Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
Raziskovalni podatki

Možnosti:
  Ponastavi

Iskalni niz: "avtor" (��vent Andrej) .

1 - 10 / 293
Na začetekNa prejšnjo stran12345678910Na naslednjo stranNa konec
1.
2.
3.
4.
5.
6.
7.
A real-time architecture for the identification of faulty magnetic sensors in the JET Tokamak
Andrej Trkov, Igor Lengar, Luka Snoj, L. Zabeo, D. F. Valcárcel, Adam V. Stephen, F. Sartori, F.G. Rimini, F. Maviglia, P.R. Lomas, H. Fernandes, R. Felton, G. De Tommasi, B. B. Carvalho, D. Alves, A.C. Neto, 2014

Povzetek: In a tokamak, the accurate estimation of the plasma boundary is essential to maximise the fusion performance and is also the first line of defence for the physical integrity of the device. In particular, the first wall components might get severely damaged if over-exposed to a high plasma thermal load. The most common approach to calculate the plasma geometry and related parameters is based in a large set of different types of magnetic sensors. Using this information, real-time plasma equilibrium codes infer a flux map and calculate the shape and geometry of the plasma boundary and its distance to a known reference (e.g. first wall). These are inputs to one or more controllers capable of acting on the shape and trajectory based in pre-defined requests. Depending on the device, the error of the estimated boundary distance must usually be less than 1 centimetre, which translates into very small errors on the magnetic measurement itself. Moreover, asymmetries in the plasma generated and surrounding magnetic fields can produce local shape deformations potentially leading to an unstable control of the plasma geometry. The JET tokamak was recently upgraded to a new and less thermally robust all-metal wall, also known as the ITER-like wall. Currently the shape controller system uses the output of a single reconstruction algorithm to drive the plasma geometry and the protection systems have no input from the plasma boundary reconstruction. These choices are historical and were due to architectural, hardware and processing power limitations. Taking advantage of new multi-core systems and of the already proved robustness of the JET real-time network, this paper proposes a distributed architecture for the real-time identification of faults in the magnetic measurements of the JET tokamak. Besides detecting simple faults, such as short-circuits and open-loops, the system compares the expected measurement at the coil location and the real measurement, producing a confidence valu- . Several magnetic reconstructions, using sensors from multiple toroidally distributed locations, can run in parallel, allowing for a voting or averaging scheme selection. Finally, any fault warnings can be directly fed to the real-time protection sequencer system, whose main function is to coordinate the protection of the JET's first wall.
DiRROS - Objavljeno: 24.11.2014; Ogledov: 2803; Prenosov: 0

8.
9.
10.
Chemical and isotopic composition of CO2-rich magnesium- sodium-bicarbonate-sulphate-type mineral waters from volcanoclastic aquifer in Rogaška Slatina, Slovenia
Teodóra Szőcs, Andrej Lapanje, László Palcsu, Nina Rman

Povzetek: Bottled natural mineral waters from an andesitic aquifer in Slovenia are enriched in magnesium (1.1 g/l), sulphate (2.2 g/l) and dissolved inorganic carbon (204 g/l). We analysed major ions, trace elements, tritium activity, 14 C, d18 OH2O , d2 HH2O, d13 CDIC, gas composition and noble gases in six wells. In addition, 87 Sr/ /86 Sr, d34 SSO4 and d11 B were analysed here for the first time. Stable isotopes with d18 O = -11.97 to -10.30% and d2 H = -77.3 to -63.8 confirm meteoric origin. CO2 degassing is evident at three wells, causing the oxygen shift of about -1.3%. Tritium activity was detectable only in the shallowest well, where the freshwater component was dated to the 1960s. d13 CDIC in five waters is -1.78 to ? 1.33%, typical of carbonate dissolution. Radiocarbon is low, 1.03–5.16 pMC. Chemical correction with bicarbonate concentration and d13 C correction methods gave best mean residence times, slightly longer than previously published. Sulphate has d34 S 26.6–28.9% and d18 O 8.9–11.1% due to dissolution of evaporites in carbonate rocks. Boron at concentrations of 1.2–6.1 mg/l has two origins: d11 B = 11.3–16.4% from hydrothermal alteration and d11 B = 26.6–31.7% from carbonate dissolution. Strontium at concentrations of 0.5–22.0 mg/l has 87 Sr/ /86 Sr, indicating three sources: 0.7106 for Miocene clastic rocks, 0.7082 for Triassic carbonates and 0.7070 for Lower Oligocene andesitic rocks. CO 2 represents the majority of the dissolved ([ 98.84 vol%) and separated gas ([ 95.23 vol%). Methane is only found in two wells with a max. of 0.30 vol%. All waters show excess helium and 16–97% of mantlederived helium. Since all show subsurface degassing, the paleo-infiltration temperature could not be calculated.
Ključne besede: natural tracers, carbon, sulphur, strontium and boron isotopes, noble gases
DiRROS - Objavljeno: 24.03.2022; Ogledov: 108; Prenosov: 48
.pdf Celotno besedilo (3,10 MB)

Iskanje izvedeno v 0 sek.
Na vrh