strategy requires
continuously solving the optimization problem. Moreover, the
quality of the strategy depends on the accuracy of the predictive
models.

In this paper, the focus is on finding robust timetable strategies
that do not require resource-intensive continuous recomputation
for each new time horizon (i.e., a set of consecutive time intervals).
This requires finding timetable strategies that perform well on the
training data, given some longer time horizon, i.e., the optimization
problem is solved once and the solution is then used by the HEMS
for new data.

Definition 3. (The timetable strategy). Timetable strategy ts is a
mapping from time space T to action space A.

Note that the HEMS state space S ¼ T � F, where the time space
T is only one dimension, while F includes all the other feature di-
mensions (price, energy consumption, energy production and
others).

For the purpose of this study, the timetable strategy’s mapping
is discretized in order to correspond to the discretized dataset D,
i.e., for each possible value of the time of the day an action is
specified.

3.2. Tree-based strategy

In the tree-based strategy, the decision about which action to
take is based on a logic flow as defined by a binary decision tree. An
example of such a decision tree is shown in Fig. 5. The inner nodes
represent tests of the form: is the value of the feature X (e.g., the
current balance) greater than or equal to the value v (e.g., 0). Based
on the result, the control logic proceeds along either of the two
branches. The terminal nodes, i.e., the leaves, represent actions to
be taken (e.g., use the battery first). This decision-making flow is
repeated each time a decision needs to be made.

In this case, the following features are used: the current minute
of the day, the average previous day’s buy price, the average pre-
vious day’s sell price, the current load, the current production, the
current buy price, and the current sell price.

The test value v for the feature X is calculated dynamically, based
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on the possible values that can be achieved, given the decision flow.
Each inner node is represented by the feature X and the relative test
value vrelative2ð0;1Þ. If the relative test value does not yet exist
(because the test node has not yet been visited in the simulation
run) it is randomly generated and from this value the absolute test
value (vabsolute) is calculated as

vabsolute ¼ vXmin þ vrelative,
�
vXmax � vXmin

�
; (11)

where vXmin and vXmax are the current minimum and maximum
values that can be attained in the current node for the feature X.
When the feature X is first used in a test, vXmin and vXmax are the
minimum and maximum values, respectively, for the feature X in
the data. Assume that vXi is the value for the feature X in the i-th
time interval. At the root node the following values are set:

vXmin ¼min
n
vXi

on

i¼0
; (12)

vXmax ¼max
n
vXi

on

i¼0
: (13)

However, when X has already been used in a test in some pre-
decessor node, then vXmin and vXmaxare adjusted as follows: if vXi �
vabsolute, then vXmax ¼ vabsolute, otherwise vXmin ¼ vabsolute.

Definition 4. (Tree-based strategy). A tree-based strategy j is a
mapping from S to A, where j is in the form of a binary decision tree.
3.3. Comparison of strategies for timetable-based and tree-based
expressive powers

Definition 5. The expressive power is the size of the strategy map-
ping 4ðSÞ.
Theorem 1. The expressive power of the tree-based strategies J is
greater than the expressive power of the timetable-based strategies T:
T3
s
J.

Proof. First, let us prove that each timetable strategy can be repre-
sented by some decision-tree strategy. Without loss of generality, as-
sume a timetable strategy ts with daily periodicity represented by the
following pairs

ts ¼ ½ðt0; a0Þ; ðt1; a1Þ;…; ðtn�1; an�1Þ; ðtn; anÞ�: (14)

Here, each pair ðtj; ajÞ means that in the time interval ðtj�1; tj� ac-
tion aj is used, where t�1 is defined as t�1 ¼ tn ¼ midnight. For the
timetable strategy ts a corresponding tree-based strategy can be
constructed that behaves exactly as shown in Fig. 6. This proves that a
Fig. 5. An example tree-based strategy defined by a binary decision tree.
set of timetable strategies T is included within the set of tree-based
strategies J, therefore,

ct2 T dj2Psi : t � j0T4J: (15)

Second, let us prove that a tree-based strategy exists that does not
have a timetable-based strategy representation. First, a feature that is
not exactly repeated after a certain time is needed, which effectively
means any feature with the exception of the time-of-day feature. An
example tree-based strategy as in Fig. 5 for instance uses the current
balance feature and the difference between the current sell price and
the average previous day’s sell price. The example tree-based strategy
cannot be represented using any timetable-based strategy, since
neither of the features used by the tree-based strategy are periodic.
Therefore,

dj2J∧et2T : j � t0J?T: (16)

Combining the two results proves the theorem:

T4J∧J?T0T3
s
J: (17)

Theorem 1 can also be demonstrated experimentally, as seen in
Fig. 7. To demonstrate the different expressive powers, 500,000
random timetable-based and tree-based strategies were generated
and their performance with respect to the two objectives (cost and
green factor) was compared on two different datasets. Themapping
of the timetable-based strategies is observed to be included in the
mapping of the tree-based strategies.
4. Optimization framework

In order to solve the optimization problem from Section 2, two
alternative methods are utilized: one for the timetable strategy
optimization and one for the tree-based strategy optimization. For
solving this problem the methods from the field of evolutionary
computation are used. The methods originate from the idea of
evolution, i.e., solution candidates are put into an artificial envi-
ronment, where they can interact with each other and produce
offspring. The survival of the solution candidates depends on their
fitness, derived from the objective function. Over several genera-
tions (i.e., iterations) the fittest solution candidates emerge as the
solutions to the problem. When there are multiple conflicting ob-
jectives to be considered for optimization, a single best solution
does not exist. Instead, a set of incomparable solutions (i.e., a Pareto
set) are optimum in such cases, i.e., considering two solutions from
the Pareto set, one is always better than the other for at least one
objective. Population-based evolutionary algorithms, such as the
Fig. 6. A decision tree corresponding to the timetable ts
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well-known algorithm NSGA-II [25], are especially suitable for
these problems, since they evolve a set of solution candidates in a
single run.

Here, NSGA-II handles the optimization of the timetable strat-
egy. Individuals are represented as a hash map, with mappings
from the time-of-day to a set of actions. For the purpose of this
study, a day was divided into half-hour intervals and the actions set
comprised two actions: a0, where the battery is used first, and a1,
where the grid is used first. This results in a timetable represen-
tation in the form of a list of 48 binary values, where for each half-
hour interval either action a0 or a1 is taken.

The multi-objective genetic programming algorithm [26] is
applied to the optimization of the tree-based strategy. Individuals
are represented as binary decision trees, where each inner node
(decision node) tests whether a feature satisfies a condition or not.
Terminal or leaf nodes denote the actions in the simulator. The
following genetic programming operators are applied to evolve the
solutions:

Initialization: ramped half-and-half method (half of the initial
decision trees are full trees, the other half are of varying depth).

Selection: a non-dominated sorting-based selection as in NSGA-
II [25] is used for the purpose of selecting individuals based on the
values of multiple criteria.

Mutation: uniform mutation, which randomly selects a sub-tree
in the existing tree and replaces it by a randomly generated sub-
tree.

Crossover: one point crossover. It randomly selects sub-trees in
each of two parent individuals and exchanges them.

Reproduction: this operator returns a copy of the parent
individual.

Bloat control: common problem of increasingly larger programs
in later generations of the evolutionary algorithm run is addressed
by the static limit as proposed by Ref. [26]. If a node is positioned at
the depth specified by the static limit and is at the same time the
root of a sub-tree, it is replaced by a random leaf node from its sub-
tree.

The overview of the algorithm is presented in Fig. 8.
The values of the parameters of the inner nodes are generated

randomly when a tree is initialized.
Fig. 7. Comparing the expressive powers of the timetable-ba
5. Case study

In this section, the data used for the simulation and the strategy
optimization are described. Additionally, the setup and the exper-
imental results are presented.

5.1. Data

Real-life data is used in the experimental evaluation of the
strategy optimization. Weather data was obtained from the Slove-
nian Environment Agency weather portal [27] for the location of
“Bilje pri Novi Gorici, Slovenia” for the period between January 1,
2007, and October 23, 2016. Energy consumption data is used from
the available Electricity Load Diagrams 2011e2014 dataset [28].
Load data with the id “MT_003” is used for these experiments. The
electrical energy pricing data was obtained from the historical
intra-day continuous pricing data for the German market at the
Epexspot portal [29]. The weighted average price is used for both e

buy and sell prices.
All the data was resampled to 30-min intervals and the missing

values were filled using the forward-fill method, i.e., each missing
value is set to a value of the first existing, previously valid value.
Sub-sample of the data is visualized in Fig. 9.

In order to properly test the strategies, the data was divided into
two datasets e the training dataset that included the data from
April 1, 2014, to June 30, 2014, and the test dataset that included the
data from July 1, 2014, to September 30, 2014. Both datasets cover a
period of 3 months of summer and transition periods. The training
dataset is used during the process of optimization. In order to
prevent overfitting (the over-adaptation of strategies to the already
seen data), the strategies are also tested on a previously unseen test
dataset, which gives a sense of the strategy generalization.

5.2. Alternative strategies

In order to obtain a sense of the strategy optimization perfor-
mance, the results are compared to three strategy groups: manually
defined strategies, robust timetable strategies, and near-optimum
strategies.

The first group includes a set of manually defined strategies,
sed and tree-based strategies on two different datasets.



Fig. 8. Multi-objective genetic programming algorithm for the optimization of the HEMS strategy.
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normally used by the HEMS manufacturers and found in the liter-
ature [13]:

1. Battery-first strategy: in each time interval use the battery-first
action e a0,

2. Grid-first strategy: in each time interval use the grid-first action
e a1,

3. Opportunist sell strategy: if the current sell price is higher than
the average previous day’s sell price and there is an excess of
energy, sell the energy to the grid (i.e., use the grid-first action
a1), otherwise utilize the battery (i.e., use the battery-first action
a0).

The second group includes the robust timetable strategies
described in Section 3.1 and obtained using the NSGA-II algorithm,
as described in Section 4.

The third group includes the near-optimum strategies used for
the purpose of assessing the performance of the strategy optimi-
zation method. In order to obtain the near-optimum strategy, a
multi-objective optimization using NSGA-II is performed in order
to find a binary vector of length 4368 and 4416, which defines an
action for each possible time interval in the training and test
datasets, respectively. This requires solving two optimization
problems, one for the training and one for the test dataset.
5.3. Optimization runs

The optimization was performed using a workstation with an
Intel Xeon CPU E5-1620 v4 @3.5 GHz with 32 GB of RAM. Python
[30] was used as the programming language and the DEAP library
[31] was used as the optimization framework. The EMS simulator
[32] was implemented using the NumPy [33] and Pandas [34] li-
braries. The hypervolume indicator [35], which measures the area
covered by non-dominated solutions, was used to monitor the
evolution of the strategies and compare the optimization runs.

Due to the resource-intensive experiment, the parameter set-
tings were chosen based on a smaller set of preliminary runs. As a
result, the parameter settings for the timetable-based and tree-
based strategy optimizations specified in Tables 1 and 2, respec-
tively, were set.

For the simulator, the parameter settings reported in Table 3
were used.

Each optimization was executed 40 times in order to obtain
representative results, with the exception of the near-optimum
strategy optimization, which was run only once. The parameter
settings used in the near-optimum strategy optimization were the
same as in the timetable-based strategy, with the exception of the
number of generations, which was increased to 40,000. The in-
crease was needed for the hypervolume value to stabilize.
5.4. Results

The hypervolume progress plots for the optimization of the
timetable-based, tree-based and near-optimum strategies on the
training data are presented in Fig. 10. The progress of each opti-
mization approach is shown, i.e., 40 runs of the timetable-based
strategy and tree-based strategy optimizations, and one run of
the near-optimum strategy optimization. The reference point used
for the hypervolume calculation was determined from the data.
First, theworst values for each of the objectives were calculated and
then multiplied by 1.1, if the value was positive, or 0.9, if the value
was negative. The same reference point was used for all the
hypervolume calculations, so that the hypervolume values are
comparable. The number of generations in the timetable-based
strategy and tree-based strategy optimizations was set to 1000,
while for the near-optimum strategy it was increased to 40,000,
keeping the number of individuals the same. Therefore, the
normalized generation or evolution progress (i.e., the current iter-
ation divided by the total number of iterations) is used for the
horizontal axis.

The hypervolume indicator stabilizes in late generations;
therefore, increasing the number of generations is not necessary.

The percentile values of the last generation for the optimization
of the timetable-based, tree-based and near-optimum strategies on
training data are presented in Table 4. The percentile values for
near-optimum strategies remain the same, because only one run
was executed.

The performance of the non-dominated strategies in the final
populations of all the optimization runs together with the perfor-
mance of the predefined strategies is shown in Fig. 11. Each found
solution is represented by a dot with the values of the Cost objec-
tive on the horizontal axis and 100� Green objective value on the
vertical axis. In order to observe the generalizability of the solu-
tions, the performance of each strategy was also evaluated on the
previously unseen test data (the right-hand plot).

Observe that the negative Cost value actually means profit and
solutions to the far left-hand side are preferred. At the same time,
the solutions with the highest Green value at the top are preferred.



Fig. 9. Sub-sample of the data from April 2014: electrical energy production in kWh (left), electrical energy consumption in kWh (center), and electrical energy prices in EUR/kWh
(right).

Table 1
Parameter settings for the timetable-based strategy optimization.

Parameter name Parameter value

Number of parents 500
Number of offspring 500
Number of generations 1000
Gene mutation probability 1/24
Crossover probability 0.9

Table 2
Parameter settings for the tree-based strategy optimization.

Parameter name Parameter value

Number of parents 500
Number of offspring 500
Number of generations 1000
Individual mutation probability 0.1
Crossover probability 0.9
Initial minimum tree depth 1
Initial maximum tree depth 10
Mutation minimum tree depth 0
Mutation maximum tree depth 3
Static limit for the maximum tree depth 10

Table 3
Parameter settings for the simulator.

Parameter name Parameter value

PVdeclared 10.0
Chargemax 12.5
Dischargemax 12.5
SoCmin 1.0
SoCmax 50.0
SoC0 1.0
Battery self-discharge rate 0.0
Battery charge efficiency 1.0
Battery discharge efficiency 1.0
fmax 0.7
Selling energy to grid efficiency 1.0
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The ideal solution would, therefore, be present in the upper-left
corner. As a general rule in such cases, solutions that are to the
upper left-hand side are considered the best. Furthermore, observe
that nearly every two points on the front that belongs to the same
strategy type are incomparable. When a decision maker chooses
one over the other, the performance of the HEMS improves ac-
cording to one objective and worsens according to the other. This
enables the decision maker to select a trade-off between the ob-
jectives according to his or her preferences. The trade-off is pre-
sented clearly in the case of the true multi-objective optimization,
Fig. 10. Evolution of the hypervolume metric using NSGA-II for the multi-objective
timetable-based strategy optimization, the proposed algorithm for the multi-
objective tree-based strategy optimization, and the near-optimum strategy
optimization.
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which is not always possible when other methods are used.
Examples of generated tree-based strategies are presented in

Figs. 12e14, where the trees correspond to strategies with the best
cost criterion, median cost criterion and best green criterion,
respectively, for one of the optimization runs. Similarly, examples
of generated timetable-based strategies are presented in
Figs. 15e17, where the timetables correspond to strategies with the
best cost criterion, median cost criterion and best green criterion,
respectively, for one of the optimization runs.

The performance of the chosen examples is further compared in
Table 5. In addition, the improvement of the tree-based strategy
over timetable-based strategy is presented in the Improvement
column of Table 5.
6. Discussion

In this section, the differences between the timetable-based,
tree-based and manually defined approaches are discussed. Every
tree-based strategy found using the proposed method either
dominates or is not comparable with any robust timetable-based
strategy (Fig. 11). When observed as a whole, the found tree-
based strategies dominate the found timetable-based strategies
and the predefined strategies. This domination is especially evident
for the lower cost (i.e., higher profit) solutions (Fig. 11). In our ex-
periments, a 17.1% increase in profit can be observed (Table 5),
when comparing two particular solutions of two random optimi-
zation runs that obtain the best cost objective values in their
respective runs. The green objective of the tree-based approach is
lower in that case, however, this is due to the fact that much better
solution regarding the cost objective was found. If a solution with a
better green objective is preferred, the decision maker may choose
another one. The non-dominated greenest solutions are compara-
ble regarding the green objective, however, the cost objective of the
tree-based strategies is better. In the case of the presented exam-
ples, a 10.0% improvement can be observed (Table 5). For trade-off
solutions, i.e., those that do not obtain maximum or minimum
values of the objectives, the tree-based strategies that perform
similarly regarding the green objective outperform the timetable-
based strategies in terms of the cost objective, and the tree-based
strategies that perform similarly regarding the cost objective
outperform the timetable-based strategies in terms of the green
objective (Fig. 11). This is the consequence of tree-based solutions
dominating the timetable-based solutions. In the case of the pre-
sented examples, where the solutions with the median cost
objective values in their respective runs were inspected, the cost
objective values are similar, while a 5.8% improvement can be
observed in the green objective.

A similar conclusion can be drawn for the test data set, where
the relations between the strategy types remain the same, although
the scale (i.e., the range of objective values achieved) changes. This
indicates good generalizability of the proposed method and the
robust timetable-based strategy optimization.

The timetable-based and tree-based strategies dominate the
Table 4
Hypervolume metric percentile values for different optimization approaches.

Percentile Near-optimal strategy optimization (train) Time

0th 2804.688949 2195
5th 2804.688949 2195
25th 2804.688949 2195
50th 2804.688949 2195
75th 2804.688949 2195
95th 2804.688949 2195
100th 2804.688949 2195
predefined strategies used in a commercially available HEMS, with
the exception of the “use-battery-first” strategy, which achieves a
very good value according to the green-factor criterion.

According to the hypervolume indicator, the timetable-based
strategy optimization and tree-based strategy optimization
converge at approximately the same rate, while the proposed
approach finds significantly better-performing strategies (Fig. 10
and Table 4). The median hypervolume indicator value of the
tree-based strategy optimization runs was about 20% higher than
the median hypervolume indicator value of the timetable-based
strategy optimization runs, without the overlap between the
maximum and minimum values. The indicator values of the near-
optimum strategy are the highest, as expected (Table 4). It is
important to take into account that these values are not achievable
in real-life. Since theoretical Pareto front is not available, it is
approximated using optimization, where decision for each time
interval is sought for the whole operation period with data avail-
ability. To achieve the Pareto front approximation, the optimization
budget was greatly increased for the near-optimal strategy opti-
mization, 40,000 vs. 1000 generations, while keeping all the other
population parameters the same.

On the other hand, there is still room for improvement of the
tree-based strategy optimization, as is evident from the difference
in the performance of the found near-optimum strategies and tree-
based strategies. This is probably because of too few features being
used in the tree-based strategies. Since for the described approach
the features have to be designed by hand, some important features
that could increase the performance are probably missing. An
automatic feature-generation method could increase the method’s
performance; however, at the cost of strategy explainability.

Some rolling time horizon strategies may perform better,
however, at the cost of increased online computational complexity.
Note that in the presented approaches, the strategies are pre-
computed based on simulation and historical data. In order for the
HEMS to utilize a one particular chosen strategy, that strategy has
to be uploaded onto the HEMS controller, while the strategies could
be computed only once per several months. Afterward, only simple
arithmetic and if-then-else rules with a low number of total oper-
ations are required for the controller execution of the chosen
strategy. This is in contrast with the rolling time horizon strategies
that usually perform expensive optimization every day or even
every few hours.

True multi-objective optimization enables the user to choose
the trade-off solution strategy following post-hoc analysis of all the
provided trade-offs. The schematic of the decision making is pre-
sented in Fig. 3, while the actual trade-offs can be observed in
Fig. 11. Some optimization approaches require the user to choose
weights in advance, even before the optimization is executed.
Choosing the weights, however, can be non-intuitive for a user,
since the weights mix different types of objectives, e.g., green and
cost objectives in our case. Performing a true multi-objective
optimization enables displaying a front of the non-dominated,
i.e., the best, solutions on a graphical user interface. In the case of
table-based strategy optimization Tree-based strategy optimization

.143914 2629.173918

.143922 2631.142458

.145606 2635.754203

.147142 2638.006121

.147142 2640.276218

.147142 2648.242975

.147142 2651.027347



Fig. 11. Union of the final non-dominated solutions (left: training data, right: test data) of all the runs using NSGA-II for the multi-objective timetable-based strategy optimization,
the proposed algorithm for the multi-objective tree-based strategy optimization, the near-optimum strategy optimization, and other predefined strategies.

Fig. 12. Tree-based strategy with best cost criterion performance in the last generation of one random run.
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two objectives, the user is presented with a two-dimensional plot
of strategy performance. Inspecting different solutions the user can
easily observe the gains in one objective and losses in the other.
Note that the gain in one objective necessarily means a loss in the
other objective, since all the presented non-dominated solutions
are incomparable according to the Pareto-dominance relation.

Since the presented approach only manages the energy flows
and no appliance is directly controlled, it means that there is no
need for the user to change his or her behavior regarding the usage
of home appliances. This is in contrast with some other approaches
in the relatedwork, where some appliances can be operational only
inside the specified time window, in order to achieve the optimal
performance.
7. Conclusions

The optimization of HEMS is an important issue in sustainable
smart home energy management. Our approach describes the
optimization procedure that enables the users to choose the
preferred trade-off between multiple criteria: costs, ecology, com-
fort etc. The optimization solutions can be precomputed in advance
and are represented in the form of decision trees, integrating
higher-level strategic with lower-level operational decisions, e.g.,
sunny-afternoon and rainy-evening with an adaptation to the actual
situation. This results inwell performing strategies that require low
computational resources when deployed in HEMS.

Instead of schedules, our system automatically designs decision



Fig. 13. Tree-based strategy with median cost criterion performance in the last generation of one random run.

Fig. 14. Tree-based strategy with best green criterion performance in the last generation of one random run.
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trees based on history data, and optimizes them. Computationally,
the decision trees are as demanding as schedules, but offer greater
expression power and advanced optimization possibilities. To
demonstrate the improvements, the tree-based strategy optimi-
zation is compared to the timetable-based strategy optimization
and predefined strategies, those found in the literature and those
used by currently available energy-management systems.
Additionally, the near-optimum strategy optimizationwith NSGA-II
was used as a reference to measure how the performance of
different approaches can be approximated to the optimal one. The
tree-based strategies consistently outperformed the timetable-
based strategies on the training and test data. The optimization of
tree-based strategies yielded solutions with the hypervolume in-
dicator value increase of 20% over the hypervolume indicator value



Fig. 15. Timetable-based strategy with best cost criterion performance in the last generation of one random run.

Fig. 16. Timetable-based strategy with median cost criterion performance in the last generation of one random run.
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Fig. 17. Timetable-based strategy with best green criterion performance in the last
generation of one random run.

Table 5
Objective values of selected solutions and improvement.

Solution Timetable-based
strategy
optimization

Tree-based
strategy
optimization

Improvement

Cost Green Cost Green Cost Green
Best cost � 50:847 76.278 � 59:551 73.254 þ 17:1% � 3:9%
Median cost � 47:551 88.098 � 47:762 93.203 þ 0:4% þ 5:8%
Best green � 29:363 98.011 � 32:302 98.011 þ 10:0% 0:0%
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obtained from the timetable-based strategies. Three representative
solutions of a random optimization run for tree- and timetable-
based approaches were also compared. The tree-based solution
with the best cost objective resulted in a 17% improvement in the
cost objective, when compared to the timetable-based solution.
The median cost solutions of both approaches performed similarly.
In the case of the best green solutions, the tree-based approach
yielded a 10% improvement in the cost objective, while keeping the
green objective the same, when compared to the timetable-based
approach. The higher expression power of the tree-based strate-
gies compared with the timetable-based strategies was also proven
theoretically.

The main advantages of the presented approach over the
existing ones are the following:

1. The proposed tree-based solutions are computationally much
less expensive than online approaches that require optimal
strategy recomputation for each time period.

2. Compared to other precomputed strategy approaches
demanding approximately the same online computing capa-
bilities, the proposed tree-based strategies outperform the
timetable-based andmanually defined strategies by up to 17% in
terms of the cost objective while keeping the green objective
fixed.

3. The proposed approach is based on the true Pareto-basedmulti-
objective optimization, where the user can pick the solution
with the preferred trade-off after the trade-offs are clearly
presented to him or her. This improves the user experience with
respect to the approaches that use the weighted sum of the
objectives, since the weights are hard to define in advance.

4. The proposed approach manages the energy flows to and from
the battery and the grid, which means that there is no need for
the user to adjust his or her habits of using the appliances as is
the case in some of the energy-management systems.

5. The source code for running the energy-management systems
simulation and optimization is provided.

The limitations of the presented approach are:

1. To fully adapt the strategies to a particular location, historical
data on the load, electric energy prices and solar irradiation is
required with a 30-min resolution. This data is often not avail-
able in traditional energy systems.

2. To offload the computationally intensive optimization step to an
off-site location, an internet connection is required. While this is
usually not a problem, since smart home energy-management
systems are often already connected, it could present an
obstacle in some cases.
Several research directions based on the presented work are
possible. A similar approach can be tested for other strategies, such
as neural networks; however, the decision trees can still be
preferred when an explainable model is required.

Additionally, the feature generation could be automated.
Currently, there is a need to specify the features by hand, which
requires some domain knowledge. Feature transformation of the
time-series data could be applied in order to increase the perfor-
mance; however, at the cost of explainability.

The proposed tree-based strategy optimizationmethod could be
improved using cooperative bi-level optimization methods. The
two identified optimization levels are the following: a decision-tree
structure optimization on the upper level and a threshold-value
optimization that corresponds to the given decision tree on the
lower level. Both levels are cooperative e they both strive to opti-
mize the same objectives. Currently, a random search using only
one instance generation is used at the lower level, i.e., the inner
nodes’ test values for each new tree-based strategy are generated
randomly and are not subject to any optimization.

Furthermore, the method of multi-objective strategy optimiza-
tion could be applied to other domains besides energy manage-
ment. Optimizing the energy-management system as presented in
this paper can be categorized as a Multi-Objective Reinforcement
Learning (MORL) problem with complex rewards (the rewards are
not additive and are delayed). This class of problems has only
recently been addressed [36]. The proposed method can be classi-
fied as a multi-policy approach for MORL problems [36] and is
therefore applicable to several other domains. Since the imple-
mentation is available [32], the described problem can also be
included in MORL benchmark problems. The simulator provides a
complex, real-life MORL problem implementation, of which only a
few are reported in the literature.
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