Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Mo��ina Barbara) .

61 - 70 / 922
First pagePrevious page3456789101112Next pageLast page
61.
Microwave irradiation of alkali - activated metakaolin slurry
Barbara Horvat, Branka Mušič, Majda Pavlin, Vilma Ducman, 2023, published scientific conference contribution

Abstract: The building and civil engineering industry generates more than 40% of man-caused carbon emissions, consumes a lot of energy just to produce building materials, generates a large amount of waste through construction and demolition, and consumes a large amount of natural resources. One of the possible solutions is to use alkali-activated materials, which can use waste instead of raw materials and are produced at lower temperatures, with less energy consumption and in less time than traditional building products. All of this lowers the carbon footprint, which could be further reduced by the timely-short implementation of microwave irradiation in the early stages of alkali-activation synthesis. Therefore, metakaolin activated with Na-water glass in a theoretically optimal ratio was irradiated with microwaves of 2.45 GHz at powers of 100 W and 1000 W for 1 min, and compared to non-irradiated reference cured only at room conditions. Samples prepared at higher power, i.e., 1000 W, solidified completely and foamed. TG-DTA was performed on all samples in the early stages of curing, mechanical strengths were measured on 3 and 28-day- old samples, and leaching tests on aged samples.
Keywords: metakaolin, alkali activated material, alkali activated foams, microwave irradiation
Published in DiRROS: 28.11.2023; Views: 226; Downloads: 95
.pdf Full text (791,17 KB)
This document has many files! More...

62.
63.
64.
The LANDSUPPORT geospatial decision support system (S-DSS) vision : operational tools to implement sustainability policies in land planning and management
Fabio Terribile, Marco Acutis, Antonella Agrillo, Erlisiana Anzalone, Sayed Azam-Ali, Marialaura Bancheri, Peter Baumann, Barbara Birli, Antonello Bonfante, Marco Botta, Mitja Ferlan, Jernej Jevšenak, Primož Simončič, Mitja Skudnik, 2023, original scientific article

Abstract: Nowadays, there is contrasting evidence between the ongoing continuing and widespread environmental degradation and the many means to implement environmental sustainability actions starting from good policies (e.g. EU New Green Deal, CAP), powerful technologies (e.g. new satellites, drones, IoT sensors), large databases and large stakeholder engagement (e.g. EIP-AGRI, living labs). Here, we argue that to tackle the above contrasting issues dealing with land degradation, it is very much required to develop and use friendly and freely available web-based operational tools to support both the implementation of environmental and agriculture policies and enable to take positive environmental sustainability actions by all stakeholders. Our solution is the S-DSS LANDSUPPORT platform, consisting of a free web-based smart Geospatial CyberInfrastructure containing 15 macro-tools (and more than 100 elementary tools), co-designed with different types of stakeholders and their different needs, dealing with sustainability in agriculture, forestry and spatial planning. LANDSUPPORT condenses many features into one system, the main ones of which were (i) Web-GIS facilities, connection with (ii) satellite data, (iii) Earth Critical Zone data and (iv) climate datasets including climate change and weather forecast data, (v) data cube technology enabling us to read/write when dealing with very large datasets (e.g. daily climatic data obtained in real time for any region in Europe), (vi) a large set of static and dynamic modelling engines (e.g. crop growth, water balance, rural integrity, etc.) allowing uncertainty analysis and what if modelling and (vii) HPC (both CPU and GPU) to run simulation modelling ‘on-the-fly’ in real time. Two case studies (a third case is reported in the Supplementary materials), with their results and stats, covering different regions and spatial extents and using three distinct operational tools all connected to lower land degradation processes (Crop growth, Machine Learning Forest Simulator and GeOC), are featured in this paper to highlight the platform's functioning. Landsupport is used by a large community of stakeholders and will remain operational, open and free long after the project ends. This position is rooted in the evidence showing that we need to leave these tools as open as possible and engage as much as possible with a large community of users to protect soils and land.
Keywords: land degradation, land management, soil, spatial decision support system, sustainability
Published in DiRROS: 13.11.2023; Views: 313; Downloads: 155
.pdf Full text (4,42 MB)
This document has many files! More...

65.
66.
67.
68.
69.
70.
Search done in 0.4 sec.
Back to top