Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (CO2) .

1 - 7 / 7
First pagePrevious page1Next pageLast page
1.
Extreme environments simplify reassembly of communities of arbuscular mycorrhizal fungi
Nataša Šibanc, Dave R. Clark, Thorunn Helgason, Alex J. Dumbrell, Irena Maček, 2024, original scientific article

Abstract: The ecological impacts of long-term (press) disturbance on mechanisms regulating the relative abundance (i.e., commonness or rarity) and temporal dynamics of species within a community remain largely unknown. This is particularly true for the functionally important arbuscular mycorrhizal (AM) fungi; obligate plant-root endosymbionts that colonize more than two-thirds of terrestrial plant species. Here, we use high-resolution amplicon sequencing to examine how AM fungal communities in a specific extreme ecosystem—mofettes or natural CO2 springs caused by geological CO2 exhalations—are affected by long-term stress. We found that in mofettes, specific and temporally stable communities form as a subset of the local metacommunity. These communities are less diverse and dominated by adapted, “stress tolerant” taxa. Those taxa are rare in control locations and more benign environments worldwide, but show a stable temporal pattern in the extreme sites, consistently dominating the communities in grassland mofettes. This pattern of lower diversity and high dominance of specific taxa has been confirmed as relatively stable over several sampling years and is independently observed across multiple geographic locations (mofettes in different countries). This study implies that the response of soil microbial community composition to long-term stress is relatively predictable, which can also reflect the community response to other anthropogenic stressors (e.g., heavy metal pollution or land use change). Moreover, as AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in community structure in response to long-term environmental change have the potential to impact terrestrial plant communities and their productivity
Keywords: arbuscular mycorrhiza, elevated CO2, long-term experiments, soil biodiversity, soil hypoxia, next-generation sequencing, NGS
Published in DiRROS: 28.02.2024; Views: 123; Downloads: 59
.pdf Full text (1,45 MB)
This document has many files! More...

2.
Photocatalytic CO2 reduction over mesoporous TiO2 photocatalysts
Martin Reli, Peter Nadrah, Miroslava Filip Edelmannová, Rudolf Ricka, Andrijana Sever Škapin, Urška Lavrenčič Štangar, Kamila Kočí, 2024, original scientific article

Abstract: In this study, we investigated different synthesis methods (template-free and template-based) using copolymers of poly(ethylene oxide) and poly(propylene oxide) to enhance the CO2 reduction activity of mesoporous TiO2. Our main goal was to identify key factors affecting photocatalyst efficiency and selectivity. We compared the newly synthesized TiO2 photocatalysts with the commercial photocatalyst P25. Among the materials studied, TiO2-P123 in its pure anatase form demonstrated the highest photoreduction efficiency and CO2 selectivity. In contrast, TiO2-EG, TiO2-F127, and P25, which contained both rutile and anatase phases, exhibited decreased photoactivity due to the formation of a type II heterojunction between the phases and higher oxygen adsorption on rutile's surface. Additionally, we observed that the choice of chemicals for photocatalyst preparation significantly influenced the specific surface area. TiO2-P123, the most active photocatalyst, had the highest specific surface area, providing more reactive sites for improved light absorption efficiency and prolonged electron-hole pair lifetimes, resulting in enhanced photocatalytic activity. We also calculated apparent quantum yields to support our findings.
Keywords: CO2 reduction, TiO2, photocatalysis, mesoporous material, Sol-gel method
Published in DiRROS: 14.11.2023; Views: 338; Downloads: 33
.pdf Full text (2,42 MB)
This document has many files! More...

3.
Methodology for evaluating the CO2 sequestration capacity of waste ashes
Sara Tominc, Vilma Ducman, 2023, original scientific article

Abstract: The concentration of CO2 in the atmosphere is constantly increasing, leading to an increase in the average global temperature and, thus, affecting climate change. Hence, various initiatives have been proposed to mitigate this process, among which CO2 sequestration is a technically simple and efficient approach. The spontaneous carbonation of ashes with atmospheric CO2 is very slow, and this is why accelerated carbonation is encouraged. However, not all ashes are equally suitable for this process, so a methodology to evaluate their potential should be developed. Such a methodology involves a combination of techniques, from theoretical calculations to XRF, XRD, DTA-TG, and the calcimetric determination of the CaCO3 content. The present study followed the approach of exposing ashes to accelerated carbonation conditions (4% v/v CO2, 50–55% and 80–85% RH, 20 ◦C) in a closed carbonation chamber for different periods of time until the maximum CO2 uptake is reached. The amount of sequestered CO2 was quantified by thermogravimetry. The results show that the highest CO2 sequestration capacity (33.8%) and carbonation efficiency (67.9%) were obtained for wood biomass bottom ash. This method was applied to eight combustion ashes and could serve to evaluate other ashes or comparable carbon storage materials.
Keywords: CO2 sequestration, carbonation efficiency, coal ash, wood biomass ash, co-combustion ash, DTA-TG analysis
Published in DiRROS: 08.08.2023; Views: 358; Downloads: 147
.pdf Full text (3,73 MB)
This document has many files! More...
This document is also a collection of 1 document!

4.
Dataset for the article Methodology for evaluating the CO2 sequestration capacity of waste ashes
Vilma Ducman, Sara Tominc, 2023, complete scientific database of research data

Abstract: The dataset supports the data in the tables and figures in the article Methodology for evaluating the CO2 sequestration capacity of waste ashes (doi: 10.3390/ma16155284). It contains the original masses of waste ash before and during carbonation treatment, the sequestered CO2 masses after carbonation treatment, mass uptake calculations, calcimetric measurements, calculations of theoretical maximum sequestered CO2 (based on XRF results) and carbonation efficiency (CE), original results of DTA/TG analysis of individual ashes, original results of XRF measurement and data from XRD analyses supported by X-ray diffractograms not published in the article.
Keywords: CO2 sequestration, carbonation efficiency, coal ash, wood biomass ash, co-combustion ash, DTA-TG analysis
Published in DiRROS: 14.07.2023; Views: 516; Downloads: 240
.xlsx Research data (245,99 KB)
This document has many files! More...

5.
6.
Harvesting intensity and tree species affect soil respiration in uneven-aged Dinaric forest stands
Matjaž Čater, Eva Dařenová, Primož Simončič, 2021, original scientific article

Abstract: Forest management, especially thinning and harvesting measures, has a significant impact on the forest carbon balance especially in the forests with long-term continuous cover history. We measured soil CO2 efflux (Rs) in three forest complexes of mixed, uneven-aged Dinaric forests with predominating silver fir (Abies alba Mill.), beech (Fagus sylvatica L.), and Norway spruce (Picea abies Karst.). Rs was measured after removal of mature forest stands with 50% and 100% intensity of living stock and compared with Rs on the control plots without any applied silvicultural measures. Rs was measured monthly in three consecutive 2012, 2013 and 2014 growing periods. Soil CO2 efflux increased after harvest of both intensities in all studied forest stands. The biggest increase was measured in beech stands and amounted up to 47 and 69% for 50% and 100% harvest intensities, respectively. The effect of harvest on Rs in spruce and fir stands was similar - up to 26% for 50% harvest intensity and 48% for 100% harvest intensity. Despite the biggest increase after harvest, Rs in beech stands returned the fastest to the level of the uncut forest and this levelling period (LP) took 14-17 months with a little delay of the stands with 100% harvest intensity. The LP for all fir stands, for spruce stands with 50% harvest intensity and for one spruce stand with 100% harvest intensity, was 26-29 months. At two spruce stands with 100% harvest intensity we did not record Rs levelling during our three-year study. This study involved forest stands of three predominating tree species growing under the same conditions, which allowed us to determine the species-specific sensitivity of soil CO2 efflux to the different harvesting intensities.
Keywords: harvesting intensity, soil CO2 efflux, silviculture, carbon release, silver fir forests, Beech forestrs, Norway spruce forests
Published in DiRROS: 08.10.2020; Views: 1307; Downloads: 556
.pdf Full text (1,11 MB)
This document has many files! More...

7.
Measuring techniques for concentration and stable isotopologues of CO2 in a terrestrial ecosystem : a review
Grega E. Voglar, Saša Zavadlav, Tom Levanič, Mitja Ferlan, 2019, review article

Abstract: Measurements of carbon dioxide and their stable isotopes are propulsive research tool in ecology and environmental science as they can give us insight into carbon cycle. They are widely used to investigate both natural and anthropogenic carbon sources in the atmosphere, hydrosphere and geosphere, as well as the exchange between these reservoirs. In this paper, we provide a basic overview of two different analytical measurement techniques, isotope ratio mass spectrometry (IRMS) and laser-absorption spectroscopy (LAS) which have been developed and utilized for monitoring of CO2 isotopologues in ecosystem. We present the basics for each technique, however with the emphasis on LAS measurement technique we are targeting readers who are not familiar with this topic. A major objective of this paper is to illustrate the current value and future potential of various analytical instruments in a wide range of applications deployed in the terrestrial ecosystem. Finally, we draw a conclusion from recent research campaigns by presenting a decision tree to better understand and choose a correct application combination for a selected scale of ecosystem.
Keywords: Isotope ratio mass spectrometry, laser-absorption spectroscopy, CO2 isotopologues, terrestrial ecosystem, decision tree, spectroscopic databases
Published in DiRROS: 18.02.2020; Views: 1750; Downloads: 775
.pdf Full text (1,60 MB)
This document has many files! More...

Search done in 0.16 sec.
Back to top