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Abstract 11 

An extended European tree-ring network was compiled from various sources of tree-ring 12 

data from Europe, northern Africa and western Asia. A total of 1860 tree-ring chronologies 13 

were used to compare correlation coefficients calculated with aggregated day-wise and 14 

month-wise mean temperature, sums of precipitation and standardised precipitation-15 

evapotranspiration index (SPEI). For the daily approach, climate data were aggregated over 16 

periods ranging from 21 to 365 days. Absolute correlations calculated with day-wise 17 

aggregated climate data were on average higher by 0.060 (temperature data), 0.076 18 

(precipitation data) and 0.075 (SPEI data). Bootstrapped correlations are computationally 19 

expensive and were therefore calculated on a 69.4 % subset of the data. Bootstrapped 20 

correlations indicated statistically significant differences between the daily and monthly 21 

approach in approximately 1 % of examples. A comparison of time windows used for 22 
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calculations of correlations revealed slightly later onset and earlier ending day of the year 23 

for the daily approach, while the largest differences between the two approaches arise from 24 

window lengths: Correlations calculated with day-wise aggregated climate data were 25 

calculated using fewer days than the monthly approach. Differences in the onset and ending 26 

dates of periods for the daily and monthly approaches were greater for precipitation and 27 

SPEI data than for temperature data.  28 

 29 
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 32 

1. INTRODUCTION 33 

In dendroclimatology, various tree-ring proxies are usually compared to gridded or observed 34 

station climate data with monthly resolution to analyse climate-growth relationships (Cook 35 

and Kairiukstis, 1992). Monthly climate data are more easily accessible, available for most 36 

land territories and have longer time spans than daily data, but at the cost of accuracy, 37 

particularly when dealing with precipitation data (Hofstra et al., 2009; Yin et al., 2015). All 38 

monthly data, whether they are gridded or from station observations, are derived from daily 39 

climate station observations, which are the raw climate products, and then aggregated into 40 

monthly datasets. In addition to the many daily observations available from the KNMI 41 

Climate Explorer (https://climexp.knmi.nl/start.cgi), various reforecast project 42 

collaborations have resulted in high quality gridded daily data, such as E-OBS gridded daily 43 

datasets for Europe (Cornes et al., 2018), Berkeley Earth temperature datasets 44 

https://climexp.knmi.nl/start.cgi
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(http://berkeleyearth.org) and various datasets provided by the National Oceanic and 45 

Atmospheric Administration of the United States 46 

(https://www.esrl.noaa.gov/psd/data/gridded/tables/daily.html). 47 

Daily climate data is well integrated into various process-based models, such as the VS 48 

model (Anchukaitis et al., 2006; Shishov et al., 2016) and MAIDENiso (Danis et al., 2012). 49 

Some previous dendroclimatological studies have used daily climate data. Land et al. (2017) 50 

reported increasing correlations between ring widths and precipitation if heavy 51 

precipitation events are excluded from the precipitation data. Their study showed that the 52 

annual radial growth of oak trees is mainly affected by daily precipitation sums of less than 53 

10 mm. Schönbein et al. (2015) reconstructed summer precipitation based on subfossil oak 54 

tree-ring data and daily precipitation records from southern Germany, while Pritzkow et al. 55 

(2016) combined the earlywood vessel area of Quercus robur and daily temperature data 56 

from northern Poland to reconstruct minimum winter temperatures back to 1810. Climate-57 

growth relationships using daily climate data have been calculated by various authors (e.g. 58 

Castagneri et al., 2015; Liang et al., 2013; Sanders et al., 2014; Sun and Liu, 2016). One of 59 

the first software programs for dendroclimatological studies based on daily climate data was 60 

CLIMTREG, provided by Beck et al. (2013), while Jevšenak and Levanič (2018) recently 61 

presented the dendroTools R package, which is designed for the R environment (R Core 62 

Team, 2019) and provides various options for analysis of climate-growth relationships on 63 

daily and monthly scales. 64 

Combining tree-ring networks with gridded climate data can provide comprehensive spatio-65 

temporal information related to tree growth and climate sensitivity. Compiled large-scale 66 

tree-ring networks have already been used for various purposes, e.g. to analyse climate-67 

http://berkeleyearth.org/
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growth associations for northern hemisphere tree-ring width records (St. George, 2014); to 68 

evaluate the climate sensitivity of model-based forest productivity estimates (Babst et al., 69 

2013); to identify climatic drivers of global tree growth (Babst et al., 2019); to characterise 70 

relationships between climate, reproduction and growth (Hacket-Pain et al., 2018); to 71 

simulate radial tree growth with the VS-Lite model on a global scale (Breitenmoser et al., 72 

2014); to assess global tree-mortality (Cailleret et al., 2017); and to quantify the drought 73 

effect on tree growth as a measure of vitality (Bhuyan et al., 2017). Zhao et al. (2019) 74 

analysed representatives and biases of tree-ring records in the Global Tree-Ring Databank 75 

(ITRDB), identified priority sampling areas and corrected identified issues, while Babst et al. 76 

(2018) discussed challenges and opportunities related to tree-ring networks. No tree-ring 77 

network has so far been used to analyse climate-growth relationships for daily data and to 78 

compare daily and monthly climate-growth relationships. To do so, an extended European 79 

tree-ring network was established using freely available data from various sources and 80 

combining these data with gridded daily climate data, i.e. E-OBS daily data on a 0.1-degree 81 

regular grid. 82 

In this study, I compare climate-growth correlations calculated from aggregated daily and 83 

monthly data of mean temperature, sums of precipitation and standardised precipitation-84 

evapotranspiration indices (SPEI). Climate data with daily resolution enable greater 85 

flexibility in the analysis of climate-growth relationships and provide higher explained 86 

variance in calibration models for climate reconstructions. In areas where the time period 87 

related to the climate signal starts/ends near the 15th day of the month, a daily approach 88 

should provide significantly greater differences between correlations calculated from day-89 

wise and month-wise aggregated climate data. An important benefit of using a daily 90 

approach is the possibility to study changes in time windows over time. While the temporal 91 
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stability of monthly data usually enables the study of only the changes in correlation 92 

coefficients over time, a daily approach enables the study of changes in temporal windows 93 

over time as well. Hypothetically, this information could be used to model the divergence of 94 

climate-growth relationships (Loehle, 2009) and changes in growing season patterns 95 

(Linderholm, 2006). Finally, studying climate growth correlations using day-wise aggregated 96 

climate data could improve our understanding of the climate signal in tree rings and enable 97 

us to more accurately predict future growth under different climate scenarios. The goal of 98 

this study is to highlight the advantages of using daily rather than monthly data and, at the 99 

same time, expose possible caveats related to the daily approach. 100 

The paper is structured as follows: in section 3.1 I give a general description of the extended 101 

European tree-ring network, while correlations calculated with day-wise and month-wise 102 

aggregated climate data are compared in sections 3.2 and 3.3. The time periods related to 103 

the calculated correlation coefficients for the daily and monthly approach are compared in 104 

section 3.4. Finally, in section 3.5 the potential applications and future extensions of the 105 

daily approach are discussed. In the conclusions the main results are summarised, and 106 

possible caveats of the daily approach are discussed. 107 

 108 

2. MATERIALS AND METHODS 109 

2.1 Tree-ring network 110 

For the purposes of this study, I compiled a continental-scale tree-ring network consisting of 111 

freely available data from various online sources. A cleaned and corrected version of the 112 

International Tree Ring Data Bank (Grissino-Mayer and Fritts, 1997), i.e. rITRDB, which was 113 
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presented by Zhao et al. (2019) and is available via the web repositories of the National 114 

Climatic Data Center (https://www.ncdc.noaa.gov/paleo/study/25570), was used as the 115 

primary source. This dataset consists of 8326 individual files in Tucson format, containing 116 

information on various tree‐ring parameters. Firstly, rITRDB was updated with 16 additional 117 

rwl files from Europe, which were recently added to the International Tree Ring Data Bank. 118 

These data are marked “ITRDB_2019” in Supplementary Table S1, while the files available in 119 

rITRDB are marked “rITRDB”. All files were filtered to keep only those that correspond to the 120 

extent of the ensemble version of the E-OBS temperature and precipitation datasets (Cornes 121 

et al., 2018). E-OBS datasets cover 25°W to 45°E longitude and 25°N to 71.5°N latitude on a 122 

0.1-degree regular grid (see below for a more detailed description of the E-OBS datasets). 123 

Three additional filters were applied to available rwl files: all had to have at least 10 trees 124 

within the site, rbar greater than 0.10 and cover at least 30 years in the period 1950 – 2018, 125 

which is the time span of the E-OBS dataset. After filtering these data, I added three 126 

additional datasets from the information system PANGEA (https://www.pangaea.de/). One 127 

dataset, presented by Tejedor et al. (2017), consists of individual measurements of conifers 128 

from the Iberian Peninsula, while two datasets (Sánchez-Salguero et al., 2017; Sánchez-129 

Salguero et al., 2018) are available as already developed and standardised tree-ring width 130 

chronologies. These files are marked “PANGEA” in the source column of Supplementary 131 

Table S1. Next, 521 standardised ring-width chronologies provided by Babst et al. (2013) as 132 

supplementary material were added. Finally, 43 isotope chronologies, available via the 133 

repository of freely available data from the BACI H2020 project (https://www.bgc-134 

jena.mpg.de/geodb/projects/Data.php), were added. The final network of tree-ring data 135 

consisted of 1860 chronologies (Figure 1). 136 

https://www.ncdc.noaa.gov/paleo/study/25570
https://www.pangaea.de/
https://www.bgc-jena.mpg.de/geodb/projects/Data.php
https://www.bgc-jena.mpg.de/geodb/projects/Data.php
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 137 

Figure 1: Locations of analysed chronologies with respective elevation. Missing elevations 138 

are marked in grey.  139 

 140 
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All files that were available as raw data, i.e. data from rITRDB, ITRDB and some of the 141 

PANGEA files, were detrended using a spline with a 50% frequency cutoff response at 32 142 

years. For detrending, I used the detrend() function from the dplR R package (Bunn, 2008). 143 

Detrended measurements were averaged to create a single composite series describing site 144 

chronology. Chronologies from PANGEA, Babst et al. (2013) and isotope chronologies from 145 

the BACI repository were available as already developed and standardised series and were 146 

used as such. Babst et al. (2013) used the same detrending method as in our study, while 147 

chronologies from PANGEA were standardised using negative exponential or linear 148 

functions (Sánchez-Salguero et al., 2018) and negative exponential or linear functions and 149 

30-year-long splines (Sánchez-Salguero et al., 2017). For a description of the final database, 150 

see section 3.1; the complete meta-data is available in Supplementary Table S1. 151 

 152 

2.2 E-OBS daily climate data and SPEI calculation 153 

To create climate variables, the daily mean, minimum and maximum air temperature and 154 

sums of precipitation data were downloaded as netCDF files from 155 

http://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php. The E-OBS version 19.0e 156 

on a 0.1-degree regular grid was used, which was released in March 2019 and covers the 157 

time span from January 1st, 1950 to December 31st, 2018. Using the knnLookup() function 158 

from the SearchTrees R package (Becker, 2012), the closest grid point was located in the E-159 

OBS dataset for each individual site, and climate data were extracted. To study climate 160 

growth relationships on daily and monthly scales, mean temperature and sums of 161 

precipitation data were used. In addition, downloaded minimum and maximum air 162 

http://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php
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temperature data were used to calculate daily and monthly SPEI series (Beguería and 163 

Vicente-Serrano, 2017; Vicente-Serrano et al., 2010).  164 

SPEI combines precipitation data and potential evapotranspiration (PET) data. To calculate 165 

PET, the Hargreaves-Samani method (Hargreaves and Samani, 1985) was used (Eq. 1), where 166 

Tmean is mean daily air temperature, Tmax is maximum daily air temperature, Tmin is minimum 167 

daily air temperature and Ra is net radiation at the surface (MJm-2 / day).  168 

𝑃𝐸𝑇 = 0.0023 (𝑇𝑚𝑒𝑎𝑛 + 17.8)√𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 𝑅𝑎 (Eq. 1) 169 

The Ra for each location and day was estimated from the solar constant and solar 170 

declination. A more detailed procedure is described by Wang et al. (2015). Next, the climatic 171 

water deficit (D) was calculated for each day (i) as the difference between the daily sum of 172 

precipitation (P) and daily PET (Eq. 2). The calculated Di values were then aggregated at 173 

different daily and monthly time scales into a log–logistic probability distribution to obtain 174 

the SPEI index series, following the same procedure used in the SPEI R package (Vicente-175 

Serrano et al., 2010). 176 

𝐷𝑖 = 𝑃𝑖 − 𝑃𝐸𝑇𝑖  (Eq. 2) 177 

 178 

2.3 Analysis of daily and monthly climate-growth relationships 179 

Climate-growth relationships for day-wise and month-wise aggregated data were analysed 180 

for all chronologies in the final tree-ring network for mean temperatures, sum of 181 

precipitation and SPEI. For daily data, the daily_response() function from the dendroTools R 182 

package (Jevšenak and Levanič, 2018) was used. The daily_response() function works by 183 

sliding a moving window through daily climate data and calculating correlation coefficients 184 
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between aggregated daily climate data and the selected tree-ring chronology. With the 185 

daily_response() function, all correlation coefficients for time windows between 21 and 365 186 

days were calculated. The analysis started with day of year (DOY) 1 and finished with DOY 187 

365. To exclude ecologically impossible effects, e.g. the effect of individual days and very 188 

short intervals on annual tree-ring parameters, the shortest time window considered was 21 189 

days. Therefore, to calculate the first day-wise aggregated correlation coefficient, climate 190 

variables were aggregated from DOY 1 to DOY 21, to calculate the second correlation 191 

coefficient, climate variables were aggregated from DOY 2 to DOY 22, etc. The last 192 

correlation coefficient was calculated using a window size of 365 days, where climate 193 

variables were aggregated from DOY 1 to DOY 365. Using this approach, for each chronology 194 

and climate variable, the number of calculated correlation coefficients sums to 59 685. The 195 

pros and cons of this approach and possible calculations of spurious correlations are 196 

discussed later in the conclusions.  197 

Daily datasets were next aggregated into monthly datasets and used in the 198 

monthly_response() function of the dendroTools R package. This function resembles the 199 

idea of daily_response(): it calculates all possible correlation coefficients between the 200 

selected tree-ring chronology and aggregated monthly climate data. All correlation 201 

coefficients are therefore calculated for individual months, starting with January, as well as 202 

combinations of consecutive months, starting with two consecutive months and finishing 203 

with twelve consecutive months. For the monthly approach, the number of calculated 204 

correlations between each climate variable and tree-ring chronology is 78. For the daily and 205 

monthly approach, the correlation coefficients were calculated using the Pearson method.  206 
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After the calculation of all correlation coefficients with daily_response() and 207 

monthtly_response() functions, the highest calculated absolute correlation coefficient was 208 

targeted for the daily and monthly approach and the optimal time window was defined, 209 

which can be described with onset DOY, end DOY and the difference between the two, i.e. 210 

the length of identified time window in days. To enable useful comparison with the daily 211 

approach, the identified optimal time window for monthly data is described in DOYs. For 212 

example, if the highest calculated monthly correlation coefficient was calculated for the 213 

combination of the months June-July, the onset DOY was 152 (June 1st), the end was DOY 214 

212 (July 31st) and the window length was 61 days. 215 

 216 

2.4 Data analysis 217 

All analyses were performed using R software (R Core Team, 2019). The highest calculated 218 

correlations and their respective time windows from daily_response() and 219 

monthly_response() were first compared, and the differences between the two were 220 

analysed for all proxies together and also separately for different types of proxies. To 221 

further evaluate the calculated correlations and assess the significance of the differences 222 

between the daily and monthly approach, bootstrapped correlations with 1000 223 

bootstrapped replicates were calculated. Bootstrapping of correlations inside 224 

daily_response() is computationally expensive and time consuming; therefore, it was done 225 

on a subsample of 69.4 % of randomly selected chronologies.  226 

The meta-data of the 1860 tree-ring chronologies with calculated correlations with day-wise 227 

and month-wise aggregated climate data together with related time windows are given in 228 

Supplementary Table S1. Three R scripts are available via the GitHub repository 229 



12 
 

(https://github.com/jernejjevsenak/analysis_european_tree-ring_network): File analysis.R is 230 

executable and reproduces the main results presented in this study by using Supplementary 231 

Table S1. dendroTools.R describes the extraction of correlations calculated with day-wise 232 

and month-wise aggregated temperature and precipitation data, while SPEI.R describes the 233 

same procedure for SPEI data. The aggregation of water balance (Di) into daily/monthly SPEI 234 

of various scales is not possible inside the daily_response()/monthly_response() functions 235 

due to the organizational structure of both functions. Therefore, both functions were 236 

modified and available in SPEI.R. 237 

 238 

3 RESULTS AND DISCUSSION 239 

3.1 Overview of the extended European Tree-ring Network 240 

The compiled extended European tree-ring network consisted of 1860 chronologies from 241 

Europe, northern Africa and western Asia, with elevations ranging from 0 to 2450 m a.s.l. 242 

(Figure 1). The main contributor of the data used in this study was Fritz Schweingruber, who 243 

provided 30.3 % of all files. There were 42 different tree species, with Picea abies being the 244 

most common (445 chronologies), followed by Pinus sylvestris (340 chronologies), Abies 245 

alba (225 chronologies), Fagus sylvatica (120 chronologies), Larix decidua (113 246 

chronologies), Pinus nigra (101 chronologies) and Quercus robur (87 chronologies). The 247 

majority of measurements were tree-ring widths (67.1 %), followed by early and latewood 248 

measurements (6.8 % each), maximum (5.8 %) and minimum (4.7 %) density, latewood 249 

percentage (2.7 %), early and latewood density (1.9 % each), stable carbon isotope ratio 250 

(δ13C) (1.8 %) and stable oxygen isotope ratio (δ18O) (less than 1 %). Conifers provided 82 % 251 

of analysed chronologies, with only 18 % belonging to broadleaves (Figure 2). Of the 1860 252 

https://github.com/jernejjevsenak/analysis_european_tree-ring_network


13 
 

chronologies, 624 were available as already developed and standardised chronologies, while 253 

1236 were detrended as described in section 2.1. The mean rbar of individual chronologies 254 

was 0.35, ranging from 0.10 to 0.75. The minimum number of years included in the analysis 255 

was 31, with a mean of 46 and a maximum of 67 years. 256 

  257 

 258 

Figure 2: Share of analysed data for conifers and broadleaves per genus. 259 

 260 

3.2 Comparison of correlations calculated with day-wise and month-wise aggregated 261 

climate data 262 

The daily_response() and monthly_response() functions were used together with mean 263 

temperature, sum of precipitation and SPEI data on the 1860 chronologies, and the highest 264 

calculated correlation coefficients between the daily and monthly approaches were 265 

compared. While the monthly and daily approach might identify correlation coefficients 266 

from different time windows and different signs, I compared only those which had the same 267 

sign and an overlap of at least 7 days in their optimal time windows, which indicates that 268 

the correlations refer to the same climate signal. The opposite was true in about 10 % of 269 



14 
 

examples (10.6 % for temperature, 11.0 % for precipitation and 11.4 % for SPEI data), which 270 

were not accounted for in further analysis. 271 

Excluding calculations with different time windows and/or opposite positive/negative signs, 272 

the mean absolute correlation coefficient with daily temperature data was 0.467, while for 273 

monthly data, it was 0.407 (Table 1). On average, the correlation coefficient for day-wise 274 

aggregated temperature data was 0.060 higher. A greater difference was calculated for 275 

precipitation data, i.e. 0.076, for which the mean absolute daily correlation was 0.483 and 276 

mean absolute monthly correlation 0.406. Similar values to precipitation data were also 277 

calculated for SPEI data, where the mean absolute daily correlation was 0.485, mean 278 

absolute monthly correlation was 0.410 and the difference between them was 0.075. The 279 

actual benefit of using data on a daily scale could be inferred from histograms of differences 280 

between the daily and monthly approach (Figure 3). In a few rare cases, the minimum 281 

difference between absolute correlations calculated with day-wise and month-wise 282 

aggregated data was 0, while in the most extreme case it was 0.390 (SPEI data), 0.306 283 

(temperature data) and 0.286 (precipitation data). Standard deviations of differences were 284 

0.043 (temperature) and 0.045 (precipitation and SPEI data). 285 

 286 
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 287 

Figure 3: Differences between absolute correlations calculated with day-wise and month-288 

wise aggregated temperature, precipitation and SPEI data.  289 

 290 

The observed pattern of a higher difference for precipitation and SPEI data was calculated 291 

for 8 different proxies, while for earlywood density and minimum density, the difference 292 

between correlations calculated with day-wise and month-wise aggregated data was higher 293 

for temperature data (Table 1). Calculated mean differences for proxies varied from 0.033 to 294 

0.117. Both extreme differences resulted from relatively small sample sizes. Mean 295 

differences between the daily and monthly approaches are similar to those reported by Sun 296 

and Liu (2016), who compared monthly and daily (pentated) correlations for three sites 297 

from China and obtained differences of 0.04 (precipitation), 0.06 (maximum temperature) 298 

and 0.10 (maximum temperature) in favour of daily (pentated) data. There are too few 299 

comparative studies between daily and monthly approaches to be able to compare our 300 
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results further. In general, standard deviations were lower for day-wise aggregated 301 

correlations (Table 1), which indicates a more consistent climate signal in individual proxies. 302 

The highest calculated correlation coefficients are related to maximum and latewood 303 

density proxies and temperature data. 304 

The benefit of using a daily rather than monthly approach is therefore greater for 305 

precipitation and SPEI data. To investigate this phenomenon, the characteristics of 306 

temperature, precipitation and SPEI time series were considered. Since temperature data 307 

have a clear annual pattern and higher autocorrelation in comparison to precipitation and 308 

SPEI data (e.g. Amirabadizadeh et al., 2015; Breinl and Di Baldassarre, 2019), the calculated 309 

temperature correlation coefficient with time window X is more similar to the next one 310 

calculated with the time window shifted by one day (X + 1 or X – 1). In contrast, 311 

precipitation and SPEI data are less autocorrelated; therefore, change in rainfall information 312 

is more rapid, and the selection of the optimal time window is of greater benefit. 313 

I tested this hypothesis by comparing the variability of correlation coefficients for the three 314 

climate variables. To do so, the highest calculated correlation coefficient was targeted and 315 

compared with 15 previously and 15 subsequently calculated correlations. The calculations 316 

had the same time window length, but were just shifted 15 days left and right on a calendar 317 

scale. Then, the standard deviation of correlations was calculated and compared among 318 

different climate variables. Higher standard deviations of correlation coefficients were 319 

calculated for precipitation and SPEI data (Figure 4), which indicates that the change in 320 

correlations is more rapid for precipitation and SPEI data in comparison to temperature 321 

data. In other words, for temperature data, it matters less whether the selected time 322 
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window is the optimal one because shifting a few days left or right is not particularly 323 

important in terms of the value of the calculated correlation coefficient.  324 

 325 

Figure 4: Density plot of standard deviations of calculated correlation coefficients within 326 

the time window where the highest absolute value is located together with 15 previously 327 

and 15 subsequently calculated correlation coefficients.  328 

 329 

 330 

 331 

 332 

 333 
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Table 1: Number of observations (N), mean, standard deviation, minimum and maximum 334 

absolute daily and monthly correlation coefficients and the difference (diff) between them 335 

for mean temperature, sum of precipitation and SPEI data. Summary statistics are given 336 

for all proxies together as well as for different proxies separately. Calculations in which 337 

daily and monthly correlations had different signs and/or referred to different time 338 

periods are excluded. 339 

   Daily Approach Monthly Approach  

 proxy type N mean std min max mean std min max diff 

Te
m

p
er

at
u

re
 

All proxies 1500 0.467 0.115 0.216 0.826 0.407 0.120 0.162 0.795 0.060 
EW Density 31 0.494 0.083 0.313 0.678 0.397 0.084 0.221 0.573 0.097 
EW Width 96 0.446 0.088 0.289 0.770 0.373 0.086 0.196 0.700 0.073 
δ13C 27 0.477 0.101 0.321 0.701 0.431 0.113 0.237 0.656 0.046 
δ18O 9 0.609 0.087 0.435 0.716 0.555 0.086 0.364 0.642 0.053 
LW Density 34 0.675 0.090 0.457 0.796 0.642 0.092 0.424 0.753 0.033 
LW Percent 41 0.545 0.098 0.378 0.826 0.453 0.088 0.267 0.735 0.092 
LW Width 103 0.469 0.103 0.293 0.756 0.408 0.106 0.230 0.715 0.061 
MAX Density 100 0.664 0.104 0.317 0.826 0.625 0.111 0.247 0.795 0.039 
MIN Density 60 0.473 0.078 0.293 0.660 0.387 0.084 0.202 0.577 0.085 
Ring Width 999 0.436 0.093 0.216 0.804 0.377 0.095 0.162 0.772 0.059 

P
re

ci
p

it
at

io
n

 

All proxies 1500 0.483 0.099 0.250 0.802 0.406 0.106 0.159 0.735 0.076 
EW Density 22 0.474 0.063 0.387 0.636 0.385 0.083 0.272 0.594 0.089 
EW Width 107 0.455 0.085 0.269 0.661 0.374 0.090 0.163 0.597 0.081 
δ13C 33 0.518 0.110 0.338 0.704 0.462 0.127 0.260 0.668 0.056 
δ18O 3 0.417 0.049 0.361 0.454 0.345 0.049 0.291 0.388 0.072 
LW Density 31 0.524 0.085 0.342 0.710 0.448 0.104 0.233 0.652 0.076 
LW Percent 36 0.550 0.091 0.368 0.726 0.433 0.094 0.278 0.634 0.117 
LW Width 105 0.500 0.093 0.308 0.768 0.418 0.099 0.216 0.688 0.083 
MAX Density 98 0.548 0.101 0.315 0.746 0.479 0.108 0.265 0.689 0.069 
MIN Density 70 0.537 0.104 0.343 0.802 0.461 0.105 0.264 0.721 0.076 
Ring Width 995 0.469 0.095 0.250 0.764 0.394 0.103 0.159 0.735 0.075 

SP
EI

 

All proxies 1505 0.485 0.101 0.237 0.799 0.410 0.108 0.134 0.754 0.075 
EW Density 24 0.470 0.061 0.398 0.638 0.381 0.084 0.225 0.581 0.089 
EW Width 98 0.462 0.087 0.266 0.708 0.378 0.094 0.203 0.641 0.084 
δ13C 32 0.523 0.111 0.294 0.731 0.463 0.124 0.215 0.637 0.060 
δ18O 7 0.490 0.062 0.395 0.591 0.384 0.050 0.321 0.453 0.106 
LW Density 32 0.547 0.089 0.362 0.725 0.476 0.108 0.253 0.671 0.071 
LW Percent 35 0.536 0.094 0.355 0.722 0.423 0.100 0.240 0.640 0.113 
LW Width 105 0.495 0.092 0.347 0.779 0.412 0.098 0.228 0.688 0.082 
MAX Density 96 0.573 0.105 0.340 0.761 0.509 0.110 0.272 0.701 0.063 
MIN Density 70 0.538 0.111 0.326 0.799 0.454 0.116 0.264 0.748 0.084 
Ring Width 1006 0.470 0.096 0.237 0.783 0.397 0.103 0.134 0.754 0.073 

 340 

 341 
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3.3 Comparison of bootstrapped correlation coefficients 342 

Due to the computationally extensive procedure, bootstrapped correlation coefficients were 343 

calculated on a subset of data representing 69.4 % of all chronologies. Histograms of 344 

correlation coefficients calculated with and without bootstrapping show very similar 345 

patterns (Figure 5). Confidence intervals for the monthly and daily approach show a 346 

considerable amount of overlap (Figure 6). To make an inference about the statistically 347 

significant differences in means between the daily and monthly approach, the rule 348 

presented by Cumming and Finch (2005) was used, where statistically significant differences 349 

between two independent groups (p < 0.05) can be inferred if the share of overlap for 95 % 350 

confidence intervals is no more than about half the average margin of error, that is, when 351 

the proportion overlap is about 0.50 or less. The following was the case in approximately 1 352 

% of examples: 0.62 % (the overlap of the daily by the monthly confidence interval) and 1.60 353 

% (the overlap of the monthly by the daily confidence interval) (Figure 7). For more than 95 354 

% of the calculations, the confidence intervals overlap by at least 60 %, which implies that 355 

just a few examples showed statistically significant differences in means between 356 

bootstrapped correlation coefficients resulting from day-wise and month-wise aggregated 357 

climate data. 358 
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 359 

Figure 5: Histograms of calculated absolute correlation coefficients for the daily and 360 

monthly approaches, plotted separately for the three different climate variables: 361 

Temperature, precipitation and SPEI data and two different strategies – with and without 362 

bootstrap. Red vertical lines represent the mean value of the absolute correlation 363 

coefficient for each group. 364 

 365 
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 366 

Figure 6: Confidence intervals for bootstrapped correlations calculated with day-wise 367 

(blue) and month-wise (red) aggregated data. Only confidence intervals for correlations 368 

with equal signs and an overlap of at least 7 days are plotted. 369 

 370 

 371 

 372 

 373 
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 374 

Figure 7: Overlap of 95 % confidence intervals for bootstrapped correlations calculated 375 

with day-wise and month-wise climate data. The blue colour depicts the share of overlap 376 

of the daily by the monthly confidence interval, while the red colour depicts the share of 377 

the overlap of the monthly by the daily confidence interval. 378 

 379 

3.4 Comparison of identified time windows from the daily and monthly approach 380 

Each correlation coefficient analysed in section 3.2 was calculated using a specific time 381 

window, which can be described by the onset day of year (DOY), the end DOY and the 382 

difference between them, i.e. the length of identified time windows in days. To some 383 

extent, the identified time windows are related to the growing seasons and could therefore 384 

be used to characterize growing patterns related to a specific proxy. As described in the 385 

methods section, to make a meaningful comparison between daily and monthly time 386 

windows, monthly time windows are described here in DOYs. In general, the daily approach 387 
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identifies later onset and earlier ending DOY (Figure 8, Table 2), while the biggest difference 388 

between the two approaches arises from the window lengths: daily time windows are 389 

shorter. While the median length for the daily approach was 34 (temperature), 37 390 

(precipitation) and 35 (SPEI), the median length for the monthly approach was 61 391 

(temperature, precipitation and SPEI data). Histograms of differences between the two 392 

approaches are centred close to zero (Figure 9), indicating that the daily and monthly time 393 

windows differ by a small number of days. In some rare cases, the time windows showed 394 

considerable differences.  395 

Similar to the comparison of correlation coefficients (section 3.2), the greatest differences in 396 

time window characteristics for the daily and monthly approaches were calculated for SPEI 397 

and precipitation data, while temperature data showed smaller differences between the 398 

two approaches (Table 3). I assume this pattern is also related to the autocorrelation 399 

present in time series of the three climate variables (see section 3.2).  400 

 401 
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 402 

Figure 8: Density plots for onset DOY, end DOY and time window lengths of all proxies 403 

plotted together for temperature, precipitation and SPEI data. Vertical lines depict 404 

medians. 405 
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Table 2: Median Onset DOY, End DOY and the length of optimal time windows in days, for daily and monthly approaches, separately for 406 

temperature, precipitation and SPEI data and different tree-ring proxies. Describing dates in brackets, given for Onset and End DOY, refer to 407 

a non-leap year. 408 

  Temperature Data Precipitation Data SPEI Data 

  
Onset DOY End DOY 

Window 
Length 

Onset DOY End DOY 
Window 
Length 

Onset DOY End DOY 
Window 
Length 

Earlywood 
Density 

Daily 142 (May 22) 175 (Jun 24) 27  65 (Mar 06) 142 (May 22) 29 99 (Apr 09) 166 (Jun 15) 33  

Monthly 91 (Apr 01) 151 (May 31) 61  32 (Feb 01) 151 (May 31) 59 32 (Feb 01) 181 (Jun 30) 59  

Earlywood 
Width 

Daily 156 (Jun 05) 197 (Jul 16) 31 125 (May 05) 179 (Jun 28) 36 149 (May 29) 189 (Jul 08) 30  

Monthly 152 (Jun 01) 212 (Jul 31) 61 121 (May 01) 212 (Jul 31) 61 121 (May 01) 212 (Jul 31) 61  

δ13C 
Daily 158 (Jun 07) 229 (Aug 17) 32  137 (May 17) 234 (Aug 22) 58 149 (May 29) 223 (Aug 11) 56  

Monthly 152 (Jun 01) 243 (Aug 31) 62 106 (Apr 16) 258 (Sep 15) 153 91 (Apr 01) 273 (Sep 30) 184  

δ18O 
Daily 106 (Apr 16) 144 (May 24) 33 134 (May 14) 161 (Jun 10) 32 94 (Apr 04) 133 (May 13) 40  

Monthly 60 (Mar 01) 151 (May 31) 151 91 (Apr 01) 212 (Jul 31) 31 91 (Apr 01) 181 (Jun 30) 61  

Latewood 
Density 

Daily 136 (May 16) 270 (Sep 27) 89 179 (Jun 28) 242 (Aug 30) 50 177 (Jun 26) 262 (Sep 19) 64 

Monthly 121(May 01) 273 (Sep 30) 92 182 (Jul 01) 273 (Sep 30) 92 182 (Jul 01) 273 (Sep 30) 92 

Latewood 
Percent 

Daily 160 (Jun 09) 196 (Jul 15) 27 169 (Jun 18) 217 (Aug 05) 27 191 (Jul 10) 217 (Aug 05) 27 

Monthly 152 (Jun 01) 212 (Jul 31) 31 91 (Apr 01) 212 (Jul 31) 61 121 (May 01) 212 (Jul 31) 59 

Latewood 
Width 

Daily 168 (Jun 17) 213 (Aug 01) 34 156 (Jun 05) 221 (Aug 09) 34 164 (Jun 13) 211 (Jul 30) 34 

Monthly 152 (Jun 01) 212 (Jul 31) 31 152 (Jun 01) 212 (Jul 31) 61 152 (Jun 01) 212 (Jul 31) 61 

Maximum 
Density 

Daily 185 (Jul 04) 262 (Sep 19) 71 179 (Jun 28) 250 (Sep 07) 56 180 (Jun 29) 256 (Sep 13) 57 

Monthly 182 (Jul 01) 273 (Sep 30) 92 182 (Jul 01) 273 (Sep 30) 90 182 (Jul 01) 273 (Sep 30) 92 

Minimum 
Density 

Daily 148 (May 28) 194 (Jul 13) 26 92 (Apr 02) 175 (Jun 24) 51 114 (Apr 24) 175 (Jun 24) 38 

Monthly 121 (May 01) 181 (Jun 30) 61 60 (Mar 01) 181 (Jun 30) 92 60 (Mar 01) 181 (Jun 30) 91 

Ring Width 
Daily 154 (Jun 03) 203 (Jul 22) 33 135 (May 15) 199 (Jul 18) 36 137 (May 17) 195 (Jul 14) 35 

Monthly 152 (Jun 01) 212 (Jul 31) 61 121 (May 01) 212 (Jul 31) 61 121 (May 01) 212 (Jul 31) 61 

 409 
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 410 

Figure 9: Differences between the characteristics (Onset, End, Length) of identified time 411 

windows from the daily and monthly approach, calculated as daily minus monthly, plotted 412 

separately for temperature, precipitation and SPEI data.   413 

 414 

 415 

 416 
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Table 3: Summary statistics of differences between the characteristics (Onset, End, 417 

Length) of identified time windows from the daily and monthly approach, calculated as 418 

daily minus monthly, shown separately for temperature, precipitation and SPEI data.   419 

Climate variable Window median std max min 

Temperature   

Onset 3 31.3 253 -169 

End -4 38.3 107 -331 

Length -8 55.2 183 -344 

Precipitation  

Onset 5 38.4 303 -165 

End -4 42.5 184 -317 

Length -9 63.0 247 -344 

SPEI 

Onset 6 35.5 254 -165 

End -4 36.0 108 -253 

Length -9 53.6 187 -254 

 420 

3.5 Potential applications for climate-growth relationship investigations 421 

Further dendroclimatological applications of applying climate data on a daily scale are 422 

discussed in this section. The function daily_response() uses flexible time windows and 423 

removes the limits defined by calendar months and therefore results in higher calculated 424 

correlation coefficients. In addition to analysis with simple and bootstrapped correlation 425 

coefficients, which was the focus in this study, the dendroTools R package also enables the 426 

calculation of partial correlations and multiproxy analysis, where instead of calculating 427 

correlations, linear or nonlinear models are fitted and afterwards (adjusted) explained 428 

variances are extracted. In this study, correlations were calculated using the Pearson 429 

method, while daily_response() also allows for calculations of correlations using the 430 

Spearman and Kendall methods. Finally, there are several functions available for the 431 

interpretation of calculated correlations, including plotting and summary methods, which 432 

were recently added to the dendroTools R package. 433 
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One of the great benefits of applying climate data on a daily scale is the ability to study the 434 

changes in identified time windows over time. To illustrate this feature, I performed an 435 

additional experiment in which only tree-ring width chronologies with at least 60 years of 436 

data in the period 1950 – 2015 were included. Fifty-five chronologies were split into two 437 

periods, i.e. early (1950 – 1980) and late (1981 – 2010 or the most recent year), and 438 

analysed with the daily_response() function, where mean daily temperatures were used as 439 

the climate variable. Identified time windows were then plotted separately for early and 440 

later periods (Figure 10). Thirty-eight out of 55 (69 %) chronologies showed a shift in their 441 

time windows towards earlier DOYs, which might be related to changes in growing patterns. 442 

Those patterns could be investigated on a greater spatial scale, separately for different tree 443 

species and elevational transects. Studying climate-growth relationships on daily scales 444 

therefore opens many new possibilities. In addition to studying changes in time windows 445 

over time, it would be interesting to investigate the dependences between time windows 446 

and periods of the highest rate of xylem cell production. Finally, the approach from the 447 

daily_response() could be used in various ecophysiological or climate reconstruction models, 448 

where higher explained variance is expected. Following the results presented in section 3.2, 449 

the daily approach on average improves the explained variance by 5.16 % (temperature 450 

data), 6.65 % (precipitation data) and 6.60 % (SPEI data). Examples of climate 451 

reconstructions using day-wise aggregated climate data in combination with linear and 452 

nonlinear transfer functions are provided in vignettes of the daily_response() function on 453 

CRAN (https://cran.r-454 

project.org/package=dendroTools/vignettes/Examples_daily_response.html). 455 

https://cran.r-project.org/package=dendroTools/vignettes/Examples_daily_response.html
https://cran.r-project.org/package=dendroTools/vignettes/Examples_daily_response.html
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 456 

Figure 10: Identified time windows calculated with the daily_response() function for early 457 

(blue colour) and late (red colour) periods. 458 

 459 

4. CONCLUSIONS 460 

The results presented here highlight the advantages of using day-wise aggregated climate 461 

data instead of a month-wise approach. In comparison to correlations with month-wise 462 
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aggregated climate data, correlations with day-wise aggregated climate data were on 463 

average higher by 0.060 (temperature data), 0.076 (precipitation data) and 0.075 (SPEI 464 

data). The benefit of using daily data is greater for precipitation and SPEI data, while more 465 

autocorrelated temperature series show smaller differences to the monthly approach. The 466 

results are consistent for calculations with and without bootstrapping. Based on the share of 467 

overlapped confidence intervals for bootstrapped correlations, I concluded that, except for 468 

1 % of the calculations, there are no significant differences in means between day-wise and 469 

month-wise aggregated correlation coefficients. 470 

In this analysis, I compared only correlations which had the same sign and showed at least 7 471 

days of overlap of their optimal time windows. I highlighted only the highest calculated 472 

correlation coefficient resulting from the daily_response() and monthly_response() 473 

functions, while potential secondary climate effects with lower correlation coefficients were 474 

not considered in this study. However, all calculated correlations are saved in a matrix and 475 

given as the first element of the function’s output (Jevšenak and Levanič, 2018) so that 476 

potential users can explore those matrices and select different time windows, if needed. 477 

Furthermore, the effects of previous growing seasons are ignored solely because of 478 

computational reasons. Again, daily_response() and monthly_response() can also be used to 479 

analyse the effects of previous growing seasons. To do so, the argument previous_year must 480 

be set to TRUE. The significance of the differences between the daily and monthly approach 481 

were inferred from the overlap of 95 % confidence intervals. Usually, this would be done 482 

with the t-test, but the calculation strategy from daily_response() and monthly_response() 483 

does not allow this, since only the mean bootstrapped correlation coefficient and its lower 484 

and upper confidence intervals are saved and available for comparison.  485 
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The daily_response() function comes with a much higher risk of a type I error. The number 486 

of calculated correlation coefficients for each chronology and climate variable was 59 685; 487 

therefore, 2984 calculations theoretically result in a type I error. For the monthly_response() 488 

function, the number of calculated correlation coefficients is 78, where around 4 489 

calculations theoretically result in type I error. In addition to much higher risk of type I 490 

errors, calculations with day-wise aggregated data are time consuming, especially when 491 

bootstrapping is applied. To calculate 59 685 bootstrapped correlation coefficients with 492 

1000 bootstrapped samples, it takes on average slightly more than 2 hours, while for the 493 

monthly approach, 78 bootstrapped correlation coefficients with 1000 bootstrapped 494 

samples are calculated in around 10 – 13 seconds. 495 

Despite the mostly nonsignificant differences in calculated correlation coefficients, the 496 

results presented in this paper strongly encourage the tree-ring community to seriously 497 

consider the use of daily climate data rather than the monthly data typically used in 498 

dendroclimatological studies. 499 

 500 
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