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Abstract. Deep neural networks are constructed that are able to par-
tially solve a protein structure optimization problem. The networks are
trained using reinforcement learning approach so that free energy of pre-
dicted protein structure is minimized. Free energy of a protein structure
is calculated using generalized three-dimensional AB off-lattice protein
model. This methodology can be applied to other classes of optimization
problems and represents a step toward automatic heuristic construction
using deep neural networks. Trained networks can be used to construct
better initial populations for optimization. It is shown that differential
evolution applied to protein structure optimization problem converges to
better solutions when initial population is constructed in this way.
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1 Introduction

Prediction of protein structure from the sequence of its residues is a hard opti-
mization problem. All proteins are endowed with a primary structure consisting
of the chain of amino acids. Folding of this chain results into so-called 3D pro-
tein structure. The biological functional role of the protein is strictly dependent
on the protein 3D structure. Knowledge of a proteins structure provides insight
into how it can interact with other proteins, DNA/RNA, and small molecules.
It are these interactions which define the proteins function and biological role
in an organism. Thus, protein structure and structural feature prediction is a
fundamental area of computational biology. Its importance is exacerbated by
large amounts of sequence data coming from genomics projects and the fact
that experimentally determining protein structures remains expensive and time
consuming [1].

Over the last decades a lot of effort have been invested in reducing the com-
putational cost of calculating the 3D structures of proteins. One way to decrease
the computational cost is the introduction of approximate models for the cal-
culation of protein’s free energy which is minimal for appropriate 3D structure.
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Because the computation of free energy is less costly, optimization that finds
the right structure is also less costly to preform. Examples of such approximate
models include models using a cubic lattice [2] and AB type models [3]. Another
way to speed up the optimization process is to make optimization more efficient,
so that less free energy evaluations are needed. This resulted in development of
heuristics that are tailored specifically for this optimization problem. Since pro-
tein folding process is in nature guided only by the physical laws, optimization
methods were devised that include principles from statistical physics. Heuristics
from this category include annealing contour Monte Carlo [4] and conformational
space annealing [5]. Another approach to developing a specialized optimization
algorithm is to modify known metaheuristics such as artificial bee colony [6] or
evolutionary algorithm [7].

A different approach to prediction of protein 3D structure is the use of
machine learning. Here the prediction of 3D structure is based only on features
directly calculated from the sequence of amino acids. There is no optimization
performed during prediction. The structure is calculated simply by applying the
model. Optimization is used only during the model training, when appropriate
model is searched for. Currently, deep neural networks (DNNs) are the most
widely used models for this problem. Properly trained DNNs are very successful
at predicting protein’s secondary structure (≈80% accuracy) [8] and its disor-
dered regions (≈90% accuracy) [9]. However, full 3D structure prediction is much
less accurate (≈20% accuracy) [10]. DNN models are usually trained using super-
vised learning where experimentally acquired 3D structures of proteins are used
as training examples. Advantage of this approach is that protein’s free energy
does not need to be calculated. But on the other hand, by using only experi-
mental data one is limited to possibly insufficient amount of training examples
to properly train DNN.

In this paper a different approach to DNN training is presented and used in
which explicit training examples are not needed. Instead, the free energy of a
protein is used to provide information about the quality of predicted solutions.
This is possible because this problem can be interpreted as an optimization
problem or a prediction problem. This allows the combination of both views
to generate a new method for addressing the protein structure problem. In this
regard such methodology can be applied to any optimization problem to generate
DNNs able to predict a solution of an optimization problem. In other words,
given a class of optimization problems one can construct a DNN that represents
extremely fast heuristic specially designed for this class of optimization problems.
This is a step toward automatic heuristic generation.

2 Deep Neural Network as an Optimization Algorithm

Optimization problems are often solved using approximate algorithms (heuris-
tics) that are tailored for a specific class of problems. For example, there are
specific heuristics that work well for vehicle routing [11], production scheduling
[12], protein folding [13] and so on. Heuristics are especially useful if similar
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problems need to be solved over and over again. In such cases it is sensible to
develop specialized optimization procedures which are optimized for that specific
class of problems.

In this section a methodology is presented where DNNs are trained in a
way that they are able to approximately solve an optimization problem that
belongs to a given class of problems. Such class of optimization problems can be
represented with a fitness function f with two inputs.

f : S,X → R

fs(x) = min.
(1)

Set S holds all possible optimization problems in the class, while set X holds all
possible candidate solutions for that class of problems. For example, in case f
represents a class of production scheduling problems, s encodes the orders that
need to be fulfilled and x encodes the production schedule.

Given function f , it is possible to define a function g that takes a problem
specification s as an input and returns the position xoptimal

s where function fs
has a global minimum.

g : S → X
g(s) = arg min

x∈X
fs(x) = xoptimal

s
(2)

In other words, g(s) is a solution of optimization problem fs(x) = min. Calcu-
lation of function g is in general intractable. But it might be possible to find a
model that approximates g to some degree. One aim of this paper is to find out
whether a trained DNN is able to approximate g. It is important to note that the
input and output of DNN are traditionally floating point numbers. Therefore, s
and x should be encoded as vectors of floating point numbers. Even for discrete
s and x it is usually possible to find such an encoding.

It is known that a neural network can approximate arbitrary function to an
arbitrary precision [14]. So g can be approximated well using DNN, however it
is unknown how large such a network should be and whether it is possible to
find it using known training techniques. If DNN could be trained to approximate
g, such DNN can preform partial optimization extremely quickly. While DNN
training is known to be resource intensive, prediction is usually not.

Training DNN to approximate g is also an optimization problem, however
optimization landscape of DNN training is not similar to fs landscape. DNN
parameters encode a strategy for predicting xoptimal

s from s, so optimization is not
performed on a single problem encoded by s, but for all possible s at once. Also
DNN optimization landscape has particular properties, like the fact that saddle
points are exponentially more common compared to local minima [15]. Therefore,
a suitable optimization method that takes those specific properties into account
should be used for training them. Currently, stochastic gradient descent (SGD)
is the prevalent and very successful approach to DNN training [16].
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2.1 Supervised Learning Approach

DNN can be trained to approximate g using supervised learning. Let ĝ(s) be the
output of DNN when s is its input. In supervised learning pairs (si, xoptimal

si ) are
provided and DNN error is minimized using SGD so that

J =
∑

i

∥∥ĝ(si) − xoptimal
si

∥∥ = min. (3)

Since xoptimal
s is in general unknown, its best approximation has to be used which

results to nonideal DNN model. So xoptimal
si need to acquired using external

optimization algorithms. In order to prevent DNN overfitting it is necessary to
provide a large amount of training examples, i.e. much more than the number
of DNN parameters. Therefore, such approach is extremely resource intensive.

2.2 Reinforcement Learning Approach

Another approach to DNN training is reinforcement learning. In this case func-
tions fs are used to calculate the error of DNN. DNN is trained so that

E =
∑

i

fsi(ĝ(si)) = min. (4)

In reinforcement learning terminology, E can be understood as a penalty that
needs to be minimized. In this case xoptimal

si are not needed and so no exter-
nal optimization is required. The downside is that SGD can not be applied as
simply as with supervised learning. Error function J from Eq. (3) can be eas-
ily differentiated with respect to DNN parameters using backpropagation. But
penalty E from Eq. (4) also includes application of fs. This makes the calcula-
tion of the gradient difficult and different methods have been introduced by deep
reinforcement learning community to mend this problem.

In this paper an adapted version of deterministic policy gradient method [17]
is used. This method uses a differentiable model called a critic that approximates
function f from Eq. (4). The derivative of E can then be approximately calculated
using the derivative of the critic by applying the chain rule. Our adaptation of
this method is to not model f with a critic but instead use f directly. In order
to calculate derivative of E in this scope, the derivative ∇xfs(x) is required.

Fortunately, derivation of fs can also be preformed using backpropagation
principles, i.e. applying chain rule coupled with dynamic programming. There
are good libraries that can preform such automatic differentiation, for exam-
ple theano, TensorFlow and CNTK. In this paper theano was used to write
expressions for the calculation of E. These expressions are then transformed to
a computational graph for calculation of E which can be used to build compu-
tational graph for gradient calculation ∇E using the chain rule. In this respect
procedure is returned for analytical gradient calculation ∇E without any assis-
tance from the user. Computational graphs for E and ∇E calculation can be
compiled to C++, CUDA or OpenCL which brings multi processor support and can
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easily be accelerated on GPGPU or even FPGA [18]. Therefore, use of theano
is beneficial even if just calculation of E is needed.

Therefore, by using theano DNN can be trained using SGD so that E from
Eq. (4) is minimized. Great advantage of this approach is an unlimited amount
of training examples si which can be drawn from desired distribution over si.
This generation of training examples is extremely cheap compared to supervised
learning approach where training examples need to be generated by optimization
algorithm or acquired by experimental measurement.

3 Generalized Three-Dimensional AB Off-Lattice Protein
Model

AB off-lattice model has been widely used to describe the protein secondary
structure folding process for decades [3]. The off-lattice protein model was ini-
tially developed to consider 2D folding problems and was extended to deal with
3D scenarios where additional torsional energy contributions of each bond are
taken into account [19]. According to the AB off-lattice model, the main driving
forces that contribute to protein structure formulation are the hydrophilic and
hydrophobic interactions.

The protein chain is modeled as a vector s where each component si specifies
the hydrophilicity of amino acid at the site i. The distance of two neighbor-
ing amino acids is set to one (di,i+1 = 1). Under this model free energy G is
calculated as

G(u, d) =
1
4

n−2∑

i=1

(1 − ui · ui+1) + 4
n−2∑

i=1

n∑

j=i+2

(
d−12
ij − C(si, sj)d−6

ij

)
, (5)

where ui is a vector from amino acid on site i to amino acid on site i+1 and dij
is a distance between amino acids on site i and j (see Fig. 1). The interaction
between two amino acids is specified by a function

C(si, sj) =
1
8

(1 + si + sj + 5sisj) . (6)

Structure of a protein of length n can be encoded using angles θi and ϕi

that tell how vectors ui are oriented in space (see Fig. 2). Therefore, a protein
structure of length n is fully determined by

x = (θ2, . . . , θn−1, ϕ3, . . . , ϕn−1). (7)

Use of this encoding reduces the dimensionality of search space and allows us
to automatically fulfill the constraint ‖ui‖ = 1. The values ui and dij that are
needed for free energy calculation can be calculated from x in the following way

ui = (cos θi sin ϕi, sin θi sinϕi, cos ϕi) (8)
ri+1 = ri + ui (9)

dij = ‖ri − rj‖. (10)
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Fig. 1. Visualization of direction vec-
tors ui and distances dij on a protein
with three amino acids.
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Fig. 2. Visualization of angles θi and
ϕi from Eq. (7) that determine the
direction of vectors ui.

The first two amino acids in a sequence are fixed to specific coordinates and the
third one is constrained to xy-plane.

r1 = (0, 0, 0) (11)
r2 = (1, 0, 0) (12)

ϕ2 =
π

2
(13)

By this choice, rotational symmetry of the model is eliminated.
In protein structure optimization problem we want to find a structure of a

protein that minimizes the free energy G. Therefore, given a protein defined
with s, we want to find x that determines the structure of that protein. So the
problem class is defined by a function

fs(x) = G(u(x), d(x)) = min. (14)

Traditionally si = ±1, where hydrophobic amino acid has si = −1 and
hydrophilic si = 1. In this regard quantity si tells how hydrophilic an amino acid
is. However, this paper uses a generalization of this model where si ∈ R. One
reason for this choice is the fact that amino acids in nature are not hydrophilic
to the same degree [20]. Some may attract or repel water more than others.
Also hydrophilicity changes with temperature [21] which allows one to use this
generalized model to study how protein structure changes with temperature.
Use of generalized model is also beneficial with regard to DNN training because
this brings a richer set of training examples and makes the training landscape
smoother.

4 Experiments

In this section DNN training procedure using reinforcement learning is presented
and how solutions predicted by DNNs were used as initial population of differ-
ential evolution (DE) algorithm. A variant of SGD called Adam [22] was used
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and gradient of E was used to guide the training. The calculation of ∇E was
calculated using theano library.

E =
B∑

i=1

fsi(ĝ(si)) (15)

In each step of Adam algorithm a batch of proteins si of random length was
randomly selected. Distribution over length was uniform and over hydrophilicity
a mixture of two Gaussians with mean at ±1 and standard deviation 0.15. Based
on the selected si calculation of E and ∇E was done by theano. The number
of sampled proteins for E and ∇E calculation is called a batch size B. The
training is more stochastic if B is low and becomes more deterministic if B is
high. By experimenting with different batch sizes a good balance between speed
and accuracy was found at B = 512.

Stated more informally, in each step, DNN tries to solve 512 random protein
optimization problems and gets updated in direction that would improve its
solving capabilities for those 512 proteins. Because DNN gets a different batch
of random proteins in each step, it converges to a state that is able to solve all
protein optimization problems equally well. Picking training batches randomly
also ensures that DNN can not overfit since duplicates in the training data are
extremely unlikely. Therefore, the training error of DNN is not a biased estimate
of its accuracy and validation set is not needed.

A DNN structure was chosen that can take proteins with up to n = 100 amino
acids. To allow prediction on smaller proteins zero padding was used. Example
of small scale DNN is shown in Fig. 3. DNNs with different number of hidden
layers was trained in order to quantify how DNN depth influences the accuracy.
In all cases the width of hidden layers was chosen to be 2n = 200. Rectified
linear units were used as activation functions on hidden layers and tanh on the
output layer to ensure that θi, ϕi ∈ [−π, π].

Fig. 3. Small scale example of how DNN receives the protein specification and how
its output is interpreted. If a protein is shorter than DNN input layer, zero is placed
on sites where there are no amino acids. In this case some angles from the output are
discarded (crossed out outputs).
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Before training, initial DNN weights need to be set. Initial weights were gen-
erated randomly using Glorot initialization [23]. However, if the magnitude of
initial weights is to large, it can happen that initial DNN predicts very densely
packed structures which causes a very large gradient due to d−12

ij repulsive term
in free energy. This causes an unstable gradient descent. Therefore, a prefactor
wi was added to initialization and DNN models with w1 = 0.1 and w2 = 1.0 was
trained.

To avoid unstable gradient descent the predictions of initial DNN should be
unfolded protein structures. This, however, produces another problem. The first
summand in Eq. (5) forces proteins to be unfolded which means that unfolded
structure is a local minimum that is common to all proteins. To avoid getting
stuck in this common local minimum the first summand in Eq. (5) was simply
not included in the calculation of free energy at the beginning of training. When
DNN predicted structures began to fold, the previously ignored summand was
gradually added during training. In the last stage of training the full version of
free energy was used.

During DNN training it can happen that for some si in the batch DNN
predicts a structure where two amino acids are very close to each other. A
repulsive interaction causes the gradient ∇E to be very large for the entire
batch. In the next step of gradient descent the DNN is thrown away from a
possibly good region. Such events might be rare, but can severely disturb the
progress of training. To mitigate the effect of such events, gradient norm clipping
can be used. In other words, if the gradient length exceeds a given threshold,
the gradient is clipped so that its length is equal to the threshold.

Solutions predicted by DNNs might be a good initial population for optimiza-
tion. To test whether this is true protein structure optimization using DE was
implemented. DE was shown to be the best known optimization method for this
problem [7]. Specifications of implemented DE algorithm was taken from [7], but
without parameter control. DE type was best/1/bin, population size was 100,
mutation with dithering was employed with mutation constant taken between
0.1 and 1 and recombination constant was 0.9. DE was run 30 times for three pro-
teins found in nature (1CB3, 1CRN and 2EWH) with random initial population
and with initial population where 50% of candidates were predicted by DNNs.

5 Results

To measure how good a candidate solution is, we use free energy G of the protein.
In case of comparing solutions gotten by DE, this is a sound measure from the
point of view of statistical physics. That is, the protein is most likely to be
in states with low free energy. In ideal case one could check if the solution is
equivalent to the native structure, but because global minima of this protein
model are unknown this is not possible. To evaluate the performance of DNN,
training error is used. It is equivalent to validation error and defined as a mean
of free energy values predicted by DNN for a batch of random proteins. The
variance of this error measure is very low because the batch size B = 512 is large.
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Fig. 4. Training error of DNNs with respect to the number of hidden layers for two
different magnitudes of initial DNN weights. Full line is the mean error of models,
shaded area shows the range of error for central 66% of the models and the dashed line
is the error of the best model.

Table 1. Free energy calculated for three proteins found in nature by using structures
predicted by DNN and by DE.

Protein Length Best DNN Mean DE Best DE

1CB3 13 −4.6235 −2.1513 −6.7700

1CRN 46 −42.765 −64.948 −79.906

2EWH 98 −65.163 −148.32 −170.47

The training error of DNNs depends of the number of layers. This dependence
is usually monotonically decreasing [16], but for this problem this is not the case
(see Fig. 4). This can be attributed to the sensitivity of training to selection of
initial DNN weights. DNNs were initialized using random matrices. Therefore,
the magnitude of DNN output is exponentially dependent of the number of
layers. Since initial weights have small components (�1), this means that initial
DNNs with small number of layers predict very folded structures, while initial
DNNs with high number of layers predict practically straight structures. Figure 4
shows that initial DNN predictions should not be very folded nor very straight.
Best models are somewhere in between.

The most accurate DNN models have three layers. Given that DNNs are able
to partially solve an optimization problem this is a surprisingly shallow DNN
architecture. Free energy of structures predicted by DNNs and by DE is shown
in Table 1. It was found that gradient norm clipping is very beneficial for DNN
training. Figure 5 shows the progress of DNN training with and without the use
of gradient norm clipping. Occurrence of very high gradients is rare, however
they substantially alter the progress of DNN training.

Using structures predicted by DNN in initial population of DE was found to
be beneficial. When using predicted initial population, DE converges to lower
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Fig. 5. DNN error during training via SGD. The upper plot shows the progress of usual
SGD procedure, while the lower plot shows SGD progress when gradient norm has a
predefined upper bound by using gradient norm clipping.
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Fig. 6. Progress of 30 runs of DE by using a random initial population or initial
population partially populated with solutions predicted by DNNs. Full line is the mean
over all runs, shaded area shows the range of central 66% of runs and the dashed line
shows the best run.

values of free energy (see Fig. 6). But the convergence is slightly less rapid for
predicted population which could indicate that the population is actually more
diverse. On the other hand, DE progresses are less dispersed among runs which
means that less runs are needed to find a satisfactory solution. In case of 1CB3
protein the predicted structures are in fact so good that all DE runs converge to
the best known solution in just 100 generations. For larger proteins the predicted
solution are not as good, however the DE performs considerably better when
using the predicted population.
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6 Conclusion and Future Work

In this paper it is shown that deep neural networks can be trained to partially
solve optimization problems belonging to a given class. The networks can be
successfully trained using reinforcement learning method by knowing only the
fitness function of the class of optimization problems. This is shown for the
class of protein structure optimization problems. The predicted solutions were
found to be good initial points for further optimization. Such trained networks
can be used to acquire moderately good solutions of optimization problem when
solution is needed very quickly. Therefore, the method is suitable for optimization
problems that need to be solved repeatedly and is a step towards automatic
heuristic construction.

For future work it should be possible to extend the method to combinatorial
optimization problem where unified methodology should be further developed.
The procedure of finding the best architecture of deep neural network could be
more automated so that depth and width of the network is automatically found.
The same goes for the training specification. Another opportunity for future
work is to combine supervised learning approach with reinforcement learning
approach so that the training is guided by both approaches simultaneously.

Acknowledgments. The authors acknowledge the financial support from the Slove-
nian Research Agency (research core funding No. P2-0098 and PR-07606) and from the
European Union’s Horizon 2020 research and innovation program under grant agree-
ment No. 692286.

References

1. Cheng, J., Randall, A.Z., Sweredoski, M.J., Baldi, P.: SCRATCH: a protein struc-
ture and structural feature prediction server. Nucleic Acids Res. 33(Suppl. 2),
W72–W76 (2005)
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