Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "polno besedilo" AND "organizacija" (Institut Jožef Stefan) .

41 - 50 / 100
Na začetekNa prejšnjo stran12345678910Na naslednjo stranNa konec
41.
Multi-hop communication in Bluetooth Low Energy ad-hoc wireless sensor network
Branko Skočir, Gregor Papa, Anton Biasizzo, 2018, izvirni znanstveni članek

Objavljeno v DiRROS: 15.03.2019; Ogledov: 1943; Prenosov: 464
.pdf Celotno besedilo (992,95 KB)

42.
Sensors in proactive maintenance : a case of LTCC pressure sensors
Marina Santo-Zarnik, Franc Novak, Gregor Papa, 2018, izvirni znanstveni članek

Objavljeno v DiRROS: 15.03.2019; Ogledov: 1774; Prenosov: 517
.pdf Celotno besedilo (630,49 KB)

43.
A comparison of models for forecasting the residential natural gas demand of an urban area
Rok Hribar, Primož Potočnik, Jurij Šilc, Gregor Papa, 2019, izvirni znanstveni članek

Povzetek: Forecasting the residential natural gas demand for large groups of buildings is extremely important for efficient logistics in the energy sector. In this paper different forecast models for residential natural gas demand of an urban area were implemented and compared. The models forecast gas demand with hourly resolution up to 60 h into the future. The model forecasts are based on past temperatures, forecasted temperatures and time variables, which include markers for holidays and other occasional events. The models were trained and tested on gas-consumption data gathered in the city of Ljubljana, Slovenia. Machine-learning models were considered, such as linear regression, kernel machine and artificial neural network. Additionally, empirical models were developed based on data analysis. Two most accurate models were found to be recurrent neural network and linear regression model. In realistic setting such trained models can be used in conjunction with a weather-forecasting service to generate forecasts for future gas demand.
Ključne besede: demand forecasting, buildings, energy modeling, forecast accuracy, machine learning
Objavljeno v DiRROS: 15.03.2019; Ogledov: 1672; Prenosov: 739
.pdf Celotno besedilo (968,06 KB)

44.
A formal framework of human-machine interaction in proactive maintenance : MANTIS experience
Špela Poklukar, Gregor Papa, Franc Novak, 2017, izvirni znanstveni članek

Objavljeno v DiRROS: 15.03.2019; Ogledov: 1739; Prenosov: 786
.pdf Celotno besedilo (1,95 MB)

45.
Comparison of multi-objective approaches to the real-world production scheduling
Gregor Papa, Peter Korošec, 2019, objavljeni znanstveni prispevek na konferenci

Objavljeno v DiRROS: 06.03.2019; Ogledov: 1866; Prenosov: 679
.pdf Celotno besedilo (763,38 KB)

46.
47.
From a production scheduling simulation to a digital twin
Gregor Papa, Peter Korošec, 2018, objavljeni znanstveni prispevek na konferenci

Objavljeno v DiRROS: 06.03.2019; Ogledov: 1748; Prenosov: 449
.pdf Celotno besedilo (567,95 KB)

48.
Evolution of electric motor design approaches : the domel case
Gregor Papa, Gašper Petelin, Peter Korošec, 2018, objavljeni znanstveni prispevek na konferenci

Objavljeno v DiRROS: 06.03.2019; Ogledov: 1880; Prenosov: 663
.pdf Celotno besedilo (840,58 KB)

49.
The impact of statistics for benchmarking in evolutionary computation research
Tome Eftimov, Peter Korošec, 2018, objavljeni znanstveni prispevek na konferenci

Objavljeno v DiRROS: 06.03.2019; Ogledov: 1767; Prenosov: 763
.pdf Celotno besedilo (787,48 KB)

50.
Deep statistical comparison of meta-heuristic stochastic optimization algorithms
Tome Eftimov, Peter Korošec, Barbara Koroušić-Seljak, 2018, objavljeni znanstveni prispevek na konferenci

Objavljeno v DiRROS: 06.03.2019; Ogledov: 2861; Prenosov: 770
.pdf Celotno besedilo (97,46 KB)

Iskanje izvedeno v 1.02 sek.
Na vrh