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ABSTRACT

Benchmarking theory in evolutionary computation research is a cru-
cial task that should be properly applied in order to evaluate the
performance of a newly introduced evolutionary algorithm with per-
formance of state-of-the-art algorithms. Benchmarking theory is
related to three main questions: which problems to choose, how to
setup experiments, and how to evaluate performance. In this paper,
we evaluate the impact of different already established statistical
ranking schemes that can be used for evaluation of performance in
benchmarking practice for evolutionary computation. Experimental
results obtained on Black-Box Benchmarking 2015 showed that dif-
ferent statistical ranking schemes, used on the same benchmarking
data, can lead to different benchmarking results. For this reason, we
examined the merits and issues of each of them regarding bench-
marking practices.
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1 INTRODUCTION

To determine the strengths and weaknesses of a newly introduced
evolutionary algorithm, its performance should be compared with
performances of state-of-the-art algorithms. Over last years, several
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competitions for optimization algorithms at evolutionary compu-
tation conferences (e.g., GECCO, CEC) are organized, in which
the proposed algorithms are compared using a set of benchmark
functions. The idea behind those comparisons is that by using the
results obtained on different functions, the "best" algorithm (i.e. al-
gorithm that perform best in average over all benchmark functions)
can be found, or to use the benchmarking results to transfer the
knowledge onto a real-world problem. To find the "best" algorithm,
benchmarking is a key scientific technique and having a good one is
a difficult task [16]. The first step in benchmarking theory is that the
problem domain should be defined and it is a crucial task since it
restricts the domain to which any conclusions made can be general-
ized. Finding good test functions is a challenging task because they
should be uniformly distributed in the space of all possible functions
from the problem domain. Currently, a lot of papers presented in the
domain of evolutionary algorithms used the black-box optimization
algorithm benchmarking (BBOB) [13]. After the set of benchmark
functions is selected, benchmarking results depend on the perfor-
mance metrics and statistical ranking techniques. Statistical analyses
that are performed are crucial and need to be made with a great care
because they provide the information from where the conclusions
are made, so an appropriate statistical analysis should be performed.
Further, using the benchmarking results, the obtained knowledge
can be transferred onto a real-world problem. For this, Exploratory
Landscape Analysis (ELA) can be used [15]; the idea is to describe
the problem by high-level empirical properties, to find out which al-
gorithms perform especially well on certain property combinations,
and to develop ways to automatically extract problem properties
from a concrete problem instance. The selection of the benchmark
problems, the experiments setups, and ELA are not a subject of this
paper.

In this paper, we evaluate the impact of different already estab-
lished statistical ranking schemes that can be used in benchmarking
practice for evolutionary algorithms. For this reason, in Section II,
most commonly used statistical approaches together with a recently
proposed approach used for benchmarking in evolutionary com-
putation are explained. Section III provides information about the
selected benchmarking, the compared algorithms, and the results
obtained from the comparisons. In Section IV, discussion about the
impact of statistics for benchmarking in evolutionary computation is
provided. Section V presents the conclusions of the study.
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2 STATISTICAL ANALYSIS IN
BENCHMARKING PRACTICES

The statistical analysis of the performance of a new algorithm with
regard to state-of-the-art algorithms is in most cases made using
statistical comparisons that follow the idea of hypothesis testing [5].
Statistical comparisons can be conducted in two scenarios: single-
problem analysis and multiple problem analysis. Single-problem
analysis involves analyzing data from multiple runs of evolutionary
algorithms on one problem (i.e. test function). This happens because
a single run on a single problem instance is not enough to make
conclusions, since the algorithms are stochastic in nature, meaning
we do not have any guarantee that the result will be the same for
every run; even the path leading to the final solution is often differ-
ent. Multiple-problem analysis is a scenario when the algorithms
are compared on a set of benchmark functions, and it involves a
benchmarking theory.

Nowadays, many researchers have problems making a statistical
comparison because statistical tools are relatively complex and there
are many to choose from. The problem is in selecting the right
statistic to apply on a selected performance measure. For example,
researchers often report either average or median without being
aware that averaging is sensitive to outliers and both, the average
and median, are sensitive to statistically insignificant differences in
the data. Even reporting the standard deviation of the average needs
to be made with care since large variances result from the presence
of outliers. Furthermore, these statistics only describe the data and
do not provide any additional information about the relations that
exist between the data. For this, a statistical test needs to be applied.
Additionally, the selection of a statistic can influence the outcome of
a statistical test. This means that applying the appropriate statistical
test requires knowledge of the necessary conditions about the data
that must be met in order to apply it. This step is often omitted and
researchers simply apply a statistical test, in most cases borrowed
from a similar published study, which is inappropriate for their
data set. This kind of misunderstanding is all too common in the
research community and can be observed in many high-ranking
journal papers. Even if the statistical test is the correct one, if the
experimental design is flawed (e.g., comparison of results of tuned
and non-tuned algorithms) their conclusions will be wrong. This is
sometimes done on purpose to mislead the reader in believing that
the author’s results are better than they actually are.

In machine learning research, Demsar [6] has examined several
nonparametric statistical tests that can be used for comparing clas-
sifiers on a benchmark of data sets. He has also provided an ex-
perimental setup to find the power of the selected statistical test.
Following his idea, Garcia et al. [7] has presented a study on the
use of nonparametric test for analyzing the behavior of evolutionary
algorithms for optimization problems. This approach is one of the
most commonly used approach for making a statistical comparison
of evolutionary algorithms, so we call it a "common approach" (CA).
Recently, a new approach for making a statistical comparison in
multiple problem analysis (i.e. Deep Statistical Comparison, DSC)
was presented [8], which gives more robust statistical results when
outliers (i.e. poor runs) or statistically insignificant differences be-
tween data values exist. In this paper, we evaluate ranking schemes
used by these approaches and their impact to the benchmarking
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results. For this reason, we are going to explain them in more detail.
However, before we continue, we would like explicitly to point that
we are talking only for statistical significance and not practical sig-
nificance. To explain the difference between them, let us assume that
two algorithms are used for optimization of a given problem. Let,
the first algorithm solves the problem within 1010 of error of the
global optimum and the second one to within 10~1°. Between them,
statistical significance could be found; however this difference most
probably is not significant in a practical sense.

2.1 Common approach

Working with evolutionary algorithms in multiple-problem analysis
requires finding a unique representative value from multiple runs for
each algorithm on each problem. There are a lot of papers in which
authors reported best/worst (i.e. the sample min/max) values out of
multiple runs for each algorithm and each problem and further they
are analyzed using an appropriate statistical test. However this kind
of comparison is wrong because the sample min/max is a biased
estimator of the expected value. For this reason, Garcia et al. [10]
suggest using an average of multiple runs as a representative value
for each algorithm on each problem. Average is an unbiased estima-
tor of the expected value; however it can be affected by outliers (i.e.
poor runs of evolutionary algorithms) and instead median can be
used as a representative value. So by using the common approach,
either average or median from the multiple runs obtained on a sin-
gle problem can be used as a representative value involved in the
multiple-problem scenario for specific algorithm on specific prob-
lem. Further the data obtained for multiple-problem analysis should
be analyzed using an appropriate omnibus statistical test [10] .

2.2 Deep statistical comparison approach

Using the common approach, we need to be aware that averages are
known to be sensitive to outliers. In general, outliers can be disre-
garded using some techniques, but they need to be used with great
care. For multiple-problem analysis, removing outliers is question-
able because only the results for certain problems would be changed.
In stochastic optimization it can happen that in a set of independent
runs the average result of one problem for a given algorithm is better
than another algorithm, but in the next set of independent runs the
average result for the same problem and the same algorithm could
be worse than the other algorithm, and this happen because in any
new set of independent runs different poor runs exist. The common
approach is also used with medians because they are less sensitive to
outliers. However, in both cases the results can still be affected by the
ranking scheme of some statistical tests. This happens when differ-
ences between the averages or medians are in some €-neighborhood
(e.g., 1072,10719, etc.), so algorithms consequently obtain differ-
ent rankings because there are no ties presented. It can happen that
the distribution of the data is the same, the medians are in some
e-neighborhood and the algorithms will be ranked differently, but
they need to obtain the same ranking; even more the distribution can
be different, the medians can be the same and the algorithms will
be ranked as the same, but they need to obtain different rankings.
All this lead to a need for new robust analyses that can be used to
compose a sample for each algorithm over multiple problems, which
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can be used for further analysis using a standard omnibus statistical
test.

For these reasons, Deep Statistical Comparison (DSC) for com-
paring meta-heuristic stochastic optimization algorithms over multi-
ple single-objective problems was recently proposed [8]. Its main
contribution is its ranking scheme, which is based on the whole
distribution, instead of using only one statistic to describe the dis-
tribution, such as average or median. The approach consists of two
steps. The first step uses a newly proposed ranking scheme to obtain
data in order to make a statistical comparison. The ranking scheme
is based on comparing distributions using a statistical test, such as,
the two-sample Kolmogorov-Smirnov (KS) test or the two-sample
Anderson-Darling (AD) test [9]. All pairwise comparisons between
the compared algorithms must be made, and the obtained p-values
are organized in a matrix. Further, because multiple pairwise com-
parisons are made, these p-values are corrected using the Bonferroni
correction [10] in order to control the family-wise error, FWER
[14]. The FWER is the probability of making one or more false
discoveries, or type I errors, among all hypotheses when performing
multiple hypotheses tests. The matrix is then checked for transitivity,
and on this basis the algorithms obtain their rankings. The second
step is a standard omnibus statistical test, which uses data obtained
by the DSC ranking scheme as the input data.

3 EXPERIMENTS

To see the impact of different statistical ranking schemes for bench-
marking in evolutionary computation, experiments were performed
using results of algorithms presented at the sixth Black-Box Opti-
mization Benchmarking 2015 (BBOB 2015) workshop that was a
part of GECCO 2015 [3]. Two experiments are presented. In the
first, we randomly selected combinations of three algorithms, and we
reported only three combinations that have different results. We used
three algorithms because the impact of statistics is more emphasized
when the number of compared algorithms is lower. In the second, we
presented a most commonly used scenario in benchmarking, which
is multiple comparisons with a control algorithm, for which we used
15 algorithms presented at GECCO 2015.

In both experiments, we used the common approach and deep
statistical comparison approach to transform raw data for multiple-
problem analysis. For the common approach, we used average and
median from algorithm’s multiple runs on a single problem, as a
representative values. For the deep statistical comparison approach,
we used the DSC ranking scheme to obtain a sample for multiple-
problem analysis. Further, the transformed data for multiple-problem
analysis was analyzed using an appropriate omnibus statistical test.
The appropriate omnibus statistical test was selected after check-
ing the required conditions for the safe use of the parametric test
(i.e. normality of the data, homscedasticity of the variances, and
independence).

The comparisons were performed in the R programming language.
The Kolmogorov-Sminrov test for normality, which is a part of the
"stat" package [18], is used to check the normality condition. The
Levene’s test from the "lawstat" package [11] is used to check the
homoscedasticity of the variances (i.e. if data sets have the same
variance). For the DSC ranking scheme, we used the two-sample
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Kolmogorov-Smirnov (KS) test from the stat package [18] and two-
sample Anderson-Darling test from the kSamples package [19].

There are also already established websites that work as e-Learning
tools, one for using the common approach (http://ws.ijs.si/statTool/),
and the other for using the DSC approach (http://ws.ijs.si/dsc/).

3.1 Black-Box Optimization Benchmarking 2015
The BBOB 2015 was a competition that provided single-objective
functions for benchmarking. The test functions, F, are from five
groups, that represent

separable functions,

functions with low or moderate conditioning,

functions with high conditioning and unimodal,
multi-modal functions with adequate global structure, and
multi-modal functions with week global structure.

More details about them can be found in [12].

3.2 Algorithms

From the competition, 15 algorithms were used: BSif [17], BSifeg
[17], BSqi [17], BStr [17], CMA-CSA [1], CMA-MSR [1], CMA-
TPA [1], GP1-CMAES [2], GP5-CMAES [2], RAND-2xDefault [4],
RF1-CMAES [2], RF5-CMAES [2], Sif [17], Sifeg [17], and Srr
[17]. For the experiments, a statistical comparison was performed
by comparing them on 22 different noiseless functions with the
dimension fixed at 10.

3.3 Comparison of three algorithms

In this experiment, the results of statistical comparison of three
combinations of algorithms are presented. We selected them from a
set of randomly generated combinations in order to show different
scenarios that can happen. Each combination is a statistical com-
parison of three randomly selected algorithms. Data samples for
multiple-problem analysis were generated using the common ap-
proach with averages and median, respectively, and the DSC ranking
scheme using two different criteria for comparing distributions, the
two-sample KS test and two-sample AD test, respectively. For each
data sample the required conditions for the safe use of the paramet-
ric tests were checked, and for each one the Friedman test is an
appropriate omnibus statistical test. Table 1 presents the p-values
of the comparisons. For the first combination, results obtained by
the common approach differ from the results obtain by the DSC
ranking scheme. Using the common approach the null hypothesis
is rejected so there is a difference between the performance of the
compared algorithms, however using the DSC approach the null
hypothesis is not rejected. Additionally the p-values for the common
approach differ for using averages and medians, and same happen
also for the DSC ranking scheme with different criteria for compar-
ing distributions. So, it follows that different statistics that are used
in the benchmarking affect the rankings, which are further used in
calculation of the test statistic of the omnibus statistical test, and they
lead to different p-values. For the second and the third combination
the result is statistically the same. In the second combination, the
null hypothesis is not rejected using both approaches with different
statistical criteria, while in the third combination, the null hypothesis
is rejected for both approaches. Because only in the first combination
the results for both approaches differ, it is presented in more detail
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Table 1: Statistical comparisons of three algorithms

Common approach  Common approach

DSC approach (KS) DSC approach (AD)

Algorithms (with averages) (with medians)
PvalueF PvalueF PvalueF PvalueF
1 GP5-CMAES, Sifeg, BSif 02) .04) (.42) (44)
2 BSifeg, RFI-CMAES, BSrr (.16) (23) (.28) (.48)
3 BSrr, RAND-2xDefault, Srr *(.00) *(.00) *(.00) *(.00)
* indicates that the null hypothesis is rejected, using o = 0.05
Dvaluef corresponds to the p-value obtained by the Friedman test
analysis in order to see the impact of different statistical criteria.
Table 2 presents the rankings obtained for each compared algorithm 2 - -
on each single problem involved in the benchmarking using both I_ —I — GP5-CMAES [ ©
approaches for different statistical criteria. . = T St
From Table 2, we can see that there are problems for which the c — DsC rs
compared algorithms obtain different rankings on the same problem 3 I o
using both approaches with different statistical criteria. For example, Z o | . e <
on f13, the rankings are 2.00, 3.00, 1.00, using the common approach S . §
with averages, 1.00, 2.00, 3.00, using the common approach with E ;- 8 =
medians, and 1.50, 1.50, 3.00, using the DSC approach with the R S o .. =
two-sample KS test and two-sample AD test. From the obtained = 1 h ]
rankings on f]3, it follows that the common approach with different i N :
statistical criteria (i.e. average or median) provides different results o o Lo
that lead to different conclusions. Both results also differ from the o
results that are obtained using the DSC approach, where instead I e e L o
of average or median, distributions of the multiple runs of each ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30

algorithm on that problem are compared. In Figure 1, purple and
green lines present averages and medians of the multiple runs of
each algorithm obtained on f]3, respectively, while red (step) lines
present the empirical cumulative distributions of the multiple runs of
each algorithm obtained on f}3. In the case of the common approach
lower value is better because we are dealing with minimization.
From Figure 1, it is clear that the rankings with regard to averages
are 2.00, 1.00, and 3.00, however using medians it is not obvious
because the medians for the first and the second algorithm (i.e. GP5-
CMAES and Sifeg) are overlapping. For this reason, Table 3 presents
averages and medians of multiple runs for each algorithm on fi3.
Using medians, the rankings are 1.00, 2.00, and 3.00. In the case
of averages, GP5-CMAES has an average 3.07 and Sifeg has 1.77,
while the medians are 1.53 and 1.57, respectively, so they swap
their rankings using different statistical criteria in the same approach.
This happens because in the case of averages, an average can be
affected by outliers (i.e. poor runs) and this actually happens for the
GP5-CMAES. Using its empirical cumulative distribution, we can
see that there are some poor runs around the value 15 that affect the
average of multiple runs. Because averaging is sensitive to poor runs,
which can happen with evolutionary algorithms, medians are also
used. In this example, medians for GP5-CMAES and Sifeg are in
some small e-neighborhood, however they obtain different rankings
since they are different. All these problems can be omitted with
the DSC ranking scheme because it works with comparing whole
distributions and not only one statistic that describe the distribution.

Figure 1: Empirical cumulative distributions (step functions)
and means and medians (horizontal lines) for fi3

In Figure 2, averages, medians, and empirical cumulative distri-
butions of the multiple runs obtained on fig are presented. Using
the common approach with either averages or medians provides the
same rankings, while the DSC approach with different criteria for
comparing distributions provides different rankings. The DSC rank-
ing scheme involves all pairwise comparisons between the compared
algorithms. In the case when the two-sample KS test is used the
p-values are 0.00 (GP5-CMAES, Sifeg), 0.00 (GP5-CMAES, BSif),
and 0.03 (Sifeg, BSif). Because multiple pairwise comparisons are
made, these p-values are further corrected using the Bonferroni cor-
rection. The transitivity of these comparisons is satisfied and the
algorithms are spit into disjoint sets { GP5-CMAES} and {Sifeg,
BSif}, according to which they obtain their rankings, 1.00, 2.50, and
2.50. In the case when the two-sample AD test is used the p-values
are 0.00 (GP5-CMAES, Sifeg), 0.00 (GP5-CMAES, BSif), and 0.01
(Sifeg, BSif). These p-values are further also corrected using the
Bonferroni correction, but the transitivity is not satisfied, so the al-
gorithms obtained their rankings according to their averages. If this
happens it is better to use the two-sample AD test because it is more
powerful and it can better detect differences than the two-sample KS
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Table 2: Rankings for the algorithms A;=GP5-CMAES, A,=Sifeg, and A;=BSif

Common approach Common approach DSC approach DSC approach
F (with averages) (with medians) (KS test) (AD test)
AL A A3 AL A A3 AL Ay A3 AL A A3
bil 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00
f 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00
f3 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00
fa 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00
fs 3.00 1.50 1.50 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
f6 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 250 1.00 2.50
f 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.50 2.50 1.00 2.50 2.50
I8 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.50 1.50 3.00 1.00 2.00
fo 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.50 1.50 3.00 150 1.50
fio 1.00 2.00 3.00 1.00 2.00 3.00 1.00 250 2.50 1.00 250 2.50
i 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.50 2.50 1.00 2.50 2.50
Jfi2 3.00 2.00 1.00 3.00 2.00 1.00 3.00 1.50 1.50 3.00 1.50 1.50
f13 2.00 1.00 3.00 1.00 2.00 3.00 1.50 1.50 3.00 1.50 1.50 3.00
fia 3.00 1.00 2.00 1.00 2.00 3.00 250 250 1.00 250 250 1.00
fis 2.00 1.00 3.00 2.00 1.00 3.00 2.00 2.00 2.00 2.00 2.00 2.00
fie 2.00 1.00 3.00 2.00 1.00 3.00 2.00 2.00 2.00 2.00 1.00 3.00
fi7 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.50 2.50 1.00 2.50 2.50
fis 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.50 2.50 1.00 2.00 3.00
Sio 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.50 1.50 3.00 150 1.50
f20 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.50 1.50 3.00 1.50 1.50
fa1 1.00 2.00 3.00 1.00 2.00 3.00 2.00 2.00 2.00 2.00 2.00 2.00
S22 1.00 2.00 3.00 2.00 1.00 3.00 2.00 2.00 2.00 2.00 2.00 2.00
o ] -2
— dooeo.. o
g R s
. —ex ] ] :
5 median | | ______._. . 8
s — 1
g 2 I t [— orsomass §
2 ° | : — — Sifeg E -§
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Figure 2: Empirical cumulative distributions (step functions)
and means and medians (horizontal lines) for fg

test when distributions vary in shift only, in symmetry only, or have
the same average and standard deviation but differ on the tail ends
only [9]. For this reason, in Figure 3, probability density functions of
the multiple runs for each algorithm obtained on fig are presented.
Using this figure, the two-sample KS test is not able to detect the
difference that exist in the shift and tail ends between distributions
of Sifeg and BSif.

Figure 3: Probability density functions of multiple runs for each
algorithm obtained on fig

In Figure 4, averages, medians, and empirical cumulative distri-
butions of the multiple runs obtained on f>; are presented. Table
4 presents averages and medians of the multiple runs for each al-
gorithm obtained on fp7, which are used by the common approach.
In the case of the DSC approach, both statistical criteria used for
comparing distributions give the same rankings 2.00, 2.00, and 2.00.
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Figure 4: Empirical cumulative distributions (step functions)
and means and medians (horizontal lines) for f>,

Table 3: Descriptive statistics obtained on fi3

Algorithm Average Median
GP5-CMAES 3.07 1.53
Sifeg 1.77 1.57
BSif 23.11 15.84

From the figure, it is not clear if there is a difference between distri-
butions. For this reason, in Table 5 p-values obtained for multiple
pairwise comparisons using both statistical tests for comparing distri-
butions are presented. Further these p-values are corrected using the
Bonferroni correction; the transitivity is satisfied and all algorithms
belong to one set, so they obtain the same ranking.

Table 4: Descriptive statistics obtained on f>;

Algorithm Average Median
GP5-CMAES 6.37 3.82
Sifeg 7.63 0.99
BSif 2222 9.52

We need to point that if the benchmarking result detects a dif-
ference between the performance of the compared algorithms (i.e.

Table 5: P-values for all pairwise comparisons involved in DSC
ranking scheme obtained on f>;

Pairs of algorithms p-value (KS test) p-value (AD test)

(GP5-CMAES, Sifeg) 0.67 0.51
(GP5-CMAES, BSif) 0.38 0.09
(Sifeg, BSif) 0.18 0.06

T. Eftimov and P. KoroSec

the null hypothesis is rejected), post-hoc statistical test should be
performed in order to see from where this difference comes. How-
ever, we omitted this step because we would like to point only on
the impact of statistics on benchmarking in evolutionary computa-
tion. The influence that appears in the omnibus statistical test is also
transferred on the post-hoc level.

3.4 Multiple comparisons with a control
algorithm

In this experiment, we present multiple comparisons with a control
algorithm. We tested this scenario using multiple pairwise compar-
isons performed using the Wilcoxon test. We did this because DSC
approach requires it, since otherwise it can happen that the DSC
ranking scheme is affected by p-value correction when number of
algorithms increases. As a control algorithm, CMA-CSA was se-
lected. In table 6, p-values for each pairwise comparison using both
statistical approaches with different statistical criteria are presented.
From the p-values obtained, it is obvious that different statistical
criteria lead to different test statistic values. For example, in the
comparison of CMA-CSA with CMA-MSR, the DSC approach with
both statistical criteria provides the same statistical result (i.e the
null hypothesis is not rejected), the common approach with aver-
ages provides that the null hypothesis is rejected, while the common
approach with medians also shows that the null hypothesis is not
rejected.

From Table 6, if we focus on the DSC approach with the rwo-
sample KS test, it follows that the performance of CMA-CSA is
different from the performance of BSif, BSifeg, BSqi, BSrr, GP1-
CMAES, GP5-CMAES, RAND-2xDefault, RF1-CMAES, RF5-
CMAES, Sif, Sifeg, and Srr, while there is no difference with regard
to CMA-MSR and CMA-TPA. However, identified differences are
valid for independent comparisons because we have all vs. one sce-
nario. If we would like to show that there is a difference between the
performance of CMA-CSA and other 12 algorithms, then the true p-
value must be calculated combining the p-values of the independent
comparisons using the following equation

k—1
Pvalue =1 — H[l _pvalueyi]v (1
i=1
where k — 1 is the number of independent pairwise comparisons that
are combined, or in our case 12. Using this equation it follows that
the p-value is 0.02, so the CMA-CSA has statistical different perfor-
mance than the algorithms: BSif, BSifeg, BSqi, BStr, GP1-CMAES,
GP5-CMAES, RAND-2xDefault, RF1-CMAES, RF5-CMAES, Sif,
Sifeg, and Str.

4 DISCUSSION

Benchmarking in evolutionary computation is a task that should be
performed to compare new algorithms with the existing ones. It is
related to three main questions that should be treat equally with a
great care: which problems to choose, how to setup experiments, and
how to evaluate performance. We deal with the last question related
to different statistical approaches that can be used for evaluation,
when problems are chosen and experiments are set. This questions
can be split into two others: which performance metric is selected and
which ranking scheme is used in the evaluation. In our experiments,
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Table 6: Multiple comparisons with a control algorithm (CMA-CSA) by using multiple Wilcoxon tests

p—valuepsciks)y P —valuepsc,ap) P —valuecasaverage)

pP— Val”e(CA;median)

j  CMA-CSA vs.

1 BSif 4.847534e-03
2 BSifeg 7.768118e-03
3 BSqi 3.081757e-03
4  BSmr 7.768118e-03
5 CMA-MSR 1.000000e+00
6 CMA-TPA 1.000000e-+00
7 GPI-CMAES 1.451271e-05
8  GP5-CMAES 8.553503e-06
9  RAND-2xDefault  5.049088e-06
10 RFI-CMAES 5.049088¢-06
11 RF5-CMAES 5.049088e-06
12 Sif 6.301490e-04
13 Sifeg 6.301490e-04
14 Srr 1.056542¢-03

4.847534e-03
7.768118e-03
7.768118e-03
7.768118e-03
7.655945¢e-01
3.457786e-01
8.553503e-06
8.553503e-06
5.049088e-06
5.049088e-06
5.049088e-06
3.759531e-04
6.301490e-04
6.301490e-04

8.476892¢e-04
1.086096e-03
1.227287e-03
1.086096e-03
4.757041e-02
4.757041e-02
4.768372e-07
4.768372e-07
6.411516e-05
4.768372e-07
4.768372e-07
9.600603e-04
1.385265e-03
1.227287e-03

8.476892¢-04
1.758873e-03
2.223195e-03
1.758873e-03
7.628835e-02
4.654448e-01
6.411516e-05
6.411516e-05
6.411516e-05
6.411516e-05
6.411516e-05
1.385265e-03
3.504330e-03
2.495261e-03

as performance metric the best solution of the algorithm is used. The
evaluation was made to show how different statistical approaches can
lead to different benchmarking result. For this reason, two already
established approaches are evaluated, the common approach and the
recently proposed DSC approach.

The common approach suggests using an average or a median of
multiple runs for an algorithm on a given problem as a representative
value that will be used in the benchmarking scenario (multiple-
problem analysis). The DSC approach is based on a ranking scheme
of comparing whole distributions of multiple runs instead of using
one statistic, either average or median. Experiments showed that
both approaches can lead to different benchmarking results, and
this happens because different statistical criteria used for evaluation.
Performing benchmarking using averages, we need to be aware that
averages are sensitive to outliers, which are poor runs of evolution-
ary algorithms. Instead, medians can be used, but the problem is
that they can be in some €-neighborhood (i.e. insignificant statistical
difference) and will be ranked as different, but should be ranked as
the same. This can be solved by adding prior information for the €-
neighborhood having knowledge about the problem, but the question
that appears is how to select the e-neighborhood for a given problem
dynamically because problems that are involved in the benchmark-
ing scenario can have different e-neighborhoods regarding different
data ranges of solutions they provide. All these problems can be
omitted using the DSC approach, which takes into account the whole
distribution of the multiple runs for an algorithm obtained on a given
problem, and it is based on comparing distributions. However, the
statistical criteria that will be used for comparing distributions also
needs to be selected appropriately. Experiments showed that different
criteria for comparing distributions can lead to different benchmark-
ing results. In a lot of papers, authors select the ranking method,
which returns the desired outcome (e.g., average, median), but this
lead to one of the main questions related to benchmarking theory:
do we need to have a breakthrough in evolutionary computation
research by in-depth understanding of algorithms performance and
not only focusing on an applicative research loosing the information

why some algorithm works well or not. Using distributions can pro-
vide more information about algorithm performance and maybe it is
time to move from null-hypothesis testing from classical inferential
statistics, which is most commonly used nowadays in benchmarking
theory, to approaches from Bayesian statistics.

S CONCLUSIONS

Working with evolutionary computation algorithms, benchmarking
theory plays an important role for objectively comparing new al-
gorithms in order to demonstrate their strengths and weaknesses,
where they can be improved. Nowadays, researchers in the field of
evolutionary computation have recognized that new standards for
benchmarking in evolutionary computation research are needed. For
this reason, in this paper we examined the merits and issues regarding
different already established statistical criteria used in benchmarking
practices, when problem domain is already chosen and experiments
are set. Experimental results shown that different statistical criteria
used on the same benchmark data can lead to different benchmarking
result, due to the issues present in each statistical criteria of which
we need to be aware when performing benchmarking.

ACKNOWLEDGMENTS

This work was supported by the project from the Slovenian Research
Agency (research core funding No. P2-0098), from the European
Union’s Horizon 2020 research and innovation program under grant
agreement No. 692286, and from COST Action CA15140, supported
by COST.

REFERENCES

Asma Atamna. 2015. Benchmarking IPOP-CMA-ES-TPA and IPOP-
CMA-ES-MSR on the BBOB Noiseless Testbed. In Proceed-
ings of the Companion Publication of the 2015 on Genetic and
Evolutionary Computation Conference. ACM, 1135-1142.

Lukas Bajer, Zbynék Pitra, and Martin Holena. 2015. Benchmark-
ing gaussian processes and random forests surrogate models
on the BBOB noiseless testbed. In Proceedings of the Com-
panion Publication of the 2015 on Genetic and Evolutionary



GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

Computation Conference. ACM, 1143-1150.

BBComp Black Box Optimization Competition. [n. d.]. Black-Box
Benchmarking 2015. http://coco.gforge.inria.fr/doku.php?id=
bbob-2015. ([n. d.]). Accessed: 2016-02-01.

Dimo Brockhoff, Bernd Bischl, and Tobias Wagner. 2015. The im-
pact of initial designs on the performance of matsumoto on the
noiseless BBOB-2015 testbed: A preliminary study. In Proceed-
ings of the Companion Publication of the 2015 on Genetic and
Evolutionary Computation Conference. ACM, 1159-1166.

Wayne W Daniel and Chad Lee Cross. 1995. Biostatistics: a founda-
tion for analysis in the health sciences. (1995).

Janez Demsar. 2006. Statistical comparisons of classifiers over
multiple data sets. The Journal of Machine Learning Research
7 (2006), 1-30.

Joaquin Derrac, Salvador Garcia, Daniel Molina, and Francisco
Herrera. 2011. A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms. Swarm and Evolutionary
Computation 1, 1 (2011), 3-18.

Tome Eftimov, Peter Korosec, and Barbara Korousi¢ Seljak. 2017.
A novel approach to statistical comparison of meta-heuristic
stochastic optimization algorithms using deep statistics. Infor-
mation Sciences 417 (2017), 186-215.

Sonja Engmann and Denis Cousineau. 2011. Comparing distribu-
tions: the two-sample Anderson-Darling test as an alternative to
the Kolmogorov-Smirnoff test. Journal of Applied Quantitative
Methods 6, 3 (2011), 1-17.

Salvador Garcia, Daniel Molina, Manuel Lozano, and Francisco
Herrera. 2009. A study on the use of non-parametric tests for
analyzing the evolutionary algorithms behaviour: a case study
on the CEC2005 special session on real parameter optimization.
Journal of Heuristics 15, 6 (2009), 617-644.

Joseph L Gastwirth, Yulia R Gel, W L Wallace Hui, Vyacheslav
Lyubchich, Weiwen Miao, and Kimihiro Noguchi. 2015. law-
stat: Tools for Biostatistics, Public Policy, and Law. https:
/ICRAN.R-project.org/package=lawstat R package version 3.0.

Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros.
2010. Real-parameter black-box optimization benchmarking
2010: Experimental setup. (2010).

Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tusar, and
Dimo Brockhoff. 2016. COCO: A platform for comparing
continuous optimizers in a black-box setting. arXiv preprint
arXiv:1603.08785 (2016).

Mark J Laan van der, Sandrine Dudoit, and Katherine S Pollard. 2004.
Multiple testing. Part II. Step-down procedures for control of
the family-wise error rate. Statistical applications in genetics
and molecular biology 3, 1 (2004), 1-33.

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus
Weihs, and Giinter Rudolph. 2011. Exploratory landscape anal-
ysis. In Proceedings of the 13th annual conference on Genetic
and evolutionary computation. ACM, 829-836.

Olaf Mersmann, Mike Preuss, and Heike Trautmann. 2010. Bench-
marking evolutionary algorithms: Towards exploratory land-
scape analysis. In International Conference on Parallel Prob-
lem Solving from Nature. Springer, 73-82.

T. Eftimov and P. KoroSec

Petr Posik and Petr Baudi§. 2015. Dimension selection in axis-
parallel brent-step method for black-box optimization of sepa-
rable continuous functions. In Proceedings of the Companion
Publication of the 2015 on Genetic and Evolutionary Computa-
tion Conference. ACM, 1151-1158.

R Core Team. 2015. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria. https://www.R-project.org/

Fritz Scholz and Angie Zhu. 2016. kSamples: K-Sample Rank Tests
and their Combinations. https://CRAN.R-project.org/package=
kSamples R package version 1.2-4.


http://coco.gforge.inria.fr/doku.php?id=bbob-2015
http://coco.gforge.inria.fr/doku.php?id=bbob-2015
https://CRAN.R-project.org/package=lawstat
https://CRAN.R-project.org/package=lawstat
https://www.R-project.org/
https://CRAN.R-project.org/package=kSamples
https://CRAN.R-project.org/package=kSamples

	Abstract
	1 Introduction
	2 Statistical Analysis in Benchmarking Practices
	2.1 Common approach
	2.2 Deep statistical comparison approach

	3 Experiments
	3.1 Black-Box Optimization Benchmarking 2015
	3.2 Algorithms
	3.3 Comparison of three algorithms
	3.4 Multiple comparisons with a control algorithm

	4 Discussion
	5 Conclusions
	Acknowledgments

