Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (three-layer composite) .

1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Validation of the recycled backfill material for the landslide stabilization at a railway line
Karmen Fifer Bizjak, Barbara Likar, 2024, izvirni znanstveni članek

Povzetek: In mountain areas landslides many times endanger safety of transport infrastructures, and these must be stabilized with retaining wall structures. In this paper the validation of a new composite as a backfill material for landslide stabilization with a large scale demo retaining wall is presented. The new composite was made from residues of paper industry, which uses for its production deinking process. New composite was validated with the laboratory tests, construction of small demo sites and at the end with a large demo retaining wall structure with a length of 50 m. It was concluded that the paper sludge ash and the paper sludge are in proportion 70:30, compacted on the optimal water content and maximum dry density, reached sufficient uniaxial compressive and shear strength. However, the composite's hydration processes required the definition of an optimal time between the composite mixing and installation. In 2019, the retaining wall structure from the new composite was successfully built. The large demo structure is an example of the knowledge transfer from the laboratory to the construction site, in which composite and installing technology could be verified.
Ključne besede: landslides, recycled backfill material, paper sludge ash, geotechnical composite, railway line, recycled material, environment
Objavljeno v DiRROS: 26.03.2024; Ogledov: 41; Prenosov: 22
.pdf Celotno besedilo (2,96 MB)
Gradivo ima več datotek! Več...

2.
Composite beams made of waste wood-particle boards, fastened to solid timber frame by dowel-type fasteners
Meta Kržan, Tomaž Pazlar, Boštjan Ber, 2023, izvirni znanstveni članek

Povzetek: To increase the sustainability of prefabricated timber buildings and constructions, composite timber beams with “box” cross-sections were developed in collaboration with an industry partner. They were constructed from a solid timber frame and from webs made of residual waste wood- particle boards from prefabricated timber buildings production. The developed beams’ design concepts presented in this paper were governed by architectural features of prefabricated timber buildings, geometrical limitations, available production technology, and structural demand related to various possible applications. The paper presents the results of experimental bending tests of six variations of the developed composite timber beams constructed by mechanical fasteners only. The developed design concept of composite timber beams without adhesives is beneficial compared to glued beams in terms of design for deconstruction and lower VOC emissions. The tests were conducted to study the influence of the following parameters on the beams’ mechanical behavior: (i) web material (oriented strand boards (OSBs) vs. cement-particle boards); (ii) the influence of beam timber frame design (flanges and web stiffeners vs. flanges, web stiffeners, and compressive diagonals), and (iii) the influence of stiffener–flange joint design. Besides the beams’ load-bearing capacities, their linear and non-linear stiffness characteristics were the main research interest. While adding compressive timber diagonals did not prove to significantly increase the stiffness of the beams in the case of cement-particle board webs, it increased their load-bearing capacity by enabling the failure of flanges instead of prior webs and stiffener–flange joints failure. For beams with OSB webs, failure of the bottom flange was achieved already with the “basic” timber frame design, but timber diagonals proved beneficial to increase the stiffness characteristics. Finally, mechanical characteristics of the developed beams needed in structural design for their application are provided together with further development guidelines.
Ključne besede: composite timber beam, box beam, OSB, cement-particle boards, innovative engineered wood product, experimental tests, flexural performance, mechanical fasteners, open access
Objavljeno v DiRROS: 29.05.2023; Ogledov: 230; Prenosov: 132
.pdf Celotno besedilo (7,82 MB)
Gradivo ima več datotek! Več...

3.
Composite landslide in the dynamic alpine conditions: a case study of Urbas landslide
Ela Šegina, Mateja Jemec Auflič, Matija Zupan, Jernej Jež, Tina Peternel, 2022, izvirni znanstveni članek

Povzetek: The alpine environment is characterized by complex geology, high-energy terrain, deeply incised river valleys with high erosional potential, extreme weather conditions and dynamic geomorphic processes. Such settings provide favourable conditions for the formation of composite landslides rather than individual slope mass movement phenomena. As an example, we present the kinematics of the composite landslide Urbas in the North of Slovenia which developed in the complex geological and morphological settings characteristic of the alpine environment. The research combines several monitoring techniques and involves the integration of both surface and subsurface displacements measured in the landslide area. The results indicate that the composite sliding process consists of several simultaneous and interrelated types of movements occurring in different segments of the unstable mass that are governed by different mechanisms of displacements, such as rockfall, sliding and debris flow. The kinematic characteristics of a deep-seated landslide that formed in such conditions vary spatially, but is rather homogenuous vertically, indicating translational type of movement. Spatial kinematic heterogeneity is primarily related to the diverse terrain topography, reflecting in different displacement trends. Based on the revealed kinematic proprieties of the sliding material, the sediment discharge illustrates the sliding material balance which estimates the volume of the retaining material that represents the potential for slope mass movement events of larger scales.
Ključne besede: composite landslide, alpine conditions, kinematics, monitoring, sediment discharge
Objavljeno v DiRROS: 15.12.2022; Ogledov: 582; Prenosov: 164
.pdf Celotno besedilo (8,00 MB)

4.
5.
Iskanje izvedeno v 0.12 sek.
Na vrh