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Abstract— In this study we propose a new method to enhance
the performance of iterative learning control (ILC). We focus
on robotic tasks dealing with adaptation to the unknown or
partially known environment, where the robot has to learn the
environment geometry in order to perform the desired task
with the given reference forces and torques. The initial motion
trajectories are obtained by kinesthetic teaching, whereas the
required forces and torques are prescribed by the task. We are
interested in incremental learning, which assures smooth and
safe operation, aiming at handling of delicate, fragile objects,
such as objects made of glass. In order to achieve these goals
we propose a new adaptive ILC scheme, where the adaptation
is supervised by reinforcement learning. We also show how
to apply ILC to orientational motion, taking into account the
curved geometry of SO(3). The performance of the proposed
algorithm is verified on a bi-manual glass wiping task.

I. INTRODUCTION

The ability to learn from previous experience is among
the most important properties of a truly autonomous robot.
A subclass of robot learning is sensorimotor learning, where
the aim is to obtain completely new or to improve previously
learned skills and adapt them to new situations given by
environmental changes. Our approach to sensorimotor adap-
tation is based on techniques from machine/robot learning
and robot control.

Robot learning is closely related to adaptive control
and reinforcement learning as well as to the developmen-
tal robotics, which considers the problem of autonomous
lifelong acquisition of repertoires of skills [1]. Traditional
robot control methods assume that exact a priori models
are available. Although remarkable results can be obtained
in this way, model-based control can be very sensitive to
inaccurately or not at all modeled system dynamics [2].
This is particularly evident for robots operating in human
environments, where compliant (low gain) control is usually
required in order to assure the safety of humans, the robot’s
environment and the robot itself. A promising solution to that
problem is the learning of models, which can be generally
divided into two subclasses: parametric and non-parametric
model learning. Parametric learning is generally based on
classical models, where the goal is to learn accurate model
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parameters. Here, we face two problems: a) a large number
of parameters have to be estimated and b) it is hard to ob-
tain general parametric models of human-robot-environment
interaction [3]. Non-parametric models do not suffer from
such limitations. By applying statistical learning methods,
the control signal that assures the desired performance can
be estimated from previously acquired data [3], [4], [5].
However, a huge collection of data is often required, which
limits the practical applicability of such methods.

On the other hand, many practical problems can be
successfully solved with simple learning schemes, such as
iterative learning control (ILC). The key idea is to use the
repetitive system dynamics to compensate for control errors.
Due to its simplicity, effectiveness and robustness, ILC is
becoming increasingly popular in the robotics community
[6], [7]. However, although ILC is intrinsically robust to the
variation of learning parameters, careful parameter tuning
is still required. In order to overcome this problem, vari-
ous adaptive ILC (AILC) algorithms were proposed in the
literature [8], [9]. Roughly, they can be divided into two sub-
classes: a) ILC with adaptation of the feedback in the current
iteration loop, and b) ILC with adaptation of the learning
mechanism (also referred to as adaptation of the previous
cycle learning). Note that combinations of both approaches
are also possible [10].

In order to prove the learning and closed-loop stability
of AILC, a number assumptions and limitations have to
be considered. Some of these limitations cannot always
be fulfilled in practice, especially for algorithms based on
adaptation of the current iteration feedback. This might be
the reason why the majority of the proposed adaptive ILC
algorithms were verified only in simulation and just a few
of them in real robot experiments.

A. Motivation

We are interested in tasks where a robot needs to handle
fragile objects. Such operations take place in many different
tasks, e. g. preparation of biological specimens, pipetting,
tissue preparation, assembly of small electronic components,
kitchen tasks such as wiping, etc. Although modern robots
can operate with high speed and precision in highly struc-
tured environments, they are often not able to execute the
desired task if an exact model of the environment is not
available. In such cases we either have to learn the necessary
task models and proceed with classical model-based control
or we can directly learn the appropriate, possibly even
optimal control policy. In our research we focus on the
direct learning and adaptation of control policies that are



needed to accomplish the given tasks. Our approach is to
learn such control policies incrementally. We ensure safe
and efficient robot performance before the optimal control
policy has been learnt by exploiting compliance of modern
robotic systems such as KUKA LWR 4. To achieve these
goals we propose a new adaptive ILC algorithm, which is
based on a gain switching technique proposed in [9]. The
initial robot policy is obtained by kinesthetic teaching, but
such policies are rarely optimal and have to be improved. The
proposed adaptive ILC algorithm is combined with state of
the art reinforcement learning approach PI2, which enhances
its performance and improves the robustness of the resulting
control policy. Moreover, it provides stable learning also with
sub-optimal learning parameters. One of the most important
properties of the proposed algorithm is that in contrast to
other adaptive iterative learning control methods, the desired
compliance does not change during the adaptation process.
It is thus applicable to robots interacting with humans and/or
handling fragile objects.

The rest of the paper is organized as follows. In Section 2
we introduce the proposed adaptive iterative learning control
algorithm and discuss the stability of the proposed scheme.
In Section 3 we describe the main result of the paper,
which is the synergy of ILC and reinforcement learning
(RL) algorithms. The performance of the proposed algorithm
is validated in Section 4, where we apply the proposed
framework to the bi-manual glass wiping task. We conclude
with a discussion of benefits of the proposed approach.

II. ADAPTIVE ITERATIVE LEARNING CONTROLLER

Most of adaptive iterative learning controllers (AILC)
adjust their parameters after the completion of each learning
cycle. As previously explained, they can be divided into
two categories: a) ILC with adaptation of the feedback in
the current iteration loop, and b) ILC with adaptation of
the learning mechanism. These two approaches are also
referred to as current cycle AILC and previous cycle AILC,
respectively [11]. The proposed approach belongs to the
second class of algorithms. The main motivation for us
was to assure compliant behavior of the robot with low
feedback gains, which cannot be achieved with current cycle
AILC. Another reason is that the feedback stability in current
cycle is always assured (providing that we properly designed
the feedback control), since the feedback does not change
through iteration. The only concern was thus to assure the
learning stability.

We assume that the dynamics of n degrees of freedom
robot interacting with the environment modeled as

τ = Hθ̈θθ + h + JT
[

f
γγγ

]
(1)

where τ ∈ Rn is a vector of joint torques, H ∈ Rn×n
is a symmetric, positive definite inertia matrix, h ∈ Rn
contains nonlinear terms due to the centrifugal, Coriolis,
friction and gravity forces, J ∈ R6×n is the robot Jacobian,
and f , γγγ ∈ R3 are the external contact forces and torques
acting on the robot’s end-effector. θθθ ∈ Rn denotes the joint

angles. The relationship between joint space and Cartesian
space accelerations is given by the following formula [12]

θ̈θθ = J+
H

([
p̈
ω̇ωω

]
− J̇θ̇θθ

)
+ Nξξξ, (2)

where J+
H = H−1JT(JH−1JT)+ = H−1/2(JH−1/2)+

denotes the inertia weighted pseudo-inverse of J. ξξξ ∈ Rn
is an arbitrary vector that determines the null space motion
and N ∈ Rn×n is the projection matrix onto the null
space of inertia weighted Jacobian. It can be computed as
N = I− J+

HJ. By inserting (2) into (1) we obtain a general
form control law for a redundant robot [13]

τc = HJ+
H

([
p̈c
ω̇ωωc

]
− J̇θ̇θθ

)
+HNξξξc+h+JT

[
f
γγγ

]
. (3)

Here parameters p̈c, ω̇ωωc, and ξξξc are used as control inputs
that should be set in such way that the task space tracking
error is minimized. The first term in Eq. (3) is the task
controller, the second term is the null space controller and
the third and the fourth term compensate for the non-linear
robot dynamics and external forces, respectively. According
to the well known impedance control law [14] we choose
the task command inputs p̈c, ω̇ωωc as

p̈c = p̈d + M−1
p (Dpėp + Kpep − f), (4)

ω̇ωωc = ω̇ωωd + M−1
q (Dqeω + Kqeq − γγγ), (5)

where subscript d denotes the desired values and variables
without the subscript are the current values as received
from the robot. Mp, Mq , Dp, Dq , Kp and Kq are posi-
tive definite, diagonal mass and inertia matrices, positional
and rotational damping matrices, positional and rotational
stiffness matrices, respectively. By subtracting the measured
forces and torques in Eq. (4) and (5) and adding them back to
(3) we preserve compliance and obtain decoupled behavior
of the system. The position and orientation tracking errors
are defined as ep = pd − p, eω = ωωωd − ωωω, and eq =
2 log(qd ∗ q). We use unit quaternions q = (v,u) ∈ R4 to
represent orientations and quaternion logarithm to compute
the quaternion difference eq log : S 7→ R3 [15], [16], which
is defined as

log(q) = log(v,u) =

 arccos(v)
u

‖u‖
, u 6= 0

[0, 0, 0]T, otherwise

, (6)

where S is a unit sphere in R4. Its inverse, i. e. the exponen-
tial map exp : R3 7→ S, is defined as

exp(r) =


(

cos (‖r‖) , sin (‖r‖) r

‖r‖

)
, r 6= 0(

1, [0, 0, 0]T
)
, otherwise

. (7)

In Eq. (4) and (5) Mp, Mq , Dp, Dq , Kp and Kq are pos-
itive definite, diagonal mass and inertia matrices, positional
and rotational damping matrices, positional and rotational
stiffness matrices, respectively.

We control the robot by inserting command accelerations
(4) and (5) into (3). Taking into account Eq. (2), the target



dynamics of the system is described by a set of 6 decoupled
equations in the form

Mpëp + Dpėp + Kpep = f , (8)
Mqėω + Dqeω + Kqeq = γγγ. (9)

In our real robot implementation of the impedance control,
the desired acceleration and velocity terms are not present in
ėp, ëp, eω , and ėω that are used in impedance equations (4)
and (5). The purpose of this simplification is to guarantee the
passivity of the system when the end effector is in contact
with the environment [17]. We further simplify the control
scheme (4) – (5) by selecting the desired mass and inertia
matrices as identity, as it is common in impedance control
[18].

By properly selecting the null space command input ξξξc,
one can control the null space motion of the robot. Khatib
[19] suggested to calculate it as follows

ξξξc = −Knθ̇θθ, (10)

which results in an energy dissipation controller.

A. AILC within the feedforward adaptation loop

As explained in the introduction, our goal is to control con-
tact forces. Force control can be accomplished in admittance
mode by modifying the reference positions and orientations
[20], i. e. we can adjust the contact forces and torques by
controlling the commanded positions and orientations. We
apply the standard ILC algorithm [6] to implement the
adaptation of the commanded positions

pd,l(k) = p0(k) + ∆pl(k) + Cpef,l(k), (11)
∆pl(k) = Q(∆pl−1(k) + Lp,lef,l−1(k)), (12)

where force tracking errors are defined as ef (k) = fd(k)−
f(k) with fd(k) and f(k) being the desired and actual forces,
respectively, while p0(k) are the positions on the initial
positional reference trajectory. For orientations we propose
a modification of the standard ILC to account for nonlinear
structure of the rotation space

qd,l(k) = exp

(
1

2
(Cqeγ,l(k) + ∆ql(k))

)
∗ q0(k), (13)

∆ql(k) = Q(∆ql−1(k) + Lq,leγ,l−1(k + 1)), (14)

where torque tracking errors are defined as eγ(k) = γγγd(k)−
γγγ(k) with γγγd(k) and γγγ(k) being the desired and actual
torques, respectively, while q0(k) are the orientations on the
initial orientational reference trajectory. Index k, 1 ≤ k ≤ T
denotes the time sample, T = τ/∆t is the number of
samples, τ the duration of the trajectory, and ∆t the sampling
time. Subscript l denotes the learning cycle. Cp ∈ R3×3,
Cq ∈ R3×3, Lp ∈ R3×3 and Lq ∈ R3×3 are diagonal,
positive definite gain matrices and Q is a discrete implemen-
tation of a low pass filter. Note that the learned ∆p ∈ R3

and ∆q ∈ R3 are translational and rotational displacements,
which are initialized to 0 at the beginning of learning. The
aim of ILC is to compute ∆p and ∆q so that the modified
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Fig. 1. Block diagram of the position part of the force based adaptation
scheme. The arrow through Lp block indicates that Lp is not constant but
changes with every learning cycle.

trajectories pd = ∆p + p0, qd = exp
(
1
2∆q

)
∗ q0 track the

desired forces and torques.
Eqs. (11) – (14) define an ILC algorithm without adjust-

ment. To achieve faster convergence, we propose to adapt
the learning gains as follows

Lp,l = βlLp,l−1, (15)
Lq,l = βlLq,l−1, , (16)

where βl ≥ 1. This adaptation rule is motivated by the work
of [21].

Similarly to [22], the proposed algorithm is a combination
of traditional impedance control law and admittance based
iterative force adaptation with increasing gains. The role
of learning is to compensate for the incompletely modeled
robot and environment dynamics and to iteratively adjust
contact forces by learning new reference positions. The main
difference to [21] is that with our formulation the adaptation
acts in the feedforward loop instead in the feedback loop.
With this choice we can assure low feedback gains necessary
for the intrinsically compliant behavior. On the other hand,
the iterative adaptation of gains in the feedback loop as
proposed in [21] was designed for free motion cases. It
eventually results in a high-gain feedback control, which
does not assure compliant behavior when interacting with
the environment.

The overall control scheme is shown in Fig. 1. For the sake
of simplicity, only the position part of the force adaptation
scheme is shown in this diagram.

B. Stability of AILC within the feedforward adaptation loop

To prove stability, we describe the environment with a
stiffness model. According to the stiffness model, contact
forces and torques in steady state can be computed as
f = Ksp(p − pe) and γγγ = 2Ksq log(q ∗ qe), where pe
and qe respectively denote the position and orientation of
the contact point in the environment and Ksp,Ksq ∈ R3×3

are the positive definite diagonal positional and rotational
stiffness matrices.

We assume that the underlying impedance controller is
properly designed to assure stable operation. Therefore, our
concern is to examine how learning affects the stability of
the system. For the sake of simplicity, learning stability will
be examined only for adaptation of the positional part of the
trajectory. Learning stability of ILC can be evaluated in time



domain applying framework of time-lifted system [6] or in
frequency domain [23], [11]. Although both approaches lead
to the similar results, frequency-domain analysis gives better
insight on how to design stable learning.

Starting point of the frequency-domain analysis is to
express the dynamics of the position controlled robot in s
domain. We describe the response of the decoupled robot
with the transfer function G(s), obtained applying Laplace
transform L to (8) and setting p̈d = ṗd = 0, yielding P(s) =
Kppd−F(s)
s2+Dps+Kp

= G(s)(KpPd(s) − F(s)). Here, we will use
the notation that uppercase letters denote L transform of the
corresponding time dependent signal denoted with low letter.
P(s) is thus L transform of p(k) and Pδ(s) is L transform
of δ(k), which is a signal that denotes upper bound of all
disturbances induced by non-modeled robot dynamics and
environment. The robot position controlled with impedance
control law derived from (8) is

P(s) = G(s)(KpPd(s)− F(s)) + Pδ(s). (17)

To simplify the notation, we will omit explicit dependence
on s in transfer functions and in L transform of the signals in
further stability analyses. According to the Fig. 1, the system
output is the force at the TCP of the robot, which is modeled
assuming known environment stiffness Ksp as

Fl = Ksp(KpGPl −Pe −Pδ −GFl), (18)

Fl =
Ksp

I + KspG
(KpGPl −Pe −Pδ)

= K∗(G∗Pl −Pe −Pδ),

where Pe denotes the environment contact positions. New
transfer functions K∗ and G∗ are introduced to simplify
the notation. According to (11,12), L transform of the error
function El, position update function Pl and learned offset
function ∆P are

El = Fd − Fl, (19)
Pl = P0 + ∆Pl + CpEl, (20)

∆Pl = Q(∆Pl−1 + LpEl−1), (21)

where Q is L transform of Q. Now, let express the error
El as a function of the error in the previous learning cycle
El−1,

El = Fd − Fl (22)
= Fd −K∗(G∗Pl −Pe −Pδ)

= Fd −K∗(G∗(P0 + ∆Pl + CpEl)−Pe −Pδ)

= Fd −K∗(G∗(P0 + Q(∆Pl-1 + LpEl-1) + CpEl)

−Pe −Pδ)

= Q(Fd −K∗(G∗(P0 + ∆Pl-1 + CpEl-1 −CpEl-1 +

LpEl-1)−Pe −Pδ))−K∗G∗CpEl +

(I−Q)(Fd −K∗(G∗P0 −Pe −Pδ))

= Q(Fd − Fl-1−K∗G∗(Lp −Cp)El-1)−K∗G∗CpEl

+(I−Q)(Fd −K∗(G∗P0 −Pe −Pδ))

= Q(I−K∗G∗(Lp −Cp))El-1 −K∗G∗CpEl +

(I−Q)(Fd −K∗(G∗P0 −Pe −Pδ)).

In the above equation we added and subtracted the term
Q(Fd −K∗(G∗(P0 + CpEl-1)−Pe −Pδ)) and used (18)
– (21). Rearranging (22) we obtain

El
El-1

=
Q(I−K∗G∗(Lp −Cp))

I + K∗G∗Cp
(23)

+
I−Q

I + K∗G∗Cp

Fd −K∗(G∗P0 −Pe −Pδ)

El−1

Asymptotic stability is assured iff El

El−1
< 1 ∀ l.

Inserting again the s dependence into transfer functions
and signals and substituting s = jω̄ in (23), where ω̄ is
the frequency, the condition for asymptotic stability becomes
[24]

Q(jω̄)(I−K∗(jω̄)G∗(jω̄)(Lp −Cp))

I + K∗(jω̄)G∗(jω̄)Cp
+

I−Q(jω̄)

I + K∗G∗(jω̄)Cp
ε < 1,∀ ω̄, (24)

where

ε =
Fd(jω̄)−K∗(jω̄)(G∗(jω̄)P0(jω̄)−Pe(jω̄)−Pδ(jω̄))

El−1(jω̄)
.

Given the known transfer function G(s) and estimated
environment stiffness Ksp we have to design such admittance
control gains Cp, learning function Q(s) and gains Lp, that
the learning error E(s) asymptotically decays to 0 when
l → ∞, Note that the nominator of the term ε is small
bounded number, since K∗(G∗P0 − Pe) ≈ Fd. It depends
only on the desired force Fd, initial demonstrated trajectory
P0, environment Pe and upper bound of disturbances Pδ
and thus does not change during the adaptation. Therefore,
ε increases when the error E decreases. Consequently, zero
learning error can be guaranteed only with the choice Q(s) =
I. On the other hand, it is generally very hard to fulfill
condition (24) with this choice. In most cases Q(s) in the
form of a low pass filter will assure the stability, but increase
learning error [7]. Therefore, the design of Q(s) is a trade
off between the robustness, stability and performance of the
learning algorithm.

Let us analyze the stability of the AILC with gain
adaptation (refereed as switching in the original approach)
given with (15) using Bode diagram. The Bode plot
in Fig. 2 was generated with the following parameters:
Kp = 500 IN/m, Dp = 2

√
(Kp), Ksp = Kp, Cp =

K−1
p , Lp,0 = Kp/2, β = 1.5. Initial gain Lp,0 was increased

in 10 steps according to (15). Initially, increasing L stabilizes
the learning and improves the learning speed, since Bode
gain stays below 0 dB for all frequencies (see Fig. 2).
However, if we further increase L, Bode gain crosses 0 dB
margin at low frequencies and learning becomes unstable.
The controller thus requires careful parameters tunning for
stable operation. On the other hand, if we want truly au-
tonomous robots, we can not rely on exact parameter tuning,
which vary from case to case. We need a mechanism, that
will constantly monitor the adaptation and autonomously
choose proper adaptation gains. A good candidate for this
mission are reinforcement learning algorithms.
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Fig. 2. Bode plot for increasing L in subsequent learning cycles. Legend
numbers show learning cycles. We can see that Bode gain drops at initial
learning cycles, but starts to increase in subsequent repetitions and crosses
learning stability margin at 0 dB after 6 cycles.

III. ENHANCING AILC WITH REINFORCEMENT
LEARNING

Reinforcement Learning (RL) is often used in robotics for
solving problems where exact models are not available. It
enables a robot to autonomously find an optimal policy by
direct trial-and-error exploration within its environment [25].
One of the major problems in autonomous exploration is
a huge search space, which is determined by the degrees
of freedom of controlled variables and underlying policy
representations. The probabilistic policy improvement RL
algorithms like PI2 [26] and PoWER [27] can scale to
complex learning systems and minimize the number of
tuning parameters. However, due to a high dimensionality of
the parameter space, the adaptation speed is still low, which
limits the applicability of RL for robot control. The main
reason for the low adaptation speed is random search, which
is usually applied in RL and is needed to ensure convergence.
This gave raise to the idea to replace the random search with
a more focused search process, e. g. an AILC. This way we
can join the high convergence rate of the AILC algorithm
with the ability of RL algorithm to discard those parts of the
learning process where the robot performed badly and persist
searching within those parameters where the performance
was good. Note, however, that the proposed approach can be
used only for problems that can be addressed by ILC. There
are problems that can be solved by RL but not with ILC. e. g.
when the cost function is not directly related to the control
signal.

The proposed approach can resolve the potential learning
instabilities of AILC. Such instabilities, unlike feedback
instabilities, do not result in a sudden “explosion” of the
control signal. They rather manifest through a slow raise
of the tracking error, which usually results in an increased
oscillation around the reference value of the control signal.
Such oscillations are caused by a badly learned feedforward
signal. In this paper we propose to monitor the learning
cycles and optimize the feedforward ILC signal with respect
to a given criterion. RL algorithm is a perfect candidate to
implement this optimization process.

Although there are many similarities between ILC and
RL [28], there are differences in how they act. While ILC
acts directly on signals, RL acts on states or parameters that
describe the control signals. Therefore, in order to integrate
ILC and RL algorithms, it is necessary to parametrize the
time varying ILC parameters. A suitable choice for this
parametrization are radial basis function (RBF). Our ap-
proach aims at modifying the feedforward control signals
∆p(k), ∆q(k) and learning gains Lp, Lq , which are initially
set by AILC algorithm (11) – (16). Note that learning gains
in AILC formulation do not depend on time, since they
change only after each learning cycle. Here we will encode
them as time variable signals Lp(k) and Lq(k) in order to
let the RL algorithm to optimize their values in each time
sample. Namely, in original AILC formulation, feedforward
control signals ∆p(k), ∆q(k) depend only on the past
tracking errors and fixed learning gains. By introducing time
variability of the learning gains, one can better shape the
feedforward control signals.

The signals described above are thus encoded as a
weighted sum of M Gaussian kernels for each parameter
dimension

∆pj(k) =

∑M
i=1 wp,i,jΨi(k∆t)∑M

i=1 Ψi(k∆t)
, j = 1, 2, 3, (25)

∆qj(k) =

∑M
i=1 wq,i,jΨi(k∆t)∑M

i=1 Ψi(k∆t)
, j = 1, 2, 3, (26)

Lp,j(k) =

∑M
i=1 wpL,i,jΨi(k∆t)∑M

i=1 Ψi(k∆t)
, j = 1, 2, 3, (27)

Lq,j(k) =

∑M
i=1 wqL,i,jΨi(k∆t)∑M

i=1 Ψi(k∆t)
, j = 1, 2, 3, (28)

where
Ψi(t) = exp

(
−hi (t− ci)2

)
(29)

Here ∆t is the sampling time, ci are the centers of radial
basis functions distributed along the time evolution of the
trajectory, and hi > 0 their widths. Weights wp/q/Lp/Lq,i,j

determine the shape of the corresponding signal.
To calculate wp,i,j from ∆pj(k), 1 ≤ k ≤ T, we need to

solve
Bwp,j = u, (30)

with

wp,j =

 wp,1,j
...

wp,M,j

 ,u =

 ∆pj(1)
...

∆pj(T )

 , (31)

and the system matrix B ∈ RT×M defined as

B =



ψ1(∆t)∑M
j=1 ψj(∆t)

· · · ψM (∆t)∑M
j=1 ψj(∆t)

...
...

...
ψ1(T∆t)∑M
j=1 ψj(T∆t)

· · · ψM (T∆t)∑M
j=1 ψj(T∆t)

 . (32)



The weights wq,j , wpL,j and wqL,j are calculated in the
same way.

In order to apply RL, a cost function has to be defined
[25]. For the learning of control signals, both the immediate
and terminal costs are important. A straightforward choice
for the immediate cost might be the norm of the tracking
error at the current time. However, a simple norm of the
tracking error might not be appropriate to detect unstable
learning. There are many ways how to detect instable be-
havior, such as passivity observers [29], stability observers
[30], instability indexes [31], etc. In this work we propose to
detect learning instabilities by observing oscillations of the
force error signal. The Bode plot depicted in Fig. 2 shows
that the stability margin is violated at low frequencies with
improper learning parameter settings. Consequently, learning
instability will be manifested as low frequency oscillations,
which can be evaluated by calculation of the signal envelope
using Hilbert transform [32]. The proposed cost function
combines this criteria with the norm of force and torque
tracking errors. Immediate cost can be thus calculated as

ci(k) = ‖ef (k)‖+ ‖eq(k)‖+ ‖H(ef (k))‖+ ‖H(eq(k))‖
(33)

where H denotes the Hilbert transform. Terminal cost ct
is application dependent and therefore cannot be defined
independently of the task. It usually describes how well the
robot accomplished the desired task.

After each execution of the task (rollout), new weights for
∆p, ∆q Lp, and Lq are calculated as

W∗ = Υ(π,W, ci, ct) (34)

where π denotes the set of all signals ∆p(t), ∆q(t),
Lp(t), Lq(t), f(t), γγγ(t), W combines all weights wp,j ,wq,j ,
wpL,j ,wqL,j , j = 1, 2, 3, and ci, ct denote all intermediate
and terminal costs obtained during exploration. Υ denotes
the reinforcement learning algorithm, e. g. PI2 [26]. A good
description of PI2 can be found in [33]. New control signals
∆p∗(k), ∆q∗(k) and ILC parameters L∗

p(k), L∗
q(k) are

calculated from optimized weights W∗ using Eqs. (25) –
(28). In order to speed up learning and reject the unsuccessful
attempts, the input data to (34) are reordered after each
learning cycle using importance sampling [25]. The entire
learning procedure is summarized in Algorithm 1.

Note that encoding of the signals with RBFs smooths
the original signals. As shown in [34], the output signals
generated by RBFs can be approximated with signals passed
though a second order low pass filter, whose cutoff frequency
depends on the number of kernel function M and widths of
kernel functions hi. Therefore it is not necessary to explicitly
implement the low pass filter Q in (12), (14), which is
otherwise needed to improve the learning stability at higher
frequencies [7], [34]. The entire control scheme of this new
algorithm, referred to as AILC-RL, is outlined in Fig. 3.

IV. EXPERIMENTAL EVALUATION

The proposed approach was experimentally evaluated on
a challenging task of bi-manual glass wiping. This task is

Algorithm 1: trajectory adaptation scheme
Input: reference trajectory and force-torque profiles

p0(k),q0(k), fd(k), γγγd(k), k = 1, . . . , T
initialize control gains Kp, Kq , Dp, Dq and
dynamic and kinematic parameters H, h, J
initialize ILC gains Lp,0, Lq,0, Cp, and Cq

initialize compensation signals ∆p = ∆q = 0
Output: optimal control signal ∆p(k), ∆q(k) and ILC

gains Lp(k),Lq(k)

1 for l = 1, . . . , max learning cycles do
2 execute one step of AILC (11) – (16)
3 collect intermediate costs ci and terminal cost ct
4 calculate weights wp, wq,wpL and wqL from

∆pl(k), ∆ql(k), Lp,l(k) and Lq,l(k) using
regression (30)

5 save data in the importance sampler
6 estimate new optimized weights using RL (34)
7 using (25) – (28) calculate ∆pl+1(k), ∆ql+1(k),

Lp,l+1, and Lq,l+1 from optimized weights W∗

Cp G Kspfd

p0 pe

f

Δp

-

Lp

Kp
-

AILC-RL

-Δp*
PI2

Fig. 3. Block diagram of position part of AILC-RL control scheme. The
arrow through Lp block indicates that Lp is not constant but changes with
every time sample according to the estimated value from PI2 algorithm.

naturally described in cylindrical coordinate system with
coordinates [r ϕ z]T . The initial trajectory for this task
was obtained by human demonstration applying kinesthetic
guiding for cylindrically shaped glasses. After that, we
replaced the glass with a rectangular, cone-shaped glass (see
Fig. 4). The goal was to improve and adapt the demonstrated
motion by assuring perfect tracking of force-torque profiles
after learning. Experimental setup consisted of two 7 degrees
of freedom KUKA LWR 4 robot arms, mounted on torso
with one rotational degree of freedom. The right and left
robot arm held the glass and the sponge with the Barret
hand, as shown in Fig. 4.

For bi-manual robot control we applied coordinated task-
space framework as presented in [35]. Within this framework,
a bi-manual task is decoupled into relative and absolute
coordinates [36], which can be controlled independently.
In this task only relative coordinates are important for the
performance of the task, as it is generally unimportant where
the robot holds the glass during wiping. Consequently, this
task was characterized by a large null space with 8 redundant
degrees of freedom. The relative coordinates were controlled
with impedance control law (3), (4). The initial parameters



Fig. 4. The image above shows the demonstration of a glass wiping policy.
Bi-manual task adaptation to a glass with different geometry using AILC-RL
is shown in the image below. Note that we substituted round shaped glass
with the rectangular shaped one in order to show the adaptation capabilities
of the proposed approach.

were set as follows: Kp = 200 IN/m, Kq = 100 INm/rd,
Cp = K−1

p , Cq = K−1
q , Lp = Cp/2, Lq = Cq/2,

β = 1.35, fd = diag(5, 0, 0) N, γγγd = 0Nm. The terminal
cost was defined as the norm of the tracking errors

ct =

T∑
k=1

‖ef (k)‖+ ‖eq(k)‖) (35)

In our learning experiment 20 learning cycles were exe-
cuted. Fig. 5 shows radial forces fr measured by a wrist
mounted ATI force-torque sensor, radial force error efr ,
radial compensation signal ∆pr, the learned ILC gain for the
radial dimension Lpr and the intermediate ci and terminal
costs ct during the subsequent adaptation cycles. For clarity,
results are shown for radial cylindrical relative coordinate (r)
only, as most of adaptation happens in this direction.

We compared the performance of the proposed AILC-RL
with AILC controller with the same settings. The result of
comparison is shown in terminal cost bar of Fig. 5. Note
that the initial convergence of AILC is comparable to AILC-
RL, in some cases AILC even converges slightly faster.
This occurs because PI2 algorithm combines all past roll
outs to predict new values, which slows down the initial
convergence. However, after 8 iterations AILC starts to
diverge, whereas AILC-RL still improves the cost and overall
performance. Note also that time dependent learning gains
Lp,r converge to steady state values after 10 learning cycles.

V. CONCLUSIONS

In this paper we proposed a new algorithm for adap-
tation of control policies using AILC and RL based on
force feedback. The resulting AILC-RL algorithm effectively
combines fast convergence of ILC and robustness of RL.
We also showed how ILC can be applied for the learning of
orientation displacements represented by unit quaternions.
In order to increase the exploration ability of standard ILC,

we applied AILC with gain adaptation policy. Perhaps the
most important feature of the proposed algorithm is that it
always results in a stable policy, even though the original
AILC algorithm can exhibit learning instabilities. This prop-
erty was obtained by adding RL-based optimization layer
to the algorithm, which constantly monitors and optimizes
feedforward compensations signals, AILC gains, and track-
ing errors. Consequently, the proposed learning algorithm
does not require careful parameter tuning to assure stable
performance. Here we note that the applied RL algorithm
generates the new and improved policies based on search
provided by AILC.

Our goal was to assure compliant behavior during adap-
tation. For this reason we applied impedance controller with
admittance-based force feedback. The proposed learning ap-
proach was validated in a bi-manual glass wiping experiment.
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[10] M. Norrlöf, “An adaptive iterative learning control algorithm with
experiments on an industrial robot,” IEEE Transactions on Robotics
and Automation, vol. 18, no. 2, pp. 245–251, 2002.

[11] J.-X. Xu, S. K. Panda, and T. H. Lee, Real-time Iterative Learning
Control. London, UK: Springer, 2009.

[12] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Opera-
tional Space Control: A Theoretical and Empirical Comparison,” The
International Journal of Robotics Research, vol. 27, no. 6, pp. 737
–757, 2008.
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