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Abstract 15 

Most parameters describing queen bee quality are reflected in the queen’s body mass, 16 

which is in turn considered a robust measure and the best indicator of queen quality. 17 

State-of-the-art machine learning was used for the first time to jointly evaluate both 18 

biological and rearing parameters influencing queen body mass. Three different models 19 

were developed using different combinations of parameters. Regardless of the model 20 

composition, we achieved high precision of classification. The parameters “Ovary 21 

mass” and “Breeder” were the most important factors for model predictions. 22 

Differences in rearing practices and vegetation were masked by “Breeder”, 23 

demonstrating the pitfall of this method. Separate analysis confirmed the importance of 24 

the time spent in the hive after mating and the phytogeographical region as an indirect 25 

indication of food sources. Rearing practices together with phytogeographical 26 

information are not enough to explain variation in queen body mass, yet they can 27 

contribute to the prediction of queen body mass if “Breeder” is excluded from the 28 

model. 29 
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Introduction 33 

There is an ongoing debate as to what defines a good queen bee and which parameters 34 

should be taken into account at the time of purchase. However, the beekeeper who 35 

wishes to purchase queen bees has no technical means to assess most of these 36 

parameters. On the other hand, the majority of these parameters play a role to some 37 

degree in queen body mass (for review, see Hatjina et al. 2014, Amiri et al. 2017). 38 

Incidentally, queen body mass is also a parameter that seems easy to measure as it 39 

requires only a scale in the milligram range. 40 

 41 

Body mass varies throughout the life of the queen: it decreases with time after hatching 42 

and increases again after mating (Skowronek et al. 2004). The initial decrease in body 43 

mass is understandable in light of the mating flight, which affects mating success 44 

(Hayworth et al. 2009). Greater body mass improved queens’ acceptance into another 45 

colony in Apis mellifera anatoliaca (Akyol et al. 2009). However, bioassays did not 46 

relate queens’ body mass to their attractiveness to the worker bees (Nelson and Gary 47 

1983; subspecies not given). Different practices used in queen rearing play a role in 48 

defining body mass. For example, larval age at the time of grafting has an important 49 

role in the development of reproductive organs such as ovaria (e.g., Gilley et al. 2003). 50 

Ovaria represent a significant part of the queen’s abdomen and up to 40% of body mass 51 

in fertilized queens (calculated from data in Hatjina et al. 2014). Some authors report 52 

different numbers of ovarioles for queens grafted immediately after eclosion in 53 

comparison with queens grafted two or three days after eclosion, which again is 54 

reflected in the queen’s body mass (Gilley et al. 2003, Woyke 1971), though opinions 55 

are divided on the topic (Hatch et al. 1999, Jackson et al. 2011). The mass of the ovaria 56 

is not stable even after the onset of oviposition (Kahya et al. 2008), and it is also 57 
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dependent on season: winter “break” is reflected in the developmental stage of eggs 58 

and their number in the ovarioles (Shehata et al. 1981). Parameters that are often 59 

mentioned in connection with mating ability and offspring viability are sperm count 60 

and spermatheca volume, which are again reflected in body mass (Bieńkowska et al. 61 

2009, Woyke 1987). 62 

 63 

The effects of food sources on queen bees are difficult to study since they are fed 64 

indirectly by workers’ retinue. Increased pollen flow is related to the production of 65 

worker bees (Mattila and Otis 2006), and winter pollen storage is correlated with the 66 

size of the spring population (Farrar 1936). The composition of royal jelly also depends 67 

on the available food sources (Echigo et al. 1986). It was observed, however, that the 68 

availability of pollen in the diet of workers influenced egg laying (Fine et al. 2018). 69 

One could also assume that diet directly influences the mass of ovaria.  70 

 71 

The Slovenian breeding program for Apis mellifera carnica (SBP; Kozmus et al. 2018) 72 

binds commercial queen breeders with research institutions. A database formed through 73 

SBP activities and side projects contains various data regarding rearing, pedigree and 74 

performance testing. In this paper, we used machine learning (ML) procedures to delve 75 

into the relationship of body mass and several anatomical, (patho)physiological and 76 

rearing parameters, which are considered “queen quality parameters”. ML is an 77 

approach for mining big data sets and using this “experience” for the prediction of new 78 

results. ML has been extensively used in bioinformatics, medicine, security and, 79 

recently, in animal behavior (Valletta et al. 2017), including modeling of the honeybee 80 

dance (Saghafi and Tsokos, 2017), and its use is still gaining momentum. 81 

 82 
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Using data collected over three years and ML procedures, we investigated the joint 83 

effect of the abovementioned parameters on the body mass of the queen bee and 84 

elucidated the most important among them. We discuss the results from the point of 85 

usefulness to the beekeeper.  86 
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Materials and methods 87 

Queens 88 

Queens (Apis mellifera carnica) used in morphological and physiological 89 

investigations were obtained from eighteen Slovenian commercial rearing operation 90 

stations in mid-June in 2006, 2008 and 2010. A total of 162 queens were collected every 91 

year, including nine queens per breeder; each of the queens was attended by 6 to 12 92 

attendants. Additionally, 20 sister queens were measured in 2016 and added to newly 93 

formed nucs. Nucs were kept at the same location and expanded into full-size colonies 94 

in the next season. Brood surface was evaluated with a 5 cm x 5 cm mesh (Delaplane 95 

et al. 2013) in mid-May and mid-August 2017. 96 

 97 

Anatomical and histological investigations and Nosema spp. spore 98 

quantification 99 

Queens were anesthetized with CO2 and weighed. The head, legs and wings were 100 

removed. The body of the queen was then pinned down with entomological needles, 101 

submerged in Hayes solution and dissected. The midgut, ovaries and spermatheca were 102 

carefully extracted. 103 

 104 

Ovaries were weighed individually and then fixed in 4% formaldehyde. Dehydration 105 

was achieved with an ethanol queue (50%, 70%, 90%, 96%, 96%; 24 h for each step) 106 

and xylene (Sigma-Aldrich). Samples were then embedded in wax, and cross-sections 107 

were made at the ovary’s midpoint with a microtome. Slices were dried on an object 108 

glass, deparaffinized in xylene, rehydrated in ethanol and stained in hematoxylin/eosin 109 
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(Sigma-Aldrich). Stained slices were investigated under the microscope, and ovarioles 110 

were counted for each ovarium (10 sections/ovary; Fig 1A). 111 

 112 

To determine spermathecal volume, we first removed the spermathecal tracheal sheet 113 

and measured several spermathecal diameters under the microscope using the 114 

AxioVision program (Zeiss, Germany). Next, we calculated the spermathecal volume 115 

as the volume of a sphere using the average diameter as the entry parameter (Fig 1B). 116 

Moist spermatheca was punctured, and the sperm were transferred into a 117 

microcentrifuge tube containing 50 µl of Hayes solution. After 5 min, 950 µl of 118 

deionized water was added and kept for 10 min, followed by addition of 4 ml of fixative 119 

mixture (2 ml of a 4% solution of formaldehyde, 0.6 g 1 M NaHCO3, and distilled 120 

water), according to Harizanis (1983). Spermatozoa counts were performed on a 121 

hemocytometer plate (Bürker-Türk); 80 fields were counted at 400x magnification. The 122 

number of spermatozoa in the spermatheca was calculated with the assumption that the 123 

sample volume inside a square of the hemocytometer is 0.004 mm3 (1/250 mm3): 124 

 125 

Eq 1:   !!"#$% =	%#&'	!"#$%	)*+',!-+&$# ∙ %&'()&*+	(5000) ∙ !./#01! 126 

 127 

Nosema spore presence was evaluated in the midgut of each queen. One milliliter of 128 

PBS (phosphate-buffered saline) was added to the sample and homogenized. A drop of 129 

homogenate was placed on a Bürker hemocytometer, and spores were counted. 130 

Attendant bee samples were pooled, and spore counts were obtained as described 131 

above. The spore count was then averaged over all attendants. 132 

 133 
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Queen rearing practices 134 

Rearing parameters were collected with a questionnaire from each participating 135 

breeder. “Age at time of grafting” was either “egg”, larvae less than 12 h old, larvae 136 

between 12 and 24 h old and larvae older than 24 h. The parameter “Mating hive time” 137 

describes the time point at which the breeder removed the queens from the mating hive 138 

for shipment. The comb surface of the mating hive, contained in the parameter “Mating 139 

hive size”, was divided into three categories according to the summed surface of the 140 

comb(s). Types of grafting were described by the parameter “Grafting method” (Table 141 

1). 142 

 143 

Phytogeographical regions 144 

Slovenia is divided into six phytogeographical regions: alpine, prealpine, 145 

submediterranean, dinaric, predinaric and subpannonic regions (roughly from west à 146 

east; Wraber 1969). These regions offer different forages to bees as a consequence of 147 

different abiotic parameters (e.g., altitude, soil, climate) that determine vegetation types 148 

and periods of nectar or dew flow. Every queen breeder was ascribed a region he/she 149 

belongs to, represented by the parameter “Phytogeog region”. 150 

 151 

Data analysis 152 

All the analyses were performed with custom-written Python 3 scripts using Scikit-153 

Learn, Seaborn, Numpy and Scipy packages for analysis and graphical presentation. 154 

Models were built with the open-source machine learning software H2O (H2O.ai Inc., 155 

USA) via its Python API. Code is available at Zenodo (DOI: 10.5281/zenodo.3229393). 156 

 157 
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Relationships between parameters 158 

Relationships between various parameters and between them and queen body mass 159 

were investigated. We used a simple linear regression and expressed the goodness of 160 

fit with R2. 161 

 162 

Data preparation, machine learning procedures and model evaluation 163 

Data from eighteen breeders participating for all three years were used to build the 164 

datasets. We built three models with different combinations of parameters: 1) only data 165 

collected in all three years (model “2006 & 2008 & 2010”; N of queens = 486; N of training 166 

= 413; N of validation = 73), e.g., without data on the number of ovarioles, data on the 167 

volume of spermatheca or Nosema presence in attendant bees; 2) only measurements 168 

collected in years 2006 and 2008 (model “2006 & 2008”; N of queens = 324; N of training = 169 

275; N of validation = 49), including the number of ovarioles but without spermatheca 170 

volume and Nosema in attendant bees; and 3) data collected in years 2008 and 2010, 171 

including spermatheca volume and Nosema in attendant bees but excluding the number 172 

of ovarioles (model “2008 & 2010”, see Table 2; N of queens = 324; N of training = 275; N of 173 

validation = 49). All three models included both phytogeographical data and data about 174 

rearing practices (Table 1). Rearing practices (Table 1), anatomical, physiological and 175 

health data (Table 2) were combined with phytogeographical region for each 176 

participating breeder. Body mass measurements were classified into quartiles: the 1st 177 

quartile represented high end body mass values, and the 4th quartile represented low-178 

end body mass values. Quartiles were in turn used as target values in the model runs. 179 

 180 
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Modeling and machine learning procedures 181 

We created several models based on the ML procedures to disentangle the complex 182 

relationships between several queen quality parameters. The “Gradient Boosting 183 

Machine” (GBM) algorithm from the open-source machine learning software H2O was 184 

used in model creation, validation and determination of the importance of measured 185 

parameters, and we interfaced our analysis scripts via the Python API of the software. 186 

GBM was set to multiclass classification, predicting one of the four quartiles. The 187 

measured queen bee input parameters were treated as features in the model. 188 

Briefly, the GBM algorithm in H2O creates decision trees, which are constructed via an 189 

algorithmic approach that identifies ways to split the dataset at a node. Which feature 190 

to split on, and the split criteria are selected for each node, finding the greatest reduction 191 

in the residual sum of squares in the subtree at that point. We limited the number of 192 

trees to 50 for each run and the tree depth to 5 per tree; the number of bins per feature 193 

was set to 20, and the loss function was set to multinomial. No hyperparameters were 194 

set. Categorical features were encoded using the enum strategy. The model outputs a 195 

confusion matrix of correct vs. incorrect classifications and the relative predictive 196 

strength of each feature in the prediction task. This parameter importance score is 197 

normally expressed as the percent of contribution (Hastie et al., 2009). For the correct 198 

setup of the GBM algorithm, we followed the guidelines for use of ML in ecology (Elith 199 

et al. 2008). 200 

In each iteration, the data were randomly split into a training set, consisting of 85% of 201 

the data and a validation set consisting of the remaining 15% of the data. The GBM 202 

learner was trained on the training set. The quality of the prediction was obtained by 203 

computing the precision ratio between correct classifications and total classifications 204 

and the error rate, which is the ratio between incorrect classifications and total 205 
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classifications in the validation set. For each dataset, ten iterations were performed, and 206 

the results were pooled together and presented as the mean ± SD. Parameter importance 207 

was collected for each run, pooled with those from the other runs and presented for 208 

each dataset as the mean ± SD. 209 

 210 

Results 211 

Individual parameters and their impact on queen body mass 212 

Prior to designing the model, we investigated the relationships between queen body 213 

mass and individual parameters. Most of the parameters did not have direct bearing on 214 

queen body mass, with the exception of ovary mass (Fig S1A), volume of spermatheca 215 

in 2010 (Fig S1D) and Nosema count in the gut of the queen (Fig S1E). It should be 216 

noted, however, that queen body mass in the infected subsample did not stand out of 217 

the sampled population. We performed a simple statistical test and confirmed no 218 

significant differences between infected and noninfected subsamples (N.S., unpaired t-219 

test: p = 0.92; t = -0.1). Furthermore, we found no or a very weak relationship between 220 

the number of ovarioles and ovary mass (Fig S2A), between sperm count and 221 

spermatheca volume (Fig S2B), between ovary mass and sperm count (Fig S2C) and 222 

between ovary mass and volume of spermatheca (Fig S2D). 223 

 224 

Impact of measured parameters on queen body mass 225 

As mentioned above, the majority of measured parameters were collected every year, 226 

yet the datasets differ by the inclusion of one or another parameter depending on the 227 

year in the analysis (see Table 2). Building three different models allowed us to utilize 228 

all available data for each year and to compare the importance of the missing data. 229 
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 230 

Classifications were very good when no available parameter was withheld: the lowest 231 

mean precision of prediction was 0.84 (model “2006 & 2008 & 2010”; 2nd and 3rd 232 

quartile) and the highest was 0.97 (model “2006 & 2008”, 4th quartile). The mean 233 

misclassified fractions shown in the off-diagonal were between 0 and 0.07 (Fig 2B). 234 

The parameters “Ovary mass”, “Breeder” and “Sperm count” were constantly ranked 235 

as the most important parameters, with mean importance from 32-36%, 30-36% and 236 

11-19%, respectively. Model “2006 & 2008” used the parameter “Ovarioles” (mean 237 

importance 10%), which improved the lowest average precision to 0.86 from 0.84 and 238 

the highest average precision to 0.97 from 0.95 (Fig 2A, B). Very good precision was 239 

achieved also by model “2008 & 2010” with a range of mean precisions between 0.88 240 

and 0.95, which can be attributed to the extensive use of the parameters “Volume of 241 

spermatheca” (15.0 ± 2.0) and “Nosema sp. attendants” (6.0 ± 1.0%). The importance 242 

of both “Ovary mass” and “Breeder” was decreased to mean values of 32 and 30%, 243 

respectively, as a consequence. The importance of parameters related to rearing 244 

practices and phytogeographical region was valued below 0.5% regardless of the model 245 

(Fig 2A). 246 

 247 

Importance of “Breeder” for model predictions 248 

Rearing practices did not stand out in the model runs, and their importance was usually 249 

rated below 0.5%. We investigated the possibility that most of their informational value 250 

is already included in some other parameter, namely, “Breeder”. For that reason, we 251 

excluded the parameter “Breeder” and reran the model in the same manner as above. 252 

We noted an increase in the importance of these parameters to between 1.0 ± 0% and 253 

6.0 ± 1.0% (Fig 3A). Despite mobilization of “neglected” parameters, there was also a 254 
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marked drop in the precision of classification: for example, the mean precision of 255 

models “2006 & 2008 & 2010” and “2006 & 2008” dropped by 9% and 7%, 256 

respectively, in the prediction of the 2nd quartile (c.f. Fig 2B and Fig 3B). The presence 257 

of two additional parameters in the model “2008 & 2010” seem to compensate for the 258 

absence of the “Breeder”. 259 

 260 

Importance of rearing practices and location for model predictions 261 

To evaluate the importance of rearing practices and the location of the breeding 262 

operation, we excluded them from the model as well (besides “Breeder”). The present 263 

parameters increased in their importance as expected; for example, the importance of 264 

“Ovary mass” increased up to 11% (Fig 4A, top half), yet the precision of prediction 265 

decreased for first two models (by 19% max.). Exclusion of the rearing and location 266 

parameters had the least impact on the “2008 & 2010” model, which had two more 267 

parameters to start with (Fig 4B, c.f. Fig 3B). 268 

 269 

We also performed classifications with rearing and phytogeographical parameters only. 270 

For all three models, the highest precisions of classification were for the 1st and 4th 271 

quartiles, which were between 0.48 and 0.71, both above randomness (0.25) but below 272 

the desired precision. Precision in the prediction of the other two quartiles was mostly 273 

below random for all three models. In fact, the 2nd and 3rd quartiles were incorrectly 274 

assigned into the 1st or 4th quartile at a rate greater than that by chance (Fig 4C), showing 275 

that the dataset used is not balanced. Phytogeographical region carried the highest 276 

importance in all three models (39 ± 4.0% - 41.0 ± 5.0%), followed by the time that a 277 

newly mated queen spends in her mating nuc (“Mating time hive”) and age at grafting 278 

(Fig 4A, bottom half). Despite their noted importance, the rearing parameters together 279 
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with the phytogeographical data are not enough to explain the variation in body mass 280 

of the queen. 281 

  282 
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Discussion 283 

The term “queen quality” can encompass several queen characteristics, which include 284 

genetic merit, developmental conditions, success in mating and, later, the environment 285 

in a (new) colony (Oldroyd et al. 1990; Dodologlu & Gene 2003). Queen body mass is 286 

one of these characteristics and is often regarded as a tool for the prediction of queen 287 

quality and, as such, is held in great esteem among beekeepers. In this paper, we turned 288 

the analysis around: instead of focusing on the body mass’ relationship with several 289 

descriptors of queen bee quality, which were empirically linked to brood production 290 

and overall colony health in the past, we investigated the contributions of these 291 

parameters to queen body mass. We show for the first time how these biological 292 

parameters and rearing practices influence the queen’s body mass, which often serves 293 

as the beekeeper’s tool for prediction of the queen’s performance before purchase or 294 

when selecting among queens. 295 

 296 

Value of the parameters 297 

In the past, parameters influencing body mass were often studied individually (for 298 

review, see Hatjina et al. 2014) or jointly via methods such as PCA to determine the 299 

anatomical and physiological parameters that best explained queen body mass (e.g., 300 

Tarpy et al. 2012). The combination of numeric features such as measured values of 301 

biological parameters and categorical features such as types of grafting required a new 302 

approach to evaluate the features’ joint importance. 303 

 304 

Our data showed that a single parameter does not possess enough explanatory power to 305 

predict the body mass of the queen (Figs S1, S2). Dominating among “biological” 306 

parameters that steered classification was “Ovary mass”. Ovaria of the mated queen are 307 
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approximately eight times larger than those of the virgin queen (Shehata 1981) and 308 

represent a large fraction of a queen’s body mass and abdominal volume (Winston 309 

1987). In our case, the median mass of ovaria differed between the studied years. It 310 

should be noted that the median body mass of the queens in our study also differed 311 

between years. However, the index between ovary mass and body mass also differed 312 

between years (Fig S1A), showing that ovarian growth does not entirely depend on the 313 

same parameters as body mass. 314 

 315 

The parameters “N of Ovarioles”, “Volume of spermatheca” and “Nosema sp. 316 

attendants” individually have a weak relationship with body mass. However, adding 317 

any of these three to the model significantly improved the models’ performance, giving 318 

these parameters biological value. Mating triggers the growth of ovarioles (Tanaka and 319 

Hartfelder 2004) as a consequence of the expression of certain genes in both the ovaries 320 

and the brain, thereby inducing physiological changes (Kocher et al. 2008). We 321 

confirmed the absence of a correlation between the number of ovarioles and queen body 322 

mass (Fig S1B), as established by Hatch and colleagues (1999); the literature links the 323 

count of ovarioles to grafting age instead (Dedej et al. 1998, Tarpy et al. 2000). Both 324 

queens and workers are susceptible to infection with Nosema spp. The possible methods 325 

of infection are both horizontal (Higes et al. 2009) and vertical (Peng et al. 2016) with 326 

sperm. It was shown that in colonies with an infected queen, there is a greater proportion 327 

of infected workers (Czekońska 2000). The desire of beekeepers to obtain uninfected 328 

queens is therefore understandable. The regression plot shows that the severity of 329 

infection influences the queen’s body mass, yet our sample is not great enough to 330 

confirm whether an infection would make infected queens stand out from the rest of 331 

the population (Fig S1E). Current statistical tests do not support such conclusions. It 332 
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also seems that infected attendant bees are not the cause of infection in the queens; 333 

infected attendants were far more numerous than infected queens. However, in cases 334 

when attendants were infected, the spore count in the queen was higher (Fig S2E). 335 

According to Alaux et al. (2011), infection of queens with Nosema ceranae increased 336 

the level of vitellogenin, queen mandibular pheromone and antioxidant capacity. 337 

Atrophy of hypopharyngeal glands is one of the effects of Nosema infection in worker 338 

bees and supposedly the main reason the queen escapes infection (Wang and Mofller 339 

1970). 340 

 341 

Seasonal differences (“Year”) observed both in body and ovary mass were ranked as 342 

important but were overshadowed by “Breeder” in all three models. During model 343 

construction, we attempted to strip the rearing practices from the parameter “Breeder” 344 

and use them as separate model parameters. As mentioned above, none of them 345 

contributed significantly to the body mass in initial model runs. We found it curious 346 

that Tarpy and coworkers (2011) experimentally created high- and low-quality queens 347 

by grafting at different ages. Additionally, ontogenetically, body mass decreases 348 

following emergence and is at its lowest a day after the last mating flight, after which 349 

it increases back to its approximate value at the beginning of oviposition and gains an 350 

additional 10% over the next three days. After the onset of oviposition, the body mass 351 

decreases to somewhere between 5 and 10% more than the mass at emergence (Kahya 352 

et al. 2008). For both reasons, we expected a significant impact by “Mating hive time” 353 

and “Age at grafting” or at least a significant contribution by them. 354 

 355 

The initial misleading results were the consequence of a caveat of the ML method used: 356 

only the parameters that contribute to the explanation of target values were considered, 357 
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and all the information provided by the technical data was already included in the 358 

“Breeder” parameter. After “Breeder” was removed as a separate parameter, parameters 359 

covering rearing practices and phytogeography were mobilized to explain queen body 360 

mass. It seems that there is more to “Breeder” than just the rearing practices of the 361 

breeder and the vegetation at the breeding location; however, the classifications were 362 

still good but not as good as before. Two qualities that could remain entwined in the 363 

parameter “Breeder” are microlocation of the mating hives and nucs and the genetic 364 

lines with which the breeders work. 365 

 366 

Regional information, which defines the time frame of various forages, contained under 367 

the “Phytogeographical region” was important in all cases after the exclusion of 368 

“Breeder”, and the most important parameter when parameters covering breeding 369 

practices and phytogeographical information were tested separately. This highlights the 370 

importance of forage sources. Mao and coworkers (2015) showed that certain plant 371 

compounds such as p-coumaric acid, often found in beebread and honey, seem to inhibit 372 

the development of ovaria in worker bees. Similarly, plant miRNAs seem to play a role 373 

as well (Zhu et al. 2017). Due to the possibility of different dietary preferences of 374 

colonies at the same location (c.f. Waddington et al. 1994), it is probably impossible to 375 

tackle this issue with field observation and without the manipulation of colony feed 376 

stocks. 377 

 378 

Conclusions 379 

As a measure of queen quality, queen body mass is directly useful for the prediction of 380 

brood production, taking into account the large safety margin, shown as the range of 381 

the confidence interval, at the desired brood surface (Fig S2F). Our machine learning 382 
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approach showed that body mass highly reflects both rearing parameters and production 383 

potential. We acknowledge that models do not reflect real biology, yet when their 384 

predictions have high precision and R2 values, they support ideas about the synergistic 385 

effects of multiple factors. The parameters marked as important by the model could be 386 

masking other important parameters, which is probably the greatest weakness of the 387 

approach used. Our models show that higher body mass means favorable connection 388 

with at least one of the production-related parameters. However, the independence of 389 

parameters (other than “Ovary mass”) from the queen’s mass means they contribute to 390 

“body mass” on an individual basis, and there is no guarantee that a queen with a high 391 

body mass has a large number of ovarioles or that the sperm count in its spermatheca 392 

is high. 393 

 394 

Selecting queens by body mass, however, should also be performed cautiously. It seems 395 

that considering absolute mass value as a threshold for queen quality is not a correct 396 

approach because measured masses varied between seasons, as shown in Fig S3A. 397 

Tarpy and coworkers (2012) found that variability within a rearing operation is higher 398 

than interoperation variability. Consequently, it was suggested that general queen 399 

quality could be improved by culling low-end queens before going to market. 400 

Beekeepers who wish to purchase queens are normally in no position to determine the 401 

average annual queen body mass and which breeder currently produces the heaviest 402 

queens; at best, he or she can make comparisons within the rearing operation. However, 403 

knowledge about the phytogeographical region of the operation and time spent in 404 

mating nucs might help. In some cases, it is possible to make use of breeders’ past 405 

production. In Slovenia, for example, queen quality is assessed yearly by taking 406 
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samples from the breeders involved with the Slovenian Breeding Program to assist 407 

potential customers. 408 

 409 

Queen bees’ body mass and other “queenly” qualities have often been discussed in the 410 

literature, sometimes with opposing results. Our investigation is one of the few that also 411 

indirectly covers the rarely discussed impact of diet on the queens’ body mass and 412 

production potential, which should be the focus of future research in this area. 413 

  414 
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Figure captions 574 

 575 

Figure 1. Cross-section of an ovary (A). Measuring volume of the spermatheca. Red 576 

lines show the lines of the diameter measurement (B). 577 

 578 

Figure 2. A: Importance of individual parameters for classification of queens’ body 579 

mass expressed in percent (mean ± SD). Empty fields indicate parameters not used 580 

during the model run. Body mass values were assigned to quartiles for all three years. 581 

B: Precision of classification for each model. Values on the diagonal of confusion show 582 

average precision of classification. Off-diagonal values show the fraction of 583 

misclassification. Red indicates values below or equal to chance (≤0.25), and green 584 

indicates values above chance (>0.25). 585 

 586 

Figure 3. A: Importance of individual parameters, without the parameter “Breeder”, 587 

for classification of queens’ body mass, expressed as a percentage. Empty fields 588 

indicate parameters not used during the model run. Body mass values were assigned to 589 

quartiles for all three years. B: Precision of classification for each model without 590 

“Breeder”. Values on the diagonal of confusion show precision of classification. Off-591 

diagonal values show the fraction of misclassification. Red indicates values below or 592 

equal to chance (≤0.25), and green indicates values above chance (>0.25). 593 

 594 

Figure 4. A: Importance of individual rearing parameters and vegetational parameters 595 

for precision of classification of queens’ body mass, expressed as a percentage. White 596 

fields show parameters not used in the model’s dataset. Body mass values were 597 

assigned to quartiles for all three years. The top half of the figure shows the importance 598 
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of individual parameters with rearing practices included and vegetational parameters 599 

excluded. The bottom half of the figure shows the importance of individual parameters 600 

with only rearing practices and phytogeographical parameters included. B: Precision of 601 

classification for individual models with rearing practices and vegetational parameters 602 

excluded. C: Precision of classification for individual models with only rearing 603 

practices and vegetational parameters included. The precision was not high enough to 604 

allow reliable predictions in any of the cases. In all confusion matrices, values on the 605 

diagonal show precision of classification. Off-diagonal values show the fraction of 606 

misclassification. The sum of the off-diagonal values shows the error rate. Red indicates 607 

values below or equal to chance (≤0.25), and green indicates values above chance 608 

(>0.25). 609 

 610 
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 612 

Tables 613 

 614 

Table 1. Rearing practices used in the analysis with possible options. Green color labels selected options and gray 615 

color labels options never selected among the selected breeders. 616 

Grafting method Age at grafting 
Mating  

hive time 

Mating hive size 

(comb surface) 

single eggs eggs small (< 0.1 m2) 

double larvae up to 12 h old open brood middle (0.1 m2≤ 0.15 m2) 

Jenter/Nicot 

larvae between 12 h and 24 h of 

age covered brood large (>0.15 m2) 

other larvae more than 24 h old hatching bees          

 617 

Table 2. Top: Overview of anatomical, physiological and health parameters measured in 2006, 2008 and 2010. 618 

Below: Inclusion of the same parameters in three different models. 619 

“ Body 
mass 

Breeder Ovary 
mass 

Ovarioles Sperm 
count 

Volume  
of  

spermatheca 

Nosema  
sp.  

queen 

Nosema  
sp. 

attendants 

 

2006 YES YES YES YES YES NO YES NO  

2008 YES YES YES YES YES YES YES YES  

2010 YES YES YES NO YES YES YES YES  

MODEL NAME PARAMETERS INCLUDED IN THE MODEL N of data 

2006 & 2008 & 2010 YES YES YES NO YES NO YES NO 486 

2006 & 2008 YES YES YES YES YES NO YES NO 324 

2008 & 2010 YES YES YES NO YES YES YES YES 324 

  620 
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Figure 1 621 
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Figure 3 627 

 628 

 629 

  630 

N
os
em

a 
sp

. a
tte

nd
an

ts

N
os
em

a 
sp

. q
ue

en



 33 

Figure 4 631 
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