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Abstract. To find the strengths and weaknesses of a new multi-
objective optimization algorithm, we need to compare its performance
with the performances of the state-of-the-art algorithms. Such a com-
parison involves a selection of a performance metric, a set of benchmark
problems, and a statistical test to ensure that the results are statistical
significant. There are also studies in which instead of using one perfor-
mance metric, a comparison is made using a set of performance metrics.
All these studies assume that all involved performance metrics are equal.
In this paper, we introduce a data-driven preference-based approach that
is a combination of multiple criteria decision analysis with deep statis-
tical rankings. The approach ranks the algorithms for each benchmark
problem using the preference (the influence) of each performance metric
that is estimated using its entropy. Experimental results show that this
approach achieved similar rankings to a previously proposed method,
which is based on the idea of the majority vote, where all performance
metrics are assumed equal. However, as it will be shown, this approach
can give different rankings because it is based not only on the idea of
counting wins, but also includes information about the influence of each
performance metric.
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1 Introduction

When working on a new optimization algorithm, a crucial task is to compare its
performance with state-of-the-art algorithms [1]. In single-objective optimiza-
tion, the performance of algorithms is analyzed using the best algorithmic solu-
tion. For example, in the case of minimization problems, the solution with the
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lowest value is the best. However, in multi-objective optimization algorithms
(MOAs), it is not clear what the quality of a solution means in the presence of
several optimization criteria. This is because the result is an approximation of
the Pareto-optimal front, called an approximation set, which can be analyzed
according to different quality aspects related to properties of convergence and
diversity e.g., the closeness to the optimal front, coverage of a wide range of
diverse solutions [2]. Quality indicators can be used to evaluate the performance
of MOAs. Each quality indicator maps an approximation set to a real number
[3]. In comparative studies, algorithms are used to solve a number of benchmark
problems followed by the application of quality indicators to assess their per-
formance [1]. Meta-heuristics are non-deterministic techniques, meaning there is
no guarantee that the result will be the same for every run. To test the quality
of an algorithm, it is not enough to perform just one run, but many runs of
the algorithm on the same problem are needed, from which conclusions can be
drawn. Additionally, this data must be analyzed with some statistical tests to
ensure that the results are significant.

The aim of this study is to compare the performance of MOAs using a data-
driven preference-based approach with a set of quality indicators. In Sect. 2, an
overview of the related works is presented. Section 3 introduces the data-driven
preference-based methodology. In Sect. 4 the experimental study is presented,
while Sect. 4.3 gives a discussion of the proposed methodology. The conclusions
of the paper are presented in Sect. 5.

2 Related Work

Many studies that address the problem of how to compare approximation sets
in a quantitative manner have been conducted. Riquelme et al. [3] presented a
study of a large number of metrics for comparing the performance of different
multi-objective optimization algorithms, and presented a review and an analysis
of 54 multi-objective optimization metrics and a discussion about the advan-
tages/disadvantages of the most cited metrics in order to give researchers suffi-
cient information for choosing them. A lot of the presented metrics use quality
indicators to evaluate the quality of the solutions. Additionally, after calculating
the quality indicator of interest, the data must be analyzed using a statistical test
to ensure that the results are significant [4,5]. In [6], Eftimov et al. presented a
study on how to compare the performance of MOAs using quality indicators and
a Deep Statistical Comparison (DSC) approach. They used the DSC approach
because it gives more robust statistical results to compare MOAs regarding the
data obtained for a single quality indicator. However, there are also studies that
use more than one quality indicator to evaluate the performance of MOAs. In [7],
Yen and He presented a double-elimination tournament using a quality indicator
ensemble to rank MOAs. The tournament contains approximation sets obtained
from MOAs for the same initial population and involves a series of binary tourna-
ment selections and in each one a quality indicator from an ensemble is randomly
chosen for comparison. The result of the tournament is one winning approxima-
tion set, so the corresponding MOA is ranked one. Then the approximations sets
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that are generated by the winning MOA are removed and the remaining approx-
imation sets will go through another double elimination tournament to identify
the second best algorithm and so on. The results of the evaluation show that the
method is performing more or less as a majority vote. The same idea was used by
Ravber et al. [8], where instead of double elimination tournament, they used the
chess rating system based on the Glicko-2 system [9]. The comparison between
two approximation sets was made by a randomly selected quality indicator from
the ensemble. In both approaches, the selection of the quality indicator that is
used for a binary tournament is random and comes from a uniform distribution,
such that all quality indicators in the ensemble are equal. Eftimov et al., also
presented a comparative study of MOAs using an ensemble of quality indicators
together with DSC [10]. This study used two ensemble combiners to rank and
compare MOAs. Using one of them, each algorithm obtains a ranking for each
problem, which is the average of its DSC rankings for each quality indicator
for that problem. The other proposed ensemble is a hierarchical majority vote,
which is a recursive approach where each algorithm is checked for the number
of wins. In both scenarios, there is no preference between the quality indicators
used in the comparison and all are assumed equal.

2.1 The Deep Statistical Ranking

Deep Statistical Comparison (DSC ) is a recently proposed approach for making
a statistical comparison of meta-heuristic stochastic optimization algorithms on
a set of single-objective problems [4]. Its main contribution is its ranking scheme,
which is based on the whole distribution instead of using just one statistic to
describe the distribution, such as either the average or the median. A study on
how to compare the performance of MOAs using quality indicators and DSC can
be found in [6,10], where DSC gave more robust results compared to a standard
statistical test recommended for making a statistical comparison.

2.2 The PROMETHEE

PROMETHEE methods are used in decision making to solve a decision problem
in which a set of alternatives are evaluated according to a set of criteria that are
often conflicting. Without loss of generality, we can assume that these criteria
have to be minimized. For the method, an evaluation matrix is constructed,
in which each alternative is estimated for each criteria. The method performs
pairwise comparisons between all the alternatives for each criteria to provide
either a complete or partial rankings of the alternatives. Four PROMETHEE
methods exist, named as I, II, III, and IV. They can be used depending on the
nature of the data that is involved in the comparison and the type of ranking
that is preferred.

3 The Proposed Methodology

The proposed methodology consists of two steps. In the first, the DSC rank-
ing scheme is used to obtain robust statistics regarding each quality indicator
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separately, which are combined in the second step using the PROMETHEE II
method [11].

3.1 The PROMETHEE II

Let us assume that a comparison needs to be made between m algorithms (i.e.,
alternatives) regarding n quality indicators (i.e., criteria) for a single problem.
Let A = {A1, A2, . . . , Am} be the set of algorithms we want to compare regarding
the set of quality indicators Q = {q1, q2, . . . , qn}. The decision matrix is a m×n
matrix (see Table 1) that contains the DSC rankings obtained for the algorithms
for each quality indicator separately.

Table 1. Decision matrix.

q1 q2 . . . qn

A1 q1(A1) q2(A1) . . . qn(A1)

A2 q1(A2) q2(A2) . . . qn(A2)
...

...
...

...

Am q1(Am) q2(Am) . . . qn(Am)

The DSC ranking scheme always ranks the best algorithm as one, the sec-
ond best as two, and so on. In our case, we are interested in minimizing the
criteria since lower DSC ranking values are preferable. Before we start with the
PROMETHEE, the decision matrix is transformed in such a way that the DSC
rankings, which are in the same column, are transformed using a standard com-
petition ranking scheme [10]. This should be done because for the DSC rankings
it does not matter if rankings are 1.50, 3.00, and 1.50 or 1.00, 3.00, and 1.00.
In both scenarios having 1.00 and 1.50 means that the algorithm is the best
according to some quality indicator. Since the DSC ranking scheme can never
give a 1.00, 3.00, and 1.00 when comparing three algorithms (since it follows
the idea of fractional ranking), the DSC rankings for each quality indicator are
transformed using the standard competition ranking scheme.

The appropriate method in our case is PROMETHEE II. It is based on pair-
wise comparisons that need to be made between all algorithms for each quality
indicator. The differences between DSC rankings for each pair of algorithms
according to a specified quality indicator are taken into consideration. For larger
differences the decision maker might consider larger preferences. The preference
function of a quality indicator for two algorithms is defined as the degree of
preference of algorithm A1 over algorithm A2 as seen in the following equation:

Pj(A1, A2) =

{
pj(dj(A1, A2)), if maximizing the quality indicator

pj(−dj(A1, A2)), if minimizing the quality indicator
, (1)
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where dj(A1, A2) = qj(A1)− qj(A2) is the difference between the DSC rankings
of the algorithms for the quality indicator qj and pj(·) is a generalized preference
function assigned to the quality indicator. There exist six types of generalized
preference functions [11]. In our case, usual preference function is used for each
quality indicator because of the importance of any differences between the rank-
ings, which is presented in Eq. 2.

p(x) =

{
0, x ≤ 0
1, x > 0

, (2)

After selecting the preference function for each quality indicator, the next
step is to define the average preference index and outranking (preference and net)
flows. The average preference index for each pair of algorithms gives information
of global comparison between them using all quality indicators. The average
preference index can be calculated as:

π(A1, A2) =
1
n

n∑

j=1

wjPj(A1, A2), (3)

where wj represents the relative significance (weight) of the jth quality indicator.
The higher the weight value of a given quality indicator the higher its relative
significance. The selection of the weights is a crucial step in the PROMETHEE
II method because it defines the priorities used by the decision-maker. In our
case, we used the Shannon entropy weight method, which will be explained in
the next subsection. For the average preference index, we need to point out that
it is not a symmetric function, so π(A1, A2) ̸= π(A2, A1).

To rank the algorithms, the net flow for each algorithm needs to be calcu-
lated. It is the difference between the positive preference flow, φ(A+

i ), and the
negative preference flow of the algorithm, φ(A−

i ). The positive preference flow
gives information how a given algorithm is globally better than the other algo-
rithms, while the negative preference flow gives the information about how a
given algorithm is outranked by all the other algorithms. The positive and the
negative preference flows are defined as:

φ(A+
i ) =

1
(n − 1)

∑

x∈A

π(Ai, x),

φ(A−
i ) =

1
(n − 1)

∑

x∈A

π(x,Ai). (4)

The net flow of an algorithm is defined as:

φ(Ai) = φ(A+
i ) − φ(A−

i ). (5)

The PROMETHEE II method ranks the algorithms by ordering them accord-
ing to decreasing values of net flows.
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3.2 The Shannon Entropy Weighted Method

To find the quality indicator weights, we use the Shannon entropy weighted
method [12]. For this reason, the decision matrix presented in Table 1 needs to
be normalized. Because the smaller value is preferred, the matrix is normalized
using the following equation:

qj(Ai)
′
=

maxi(qj(Ai)) − qj(Ai)
maxi(qj(Ai)) − mini(qj(Ai))

, (6)

where qj(Ai)
′
is the normalized value for qj(Ai).

The entropy for each quality indicator is defined as:

ej = K
m∑

i=1

W

(
qj(Ai)

′

Dj

)
, (7)

where Dj is the sum of the jth quality indicator in all algorithms, Dj =∑m
i=1 qj(Ai)

′
, K is the normalized coefficient, K = 1

(e0.5−1)m , and W is a func-
tion defined as W (x) = xe(1−x) + (1 − x)ex − 1.

The weight of each quality indicator used in Eq. 3 is calculated using the
following equation:

wj =
1

(n−E) (1 − ej)
∑n

j=1

[
1

(n−E) (1 − ej)
] , (8)

where E is the sum of entropies, E =
∑n

j=1 ej .

4 Results

4.1 Experimental Setup

The data from six algorithms is available from [13]. The algorithms are compared
using 16 test problems. The number of objectives is set to four. More about the
parameters of the test problems and the algorithms can be found in [13]. All test
problems assume minimization of all objectives. Each algorithm was run for each
problem 30 times. Before calculating the quality indicators, each approximated
Pareto front was normalized. In our experiment quality indicators are hyper-
volume (q1), epsilon indicator (q2), r2 indicator (q3), and generational distance
(q4). All of them are unary indicators. Since we are introducing a methodology,
we are not specifically dealing which quality indicators are used. The selection is
up to user to make sure that relevant quality indicators are selected (e.g., if all
quality indicators should be Pareto compliant, convergence, diversity, etc.). For
calculating the hypervolume, the reference point (1, . . . , 1) is used, while for the
other quality indicators, the reference set consists of all non-dominated solutions
already known from all runs for each algorithm for a given problem. Because the
DSC ranking scheme involves a statistical test for comparing distributions, a
two-sample Anderson-Darling (AD) test is used and the significance level is set
to 0.05. The benefits of using this test are presented in [14].
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4.2 Experimental Results

In the experiment, three out of six algorithms are randomly selected. The algo-
rithms are: DEMOSP2, DEMONS−II, and NSGA-II. First, for each quality indi-
cator, the DSC ranking scheme is used to compare the quality indicator data for
a single problem. Further, the DSC rankings obtained for each quality indica-
tor and each problem are transformed using the standard competition ranking
scheme (see Table 2). The highest ranked algorithm for each problem and each
quality indicator has the best performance.

Table 2. Transformed DSC rankings for each quality indicator of the algorithms,
A1 =DEMOSP2, A2 =DEMONS−II, and A3 =NSGA-II.

Problem Hypervolume r2 Epsilon Generational distance

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

DTLZ1 2.00 1.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00

DTLZ2 2.00 1.00 3.00 3.00 1.00 2.00 2.00 1.00 3.00 2.00 1.00 3.00

DTLZ3 1.00 1.00 3.00 2.00 1.00 3.00 1.00 1.00 3.00 1.00 1.00 3.00

DTLZ4 1.00 2.00 3.00 1.00 2.00 2.00 1.00 2.00 3.00 1.00 2.00 3.00

DTLZ5 2.00 2.00 1.00 1.00 1.00 3.00 1.00 1.00 1.00 1.00 3.00 2.00

DTLZ6 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 1.00 2.00 3.00

DTLZ7 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

WFG1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 3.00 2.00

WFG2 1.00 2.00 3.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 3.00 1.00

WFG3 1.00 3.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00

WFG4 1.00 2.00 3.00 2.00 1.00 2.00 2.00 1.00 3.00 3.00 2.00 1.00

WFG5 3.00 2.00 1.00 3.00 1.00 1.00 1.00 3.00 2.00 3.00 2.00 1.00

WFG6 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.00 2.00 3.00 1.00 1.00

WFG7 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.00 2.00 3.00 2.00 1.00

WFG8 1.00 2.00 2.00 1.00 2.00 3.00 1.00 2.00 2.00 1.00 3.00 2.00

WFG9 1.00 2.00 2.00 1.00 1.00 3.00 1.00 2.00 2.00 3.00 2.00 1.00

Before we find the complete ranking of the algorithms, the weights of each
quality indicator are calculated for each single problem using the Shannon
entropy weighted method. The weights for all problems are presented in Table 3.

Then, the PROMETHEE II method is used to rank the algorithms for each
problem. If the original decision matrix is involved in the PROMETHEE II
calculations, the preference function that is used is the one for minimizing the
quality indicator, while if the normalized matrix is used, the preference function
is the one used to maximize the quality indicator. In our case, we have a set
of three algorithms A = {A1, A2, A3} that need to be compared according to
a set of four quality indicators Q = {q1, q2, q3, q4}. The rankings obtained for
PROMETHEE II method are presented on the left side of Table 4. They are
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Table 3. Weights for each quality indicator.

Problem q1 q2 q3 q4 Problem q1 q2 q3 q4

DTLZ1 0.25 0.25 0.25 0.25 WFG2 0.14 0.37 0.37 0.12

DTLZ2 0.25 0.25 0.25 0.25 WFG3 0.13 0.29 0.29 0.29

DTLZ3 0.24 0.28 0.24 0.24 WFG4 0.18 0.46 0.18 0.18

DTLZ4 0.18 0.46 0.18 0.18 WFG5 0.26 0.22 0.26 0.26

DTLZ5 0.57 0.20 0.00 0.23 WFG6 0.19 0.19 0.47 0.15

DTLZ6 0.25 0.25 0.25 0.25 WFG7 0.18 0.18 0.46 0.18

DTLZ7 0.25 0.25 0.25 0.25 WFG8 0.36 0.14 0.36 0.14

WFG1 0.25 0.25 0.25 0.25 WFG9 0.37 0.12 0.37 0.14

further compared with the rankings obtained by the average ensemble with the
DSC rankings (DSC ensemble I) [10], presented in the middle part of Table 4
and the hierarchical majority vote with the DSC rankings (DSC ensemble II)
[10], presented on the right side of Table 4. From it, we can see that the rankings
obtained using PROMETHEE II with DSC differ from the rankings obtained
using the average ensemble with DSC or the hierarchical majority vote with
DSC only in two bolded problems: DTLZ5 and WFG7.

Table 4. Ensemble combiner for the algorithms: A1 =DEMOSP2, A2 =DEMONS−II,
and A3 =NSGA-II.

Problem PROMETHEE II DSC ensemble I DSC ensemble II

A1 A2 A3 A1 A2 A3 A1 A2 A3

DTLZ1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00

DTLZ2 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

DTLZ3 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

DTLZ4 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00

DTLZ5 2.00 3.00 1.00 1.00 2.50 2.50 1.00 2.50 2.50

DTLZ6 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

DTLZ7 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

WFG1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00

WFG2 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00

WFG3 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00

WFG4 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

WFG5 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00

WFG6 1.00 2.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

WFG7 1.00 2.00 3.00 1.50 1.50 3.00 1.00 2.00 3.00

WFG8 1.00 2.50 2.50 1.00 2.50 2.50 1.00 2.50 2.50

WFG9 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00
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To see what happens on a single problem, let us focus on the DLTZ5 prob-
lem. The decision matrix and its normalization are presented at top of Table 5.
The transformed DSC rankings for the r2 indicator and the DLTZ5 problem are
1.00, 1.00, and 1.00. Further, there is a problem in the normalization process
because the normalized rankings are indeterminate forms (i.e., 0/0) [15], so the
weight or the relative significance of this quality indicator can not be calculated.
However, according to this quality indicator and the obtained DSC rankings, the
compared algorithms are the same and they are all winners. Let us suppose that
the weight w3 could be calculated in some way, then the part of the average pref-
erence index that is related to the q3 indicator is a product of w3P3(Ai1 , Ai2),
where i1, i2 = 1, . . . ,m and i1 ̸= i2. In this case, it will be zero and will not
influence the average preference index, which is used for calculating the positive
and negative flows. Because it can not provide any additional information, it is
removed and the result will be the same as comparing the algorithms regarding
the remaining quality indicators, which in our case are q1, q2, and q4. By remov-
ing the r3 indicator, the decision matrix and its normalization are presented at
the bottom part of Table 5. The weights obtained using the Shannon entropy
weighted method are 0.57, 0.20, and 0.23. The final rankings and the outrank-
ing flows are given on the left side od Table 6. On the right part of Table 6 the
average preference indices that are used for calculating the positive and negative
flows for DLTZ5 are presented.

Table 5. Decision matrices for DLTZ5.

Algorithm Decision matrix Normalized matrix

q1 q2 q3 q4 q1 q2 q3 q4

DEMOSP2 2.00 1.00 1.00 1.00 0.00 1.00 0/0 1.00

DEMONS−II 2.00 1.00 1.00 3.00 0.00 1.00 0/0 0.00

NSGA-II 1.00 3.00 1.00 2.00 1.00 0.00 0/0 0.50

Algorithm Decision matrix Normalized matrix

q1 q2 q3 q4 q1 q2 q3 q4

DEMOSP2 2.00 1.00 / 1.00 0.00 1.00 / 1.00

DEMONS−II 2.00 1.00 / 3.00 0.00 1.00 / 0.00

NSGA-II 1.00 3.00 / 2.00 1.00 0.00 / 0.50

Table 6.Outranking flows, PROMOTHEE II rankings, and average indices for DLTZ5.

Algorithm φ+ φ− φ Ranking π(Ai, A1) π(Ai, A2) π(Ai, A3)

DEMOSP2 0.11 0.10 0.01 2.00 π(A1, Aj) 0.00 0.08 0.14

DEMONS−II 0.03 0.17 −0.14 3.00 π(A2, Aj) 0.00 0.00 0.06

NSGA-II 0.23 0.10 0.13 1.00 π(A3, Aj) 0.19 0.27 0.00
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Using the decision matrix presented in Table 5, the rankings obtained using
the average ensemble and the hierarchical majority vote are the same and are
1.00, 2.50, and 2.50. In the case of hierarchical majority vote, DEMOSP2 is ranked
as first because it wins in three out of four quality indicators, while DEMONS−II

and NSGA-II are ranked second (e.g., 2.5) because both are ranked first in the
case of two quality indicators, then both are second in the case of one quality
indicator and third in the case of one quality indicator. All quality indicators are
assumed equal and the ranking is made by counting the number of wins. However,
the obtained rankings using the data-driven preference-based approach are 2.00,
3.00, and 1.00, which are completely different from the other ensembles. From the
left part of Table 6, we can see that NSGA-II has the highest positive flow. The
question is why it is ranked first when DEMOSP2 has two wins. This happens
because the quality indicators that are involved have a data-driven preference
for each of them, which is obtained by the Shannon entropy weighted method.
The quality indicators are ordered as q1, q4, q2, (e.g, hypervolume, generational
distance, and epsilon indicator), starting from the most significant one to the
least significant one. The average preference indices between A1 and A3 that are
used for calculating the positive and negative flows are:

π(A1, A3) =
1
3
[0.57 · 0 + 0.20 · 1+ 0.23 · 1] = 0.14

π(A3, A1) =
1
3
[0.57 · 1+ 0.20 · 0 + 0.23 · 0] = 0.19 (9)

Using the calculations presented in Eq. 9, we can see that the average preference
index between NSGA-II and DEMOSP2 is 0.19 and it is a result of only one win
regarding the quality indicator q1, while the average preference index between
DEMOSP2 and NSGA-II is 0.14 and it is smaller even though it is a result of
two wins regarding q2 and q4. This happens because q1 is the most significant
and its weight is much more than the sum of the weights of q2 and q4. In our
experiment, the proposed data-driven preference-based approach gives different
rankings from the hierarchical majority vote only for DLTZ5. This happens
because only on that problem the compared algorithms are the same regarding
one of the used quality indicators, which is the r3 indicator. However, if this
happens for other single-problems, the rankings can also differ from the rankings
obtained by a hierarchical majority vote.

Furthermore, the obtained rankings using PROMETHEE II with DSC can
be used as input data for a multiple-problem scenario. The appropriate statis-
tical test is the Friedman test. Using it, the obtained p-value is 0.00, so using
a significance level 0.05, we can conclude that there is a statistical significant
difference between the compared algorithms using a set of benchmark prob-
lems. When comparing MOAs, often more than three algorithms are involved in
the comparison, or especially a new algorithm is compared with state-of-the-art
algorithm as a multiple comparisons with a control algorithm. When the number
of algorithms increases the DSC rankings can be affected when correcting the
p-values to control the FWER. In such a scenario, it is better to use multiple
Wilcoxon tests, one for each pairwise comparison and then combine the p-values
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to find the actual p-value for the scenario. More about this scenario and the
DSC approach is presented in [4]. If we are interested in to compare them using
a data-driven preference-based approach, we just need to use PROMETHEE II
with DSC instead of the original DSC ranking scheme to find the rankings for
each pairwise comparison on each problem.

4.3 Discussion

Comparing the performance of a new MOA with the performance of state-of-
the-art MOAs is a crucial task in order to find its strengths and weaknesses.
Different performance metrics can be used for evaluation and they are usually
combined with statistical tests to ensure that the results are significant. Several
previously proposed approaches are focused on comparing MOAs using a set of
quality indicators. They follow the idea of ensemble learning, but all of them
assume that all quality indicators are equal. The performance metric and the
way how the algorithms will be compared also depend on the user preference
or the concrete application. For example, in our previous work, we presented
an average ensemble and a hierarchical majority vote based on counting wins
according to different quality indicators, but in this paper we proposed a data-
driven preference-based approach that is a combination of PROMETHEE II
and DSC ranking scheme. According to the user preference all involved quality
indicators are still equal, but the data-driven preference changes this by using
its entropy. Organizing the DSC rankings for each quality indicator and each
problem into a decision matrix, the Shannon entropy weighted method is used
to find the relative significance of each quality indicator for each problem. The
relative significance of each quality indicator is related to its entropy, which is the
amount of information conveyed by it. The experimental results have shown that
the preference-based approach performs more or less as a hierarchical majority
vote. However, it can give different rankings, and the algorithm can overrank
another one even if it has a lower number of wins, but it wins in most preferred
quality indicator(s). Also, if there is a quality indicator for which all compared
algorithms perform the same (they all win), it does not have an influence in the
comparison and it can be removed from the set of quality indicators. Comparing
the hierarchical majority vote and data-driven preference-based ranking, we can
say that the hierarchical majority vote is more appropriate in cases where the
performance is estimated by counting wins and loses such as in the case of
dynamic multi-objective optimization, otherwise data-driven preference-based
ranking can be used in cases when the influence of each quality indicator is
required.

5 Conclusion

In this paper, we presented a data-driven preference-based approach for com-
paring MOAs using a set of quality indicators. The approach is a combination
of PROMETHEE II, which is a method in MCDA, and a DSC ranking scheme,
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that gives more robust statistical results and is based on comparing distribu-
tions instead of using only one statistic to describe the data. We compared our
method with previously proposed methods where all involved quality indicators
are assumed equal. We have shown that our method performs similar to a hierar-
chical majority vote, but also can give different rankings regarding the influence
of each quality indicator, which is its preference and is estimated according to
its entropy.
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4. Eftimov, T., Korošec, P., Seljak, B.K.: A novel approach to statistical comparison
of meta-heuristic stochastic optimization algorithms using deep statistics. Inf. Sci.
417, 186–215 (2017)
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