Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (reinforcement) .

1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Monitoring the corrosion of steel in concrete exposed to a marine environment
Nina Gartner, Tadeja Kosec, Andraž Legat, 2020, izvirni znanstveni članek

Povzetek: Reinforced concrete structures require continuous monitoring and maintenance to prevent corrosion of the carbon steel reinforcement. In this work, concrete columns with carbon and stainless steel reinforcements were exposed to a real marine environment. In order to monitor the corrosion processes, two types of corrosion probes were embedded in these columns at different height levels. The results from the monitoring of the probes were compared to the actual corrosion damage in the different exposure zones. Electrical resistance (ER) probes and coupled multi-electrodes (CMEs) were shown to be promising methods for long-term corrosion monitoring in concrete. Correlations between the different exposure zones and the corrosion processes of the steel in the concrete were found. Macrocell corrosion properties and the distribution of the separated anodic/cathodic places on the steel in chloride-contaminated concrete were addressed as two of the key issues for understanding the corrosion mechanisms in such environments. The specific advantages and limitations of the tested measuring techniques for long-term corrosion monitoring were also indicated. The results of the measurements and the corrosion damage evaluation clearly confirmed that the tested stainless steels (AISI 304 and AISI 304L) in a chloride-contaminated environment behave significantly better than ordinary carbon steel, with corrosion rates from 110% to 9500% lower in the most severe (tidal) exposure conditions.
Ključne besede: corrosion in concrete, steel reinforcement, long-term exposure, field exposure, electrical resistance (ER) probes, coupled multi-electrodes
Objavljeno v DiRROS: 21.08.2023; Ogledov: 230; Prenosov: 148
.pdf Celotno besedilo (4,42 MB)
Gradivo ima več datotek! Več...

2.
Characterizing steel corrosion in different alkali-activated mortars
Nina Gartner, Miha Hren, Tadeja Kosec, Andraž Legat, 2021, izvirni znanstveni članek

Povzetek: Alkali-activated materials (AAMs) present a promising potential alternative to ordinary Portland cement (OPC). The service life of reinforced concrete structures depends greatly on the corrosion resistance of the steel used for reinforcement. Due to the wide range and diverse properties of AAMs, the corrosion processes of steel in these materials is still relatively unknown. Three different alkali-activated mortar mixes, based on fly ash, slag, or metakaolin, were prepared for this research. An ordinary carbon-steel reinforcing bar was installed in each of the mortar mixes. In order to study the corrosion properties of steel in the selected mortars, the specimens were exposed to a saline solution in wet/dry cycles for 17 weeks, and periodic electrochemical impedance spectroscopy (EIS) measurements were performed. The propagation of corrosion damage on the embedded steel bars was followed using X-ray computed microtomography (XCT). Periodic EIS measurements of the AAMs showed different impedance response in individual AAMs. Moreover, these impedance responses also changed over the time of exposure. Interpretation of the results was based on visual and numerical analysis of the corrosion damages obtained by XCT, which confirmed corrosion damage of varying type and extent on steel bars embedded in the tested AAMs.
Ključne besede: corrosion, alkali-activated mortars, steel reinforcement, electrochemical impedance spectroscopy, X-ray computed microtomography, visual analysis
Objavljeno v DiRROS: 05.07.2023; Ogledov: 352; Prenosov: 166
.pdf Celotno besedilo (7,00 MB)
Gradivo ima več datotek! Več...

3.
Application of electrochemical methods for studying steel corrosion in alkali-activated materials
Shishir Mundra, Gabriel Samson, Giulia Masi, Rebecca Achenbach, David M. Bastidas, Susana Bernal, Maria Chiara Bignozzi, Maria Criado, Martin Cyr, Nina Gartner, Stefanie von Greve‐Dierfeld, Andraž Legat, Nikoonasab Ali, John L. Provis, Michael Raupach, Gregor J. G. Gluth, 2023, izvirni znanstveni članek

Povzetek: Alkali‐activated materials (AAMs) are binders that can complement and partially substitute the current use of conventional cement. However, the present knowledge about how AAMs protect steel reinforcement in concrete elements is incomplete, and uncertainties exist regarding the application of electrochemical methods to investigate this issue. The present review by EFC WP11‐Task Force ‘Corrosion of steel in alkali‐activated materials’ demonstrates that important differences exist between AAMs and Portland cement, and between different classes of AAMs, which are mainly caused by differing pore solution compositions, and which affect the outcomes of electrochemical measurements. The high sulfide concentrations in blast furnace slag‐based AAMs lead to distinct anodic polarisation curves, unusually low open circuit potentials, and low polarisation resistances, which might be incorrectly interpreted as indicating active corrosion of steel reinforcement. No systematic study of the influence of the steel–concrete interface on the susceptibility of steel to corrosion in AAMs is available. Less common electrochemical methods present an opportunity for future progress in the field.
Ključne besede: alkali-aktivated materials, alkali‐activated materials, anodic/cathodic polarisation, concrete, linear polarisation resistance, open circuit potential, reinforcement corrosion, resistivity
Objavljeno v DiRROS: 29.05.2023; Ogledov: 281; Prenosov: 119
URL Povezava na datoteko
Gradivo ima več datotek! Več...

4.
Iskanje izvedeno v 0.6 sek.
Na vrh