Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (regular graphs) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
On regular graphs with Šoltés vertices
Nino Bašić, Martin Knor, Riste Škrekovski, 2025, izvirni znanstveni članek

Povzetek: Let $W(G)$ be the Wiener index of a graph $G$. We say that a vertex $v \in V(G)$ is a Šoltés vertex in $G$ if $W(G - v) = W(G)$, i.e. the Wiener index does not change if the vertex $v$ is removed. In 1991, Šoltés posed the problem of identifying all connected graphs ▫$G$▫ with the property that all vertices of $G$ are Šoltés vertices. The only such graph known to this day is $C_{11}$. As the original problem appears to be too challenging, several relaxations were studied: one may look for graphs with at least $k$ Šoltés vertices; or one may look for $\alpha$-Šoltés graphs, i.e. graphs where the ratio between the number of Šoltés vertices and the order of the graph is at least $\alpha$. Note that the original problem is, in fact, to find all $1$-Šoltés graphs. We intuitively believe that every $1$-Šoltés graph has to be regular and has to possess a high degree of symmetry. Therefore, we are interested in regular graphs that contain one or more Šoltés vertices. In this paper, we present several partial results. For every $r\ge 1$ we describe a construction of an infinite family of cubic $2$-connected graphs with at least $2^r$ Šoltés vertices. Moreover, we report that a computer search on publicly available collections of vertex-transitive graphs did not reveal any $1$-Šoltés graph. We are only able to provide examples of large $\frac{1}{3}$-Šoltés graphs that are obtained by truncating certain cubic vertex-transitive graphs. This leads us to believe that no $1$-Šoltés graph other than $C_{11}$ exists.
Ključne besede: Šoltés problem, Wiener index, regular graphs, cubic graphs, Cayley graph, Šoltés vertex
Objavljeno v DiRROS: 17.04.2025; Ogledov: 151; Prenosov: 57
.pdf Celotno besedilo (457,76 KB)
Gradivo ima več datotek! Več...

2.
On the structure of consistent cycles in cubic symmetric graphs
Klavdija Kutnar, Dragan Marušič, Štefko Miklavič, Primož Šparl, 2024, izvirni znanstveni članek

Ključne besede: 1/2-consistent cycles, automorphisms, consistent cycles, cubic symmetric graphs, shunt, s-regular graphs
Objavljeno v DiRROS: 13.03.2024; Ogledov: 656; Prenosov: 335
.pdf Celotno besedilo (1,02 MB)
Gradivo ima več datotek! Več...

3.
On orders of automorphisms of vertex-transitive graphs
Primož Potočnik, Micael Toledo, Gabriel Verret, 2024, izvirni znanstveni članek

Povzetek: In this paper we investigate orders, longest cycles and the number of cycles of automorphisms of finite vertex-transitive graphs. In particular, we show that the order of every automorphism of a connected vertex-transitive graph with $n$ vertices and of valence $d$, $d\le 4$, is at most $c_d n$ where $c_3=1$ and $c_4 = 9$. Whether such a constant $c_d$ exists for valencies larger than $4$ remains an unanswered question. Further, we prove that every automorphism $g$ of a finite connected $3$-valent vertex-transitive graph $\Gamma$, $\Gamma \not\cong K_{3,3}$, has a regular orbit, that is, an orbit of $\langle g \rangle$ of length equal to the order of $g$. Moreover, we prove that in this case either $\Gamma$ belongs to a well understood family of exceptional graphs or at least $5/12$ of the vertices of $\Gamma$ belong to a regular orbit of $g$. Finally, we give an upper bound on the number of orbits of a cyclic group of automorphisms $C$ of a connected $3$-valent vertex-transitive graph $\Gamma$ in terms of the number of vertices of $\Gamma$ and the length of a longest orbit of $C$.
Ključne besede: graphs, automorphism groups, vertex-transitive, regular orbit, cubic, tetravalent
Objavljeno v DiRROS: 19.02.2024; Ogledov: 812; Prenosov: 374
.pdf Celotno besedilo (573,20 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 2.12 sek.
Na vrh