Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (slag) .

1 - 10 / 18
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
Alkali-activated mineral residues in construction : case studies on bauxite residue and steel slag pavement tiles
Lubica Kriskova, Vilma Ducman, Mojca Loncnar, Anže Tesovnik, Gorazd Žibret, Dimitra Skentzou, Christos Georgopoulos, 2025, izvirni znanstveni članek

Povzetek: This research aimed to investigate the potential of using alkali activation technology to valorize steel slag and bauxite residue for the production of high-performance pavement blocks. By utilizing these industrial by-products, the study seeks to reduce their environmental impact and support the development of sustainable construction materials. Lab-scale testing showed that bauxite pavers showed a decrease in mechanical strength with increasing replacement of ordinary Portland cement. Partial replacement up to 20% still exceeded 30 MPa in compressive strength. Steel slag-based pavers achieved the 30 MPa threshold required for the application with selected mix designs. Pilot-scale production-optimized formulations and standards testing, including freeze–thaw resistance, confirmed the technical viability of these products. Life cycle analysis indicated a 25–27% reduction in CO2 emissions for slag-based tiles compared to traditional concrete tiles. Moreover, using industrial residue reduced mineral resource depletion. This study examined the properties of the resulting alkali-activated binders, their ecological benefits, and their performance compared to conventional materials. Through a comprehensive analysis of these applications, our research promotes the circular economy and the advancement of sustainable construction products.
Ključne besede: alkali-activated materials, building materials, bauxite residue, steel slag, pavers
Objavljeno v DiRROS: 20.01.2025; Ogledov: 107; Prenosov: 57
.pdf Celotno besedilo (4,04 MB)
Gradivo ima več datotek! Več...

2.
Rapid immobilisation of chemical reactions in alkali-activated materials using solely microwave irradiation
Anže Tesovnik, Barbara Horvat, 2024, izvirni znanstveni članek

Povzetek: Efflorescence, a time-dependent and water-driven phenomenon, is a major concern inalkali-activated materials (AAMs), impacting their practical use and preservation in a time-frozen state for post-characterisation. Although a method for stopping chemical reactions in conventional cements exists, it is time-consuming and not chemical-free. Therefore, this study explored the effects of low-power microwave-induced dehydration on efflorescence, mechanical performance, and structural integrity in AAMs, to create an alternative and more “user-friendly” dehydration method. For this purpose, several mixtures based on secondary raw (slag, fly ash, glass wool, and rock wool) and non-waste (metakaolin) materials were activated with a commercial Na-silicate solution in ratios that promoted or prevented efflorescence. Characterisation techniques, including Fourier-transform infrared spectroscopy and X-ray diffraction, showed that microwave dehydration effectively removed water without altering crystallinity, while mercury intrusion porosimetry and compressive strength tests confirmed increased porosity. In addition to being an efficient, time-saving, and solvent-free manner of stopping the reactions in AAMs, microwave irradiation emerged as an innovative, chemical-free method for evaluating curing finalisation and engineering foams in a stage when all other existing methods fail. However, the artificially provoked efflorescence in aged dehydrated AAMs connected the slipperiness of AAM with the instant extraction of Na, which raised the need for further research into alternative alkali replacements to evaluate the practical use of AAM.
Ključne besede: materials chemistry, alkali-activated materials, geopolymers, slag, fly ash, rock wool, glass wool, metakaolin, microwave irradiation, dehydration, stopping chemical reactions, efflorescence
Objavljeno v DiRROS: 23.12.2024; Ogledov: 220; Prenosov: 126
.pdf Celotno besedilo (11,10 MB)
Gradivo ima več datotek! Več...
Gradivo je zbirka in zajema 1 gradivo!

3.
Stabilization of river dredged sediments by means of alkali activation technology
Karmen Fifer Bizjak, Lea Žibret, Mojca Božič, Boštjan Gregorc, Vilma Ducman, 2024, izvirni znanstveni članek

Povzetek: Purpose Alkali activation process has been applied to fresh river clay-rich sediments in order to increase their mechanical properties and make them suitable for soil stabilization. Materials and methods Dredged sediments were mixed with up to 30 mass percent (ma%) of fly ash (FA) or ladle slag (LS) and after curing for 3 days at 60 °C, the bending and compressive strength have been determined. The mixtures which exhibited the highest strengths were further optimized for being used in soil stabilization. For this purpose, the sediment was stabilized with 4 ma% of quicklime (QL) and after 1 h 30 ma% of FA with alkali activator was added and cured for 1, 7 and 28 days. Results The stabilized sediment has a significantely better geomechanical performance in comparison with the sediment alone. Stabilizing the dredged sediment using alkali activation technology provides high enough strengths to eventually make it suitable for anti-flood embankments. Conclusions The results confirmed the suitability of the investigated technology for soil stabilization.
Ključne besede: river sediment, alkali activated materials, ladle slag, fly ash, mechanical strength, soil stabilization
Objavljeno v DiRROS: 09.09.2024; Ogledov: 435; Prenosov: 4805
.pdf Celotno besedilo (1,41 MB)
Gradivo ima več datotek! Več...

4.
Comparison of the mineralogy and microstructure of EAF stainless steel slags with reference to the cooling treatment
Mojca Loncnar, Ana Mladenovič, Marija Zupančič, Peter Bukovec, 2017, izvirni znanstveni članek

Povzetek: TIn the present study the differences in the mineralogical composition and microstructure of various types of EAF stainless steel (EAF S) slag with regard to the cooling treatment, the operation practice in an EAF (electric arc furnace) and environmental ageing reactions were evaluated. It was shown that the mineralogy of the investigated EAF S slags varied from one slag to another, depending on the quality of the produced stainless steel. The production process of the treated steel also has a strong influence on the mineralogy of the slags. The conditions during water cooling treatment were not sufficient to prevent the crystallization of primary mineral phases, which occurs predominantly in air-cooled EAF S slags, probably due to the high basicity of the investigated slags. However, the water cooling treatment of hot slag leads to the absence of γ-CaSiO 4 and the formation of secondary mineral phases predominantly calcite, portlandite, ettringite, calcium aluminate hydrate and calcium silicate hydrate. It has been shown that during the environmental ageing test (down-flow column test) secondary mineral phases were formed, which were the same as those formed during the water cooling treatment.
Ključne besede: electric arc furnace stainless steel slag, cooling path, microstructure, mineralogy
Objavljeno v DiRROS: 14.08.2024; Ogledov: 461; Prenosov: 261
.pdf Celotno besedilo (3,74 MB)
Gradivo ima več datotek! Več...

5.
Dehydration with microwave irradiation
Anže Tesovnik, Barbara Horvat, 2024, zaključena znanstvena zbirka raziskovalnih podatkov

Povzetek: The dataset supports the results shown in the tables and figures in the article entitled “Rapid immobilisation of chemical reactions in alkali-activated materials using solely microwave irradiation” (doi: https://doi.org/10.3390/min14121219). It contains measurements of mechanical and structural evaluation, as well as chemical and mineralogical analysis.
Ključne besede: measurments, alkali-activated materials, geopolymers, slag, fly ash, rock wool, glass wool, metakaolin, microwave irradiation, dehydration, stopping of chemical reactions, efflorescence
Objavljeno v DiRROS: 12.08.2024; Ogledov: 279; Prenosov: 11438
.xlsx Raziskovalni podatki (4,87 MB)

6.
Characterization of bloom iron smelting site remains in Pržanj, Slovenia
Jaka Burja, Barbara Šetina, Daša Pavlovič, 2024, izvirni znanstveni članek

Povzetek: This paper gives an overview of findings, connected with metallurgical activity, at the Pržanj archeological site near Ljubljana, Slovenia. More than 230 kg of slag and other remains connected with early medieval (from the 5th to the 12th century AD) metallurgical activities was found at the excavation site. The remains were grouped into four categories, i.e., furnace remains, ore, slag and a ferrous product, and analyzed in detail to obtain their chemical composition, microstructural characteristics, and mineral phase composition. The furnace wall remains, identified by their morphology and chemical composition, revealed an intensive iron processing activity at the site. The iron ore at the site was identified as goethite (FeO(OH)), a surprising find in Slovenia where limonite is typically used, and its presence suggests the potential exploitation of local bog iron ore, given the site’s geological context. Abundant slag remains at the site, identified by their shape, molten microstructure, and mineral components like wuestite, fayalite, and hercynite, indicated sophisticated smelting practices, including the use of CaO-rich materials to lower the melting temperature, a technique likely preserved from antiquity. Findings of ferrous products at ancient metallurgical sites are rare due to their value, but the discovery of a corroded iron bloom conglomerate at this site, initially mistaken for furnace remains, highlights the challenges in identifying small, corroded ferrous fragments that are often misidentified as ore. The results indicate extensive metallurgical activity at the excavation site, marking it as the first documented early medieval iron smelting production site in Slovenia.
Ključne besede: bloom iron, bloomery slag, archaeometallurgy, microstructure
Objavljeno v DiRROS: 29.07.2024; Ogledov: 451; Prenosov: 298
.pdf Celotno besedilo (4,23 MB)
Gradivo ima več datotek! Več...

7.
Utilisation of reused steel and slag : analysing the circular economy benefits through three case studies
Genesis Camila Cervantes Puma, Adriana Salles, Janez Turk, Viorel Ungureanu, Luís Bragança, 2024, pregledni znanstveni članek

Povzetek: This research explores sustainable construction practices focusing on material reuse, specifically reclaimed structural steel and slag. In general, the building stock is not designed for deconstruction, and material recovery for reuse at the end of life of buildings is complex and challenging. The study evaluates the benefits of content reuse through a thorough analysis of three case studies— BedZED eco-friendly housing, Angus Technopôle building, and the use of steel slag aggregate in road construction. It highlights the value of reclaimed structural steel and by-products like steel slag in waste reduction, energy conservation, and resource preservation. The BedZED case study showcases recycled steel’s cost-effectiveness and economic viability in construction, while the Angus Technopôle building exemplifies the adaptive reuse of an old steel frame building. Additionally, the third case study showcases the benefits of using Electric Arc Furnace C slag in asphalt-wearing courses, highlighting the reduction in greenhouse gas emissions and environmental impact. The versatility of reclaimed structural steel and slag is evident in integrating material reuse in building construction and road infrastructure. These case studies illustrate the potential for reusing steel and its by-products in various construction contexts, from eco-friendly housing to road development. Therefore, the study aims to demonstrate the feasibility and benefits of sustainable practices within the construction industry by showcasing the successful incorporation of reclaimed steel and slag in these projects. Considering the significant contributions of building construction to global greenhouse gas emissions, raw material extraction, and waste production, the study advocates for adopting circular economy (CE) principles within the construction industry. Finally, the analysis of case studies underscores the advantages of reclaimed structural steel and the valorisation of steel slag through the lens of CE and their contribution to sustainable development.
Ključne besede: circular economy, reused steel, steel slag aggregate, reclaimed steel, steel members
Objavljeno v DiRROS: 12.04.2024; Ogledov: 762; Prenosov: 275
.pdf Celotno besedilo (1,17 MB)
Gradivo ima več datotek! Več...

8.
Particle size manipulation as an influential parameter in the development of mechanical properties in electric arc furnace slag-based AAM
Katja Traven, Mark Češnovar, Vilma Ducman, 2019, izvirni znanstveni članek

Povzetek: Alkali-activated materials (AAM) have gained recognition as a promising alternative to technical ceramic and building materials owing to the lower energy demands for production and the potential to use slag as a precursor. In the present study, five sets of slag-based AAM pastes were prepared with different particle sizes (fractions d < 63, 63 < d < 90, and 90 < d < 125 μm in different mass ratios) under the same curing regime and using a fixed precursor to activator (water) mass ratio. Precursors and the hardened AAM are evaluated using BET, XRD, XRF, SEM, FTIR, reactivity of precursors by leaching, and mercury intrusion porosimetry (MIP). Chemical analysis indicated only marginal differences among the different-sized fractions of input materials, whereas the BET surface area and reactivity among the precursors differed significantly-smaller particles had the largest surface area, and thus, higher reactivity. The mineralogical differences between the precursors and hardened AAM were negligible. The results revealed that compressive strength was significantly influenced by particle size, i.e., a threefold increase in strength when the particle size was halved. Microstructural evaluation using MIP confirmed that the porosity was the lowest in AAM with the smallest particle size. The low porosity and high reactivity of the fine fractions led to the highest compressive strength, confirming that manipulation of particle size can significantly influence the mechanical properties.
Ključne besede: alkalijsko aktivirani materiali, žlindra iz obločne peči, mehanska aktivacija, mehanske lastnosti, poroznost, alkali-activated materials (AAM), electric arc furnace steel slag, mechanical activation, mechanical properties, porosity
Objavljeno v DiRROS: 22.11.2023; Ogledov: 979; Prenosov: 362
.pdf Celotno besedilo (2,26 MB)
Gradivo ima več datotek! Več...

9.
Impacts of casting scales and harsh conditions on the thermal, acoustic, and mechanical properties of indoor acoustic panels made with fiber-reinforced alkali-activated slag foam concretes
Mohammad Mastali, Paivo Kinnunen, Marjaana Karhu, Zahra Abdollahnejad, Lidija Korat Bensa, Vilma Ducman, Ahmad Alzaza, Mirja Illikainen, 2019, izvirni znanstveni članek

Povzetek: This paper presents experimental results regarding the efficiency of using acoustic panels made with fiber-reinforced alkali-activated slag foam concrete containing lightweight recycled aggregates produced by using Petrit-T (tunnel kiln slag). In the first stage, 72 acoustic panels with dimension 500 % 500 % 35 mm were cast and prepared. The mechanical properties of the panels were then assessed in terms of their compressive and flexural strengths. Moreover, the durability properties of acoustic panels were studied using harsh conditions (freeze/thaw and carbonation tests). The efficiency of the lightweight panels was also assessed in terms of thermal properties. In the second stage, 50 acoustic panels were used to cover the floor area in a reverberation room. The acoustic absorption in diffuse field conditions was measured, and the interrupted random noise source method was used to record the sound pressure decay rate over time. Moreover, the acoustic properties of the panels were separately assessed by impedance tubes and airflow resistivity measurements. The recorded results from these two sound absorption evaluations were compared. Additionally, a comparative study was presented on the results of impedance tube measurements to compare the influence of casting volumes (large and small scales) on the sound absorption of the acoustic panels. In the last stage, a comparative study was implemented to clarify the effects of harsh conditions on the sound absorption of the acoustic panels. The results showed that casting scale had great impacts on the mechanical and physical properties. Additionally, it was revealed that harsh conditions improved the sound properties of acoustic panels due to their effects on the porous structure of materials.
Ključne besede: alkali activation, slag, acoustic panels
Objavljeno v DiRROS: 15.09.2023; Ogledov: 707; Prenosov: 371
.pdf Celotno besedilo (10,70 MB)
Gradivo ima več datotek! Več...

10.
The potential of ladle slag and electric arc furnace slag use in synthesizing alkali activated materials; the influence of curing on mechanical properties
Mark Češnovar, Katja Traven, Barbara Horvat, Vilma Ducman, 2019, izvirni znanstveni članek

Povzetek: Alkali activation is studied as a potential technology to produce a group of high performance building materials from industrial residues such as metallurgical slag. Namely, slags containing aluminate and silicate form a useful solid material when activated by an alkaline solution. The alkali-activated (AA) slag-based materials are promising alternative products for civil engineering sector and industrial purposes. In the present study the locally available electric arc furnace steel slag (Slag A) and the ladle furnace basic slag (Slag R) from different metallurgical industries in Slovenia were selected for alkali activation because of promising amorphous Al/Si rich content. Different mixtures of selected precursors were prepared in the Slag A/Slag R ratios 1/0, 3/1, 1/1, 1/3 and 0/1 and further activated with potassium silicate using an activator to slag ratio of 1:2 in order to select the optimal composition with respect to their mechanical properties. Bending strength of investigated samples ranged between 4 and 18 MPa, whereas compressive strength varied between 30 and 60 MPa. The optimal mixture (Slag A/Slag R = 1/1) was further used to study strength development under the influence of different curing temperatures at room temperature (R. T.), and in a heat-chamber at 50, 70 and 90 °C, and the effects of curing time for 1, 3, 7 and 28 days was furthermore studied. The influence of curing time at room temperature on the mechanical strength at an early age was found to be nearly linear. Further, it was shown that specimens cured at 70 °C for 3 days attained almost identical (bending/compressive) strength to those cured at room temperature for 28 days. Additionally, microstructure evaluation of input materials and samples cured under different conditions was performed by means of XRD, FTIR, SEM and mercury intrusion porosimetry (MIP).
Ključne besede: alkali activation, slag, influence of curing regime, FTIR
Objavljeno v DiRROS: 13.09.2023; Ogledov: 700; Prenosov: 367
.pdf Celotno besedilo (10,76 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.25 sek.
Na vrh