Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (nanoparticles) .

1 - 7 / 7
First pagePrevious page1Next pageLast page
1.
Recovery study of gold nanoparticle markers from lateral flow immunoassays
Tilen Švarc, Peter Majerič, Darja Feizpour, Žiga Jelen, Matej Zadravec, Timi Gomboc, Rebeka Rudolf, 2023, original scientific article

Abstract: Lateral flow immunoassays (LFIAs) are a simple diagnostic device used to detect targeted analytes. Wasted and unused rapid antigen lateral flow immunoassays represent mass waste that needs to be broken down and recycled into new material components. The aim of this study was to recover gold nanoparticles that are used as markers in lateral flow immunoassays. For this purpose, a dissolution process with aqua regia was utilised, where gold nanoparticles were released from the lateral flow immunoassay conjugate pads. The obtained solution was then concentrated further with gold chloride salt (HAuCl4) so that it could be used for the synthesis of new gold nanoparticles in the process of ultrasonic spray pyrolysis (USP). Various characterisation methods including scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy and optical emission spectrometry with inductively coupled plasma were used during this study. The results of this study showed that the recovery of gold nanoparticles from lateral flow immunoassays is possible, and the newly synthesised gold nanoparticles represent the possibility for incorporation into new products.
Keywords: gold nanoparticles, recovery, LFIA, ultrasonic spray pyrolysis, characterisation
Published in DiRROS: 02.02.2024; Views: 110; Downloads: 40
.pdf Full text (6,25 MB)
This document has many files! More...

2.
Synergistic effect of screen-printed Al(OH)3 nanoparticles and phosphorylated cellulose nanofibrils on the thermophysiological comfort and high-intensive heat protection properties of flame-retardant fabric
Tjaša Kolar, Jelka Geršak, Nataša Knez, Vanja Kokol, 2022, original scientific article

Abstract: Al(OH)3 nanoparticles (ATH NPs) and phosphorylated cellulose nanofibrils (PCNFs) were used as user-friendly and comfortable coating components on flame-retardant fabric to improve its thermophysiological comfort and high-intensive heat protection properties. The effect of the PCNF imprinting and its attachment after the post-printing of a hydrophobic polyacrylate (AP) on the same (back side) or the other (front) side of the fabric, with and without the addition of ATH NPs, was considered, to maintain the front side (facing the wearer) as hydrophilic while keeping the back side (facing the outside) hydrophobic. The amount of coatings applied and their patterning were studied, varied with the ATH NPs’ concentration (1.7, 3.3 and 6.7 wt%) and screen mesh size used (60 and 135), based on the coating’ mass, fabric’s air permeability, thickness and microstructure. The reduced moisture build-up (55%), increased the water vapour (13%) and heat (12%) transfer from the skin, were assessed by applying PCNF under the AP, being more pronounced in the case of using a 135 mesh-sized screen, given the smaller, more densely distributed, thinner and imprinted pattern coatings. These effects were further improved by the addition of nanoporous ATH NPs, which allowed more homogeneous spreading of the moisture and its faster transport. Such a treatment also shifted the fabric’s degradation temperature towards higher values (up to 15°C), retained up to 30% of high-heat flux (21 kW/m2), prolonged the time to ignition by 11 s and reduced the total heat released by up to 60%, thereby providing better protection when exposed to the heat, due to the presence of the phosphorous (PCNF) promoted generation of an Al2O3 char acting as a barrier layer, while also reducing the production of heat and generation of smoke by 75%.
Keywords: flame-retardant textile, Al(OH)3 nanoparticles, phosphorylated cellulose nanofibrils, screen-printing, thermophysiological comfort, heat protection
Published in DiRROS: 28.04.2023; Views: 409; Downloads: 107
.pdf Full text (2,91 MB)
This document has many files! More...

3.
Synthesis and characterization of plasmonic ▫$Au/TiO_2$▫ nanorod solids for heterogeneous photocatalysis
Špela Slapničar, Gregor Žerjav, Janez Zavašnik, Matjaž Finšgar, Albin Pintar, 2023, original scientific article

Abstract: Plasmonic Au (1 wt%) catalysts deposited on hydrothermally synthesized TiO2 nanorods (TNR) were investigated in this study. Based on the duration of mixing of the Au precursor/TNR suspension during the wet impregnation synthesis and parameters of the end calcination, Au/TiO2 catalysts with different sizes of Au nanoparticles (Au NPs) were obtained. The prepared solids were thoroughly characterized by several instrumental techniques to investigate property-activity relationships. Regardless of the size of Au particles on the catalyst surface, an absorption peak at 550 nm occurred in all UV-Vis diffuse reflectance spectra of the investigated Au/TiO2 catalysts, which is characteristic of the localized surface plasmon resonance effect exerted by metallic Au NPs. By measuring the formation of reactive oxygen species under visible-light illumination using various scavengers, the production of superoxide anion radicals (O2•single bond) and hydroxyl radicals were identified, however, the former were found to represent the main reactive oxygen species that govern the oxidation of aqueous bisphenol A (BPA) employed as a model organic pollutant. The activity of Au/TiO2 catalysts for the generation of O2•single bond radicals (and BPA oxidation) increases by increasing the Schottky barrier height, which is due to the slow reduction of water-dissolved O2 on the catalyst surface.
Keywords: heterogeneous photocatalysis, titanate nanorods, gold nanoparticles, wet impregnation, localized surface plasmon resonance effect
Published in DiRROS: 26.04.2023; Views: 439; Downloads: 201
.pdf Full text (4,16 MB)
This document has many files! More...

4.
Analyte-driven clustering of bio-conjugated magnetic nanoparticles
Tilen Potisk, Jurij Sablić, Daniel Svenšek, Elena Sanz-de Diego, Francisco J. Teran, Matej Praprotnik, 2023, original scientific article

Keywords: biochemistry, nanoparticles, magnetic nanoparticles, proteins, biosensors
Published in DiRROS: 16.03.2023; Views: 476; Downloads: 191
.pdf Full text (3,86 MB)
This document has many files! More...

5.
6.
7.
Search done in 0.22 sec.
Back to top