Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (reactive oxygen species) .

1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Muscle gene electrotransfer is increased by the antioxidant tempol in mice
Boštjan Markelc, Gregor Tevž, Maja Čemažar, Simona Kranjc Brezar, Jaka Lavrenčak, Bojana Žegura, Justin Teissié, Gregor Serša, 2012, izvirni znanstveni članek

Povzetek: Electropermeabilization (EP) is an effective method of gene transfer into different tissues. During EP, reactive oxygen species (ROS) are formed, which could affect transfection efficiency. The role of generated ROS and the role of antioxidants in electrotransfer in myoblasts in vitro and in Musculus tibialis cranialis in mice were, therefore, investigated. We demonstrate in the study that during EP of C2C12 myoblasts, ROS are generated on the surface of the cells, which do not induce long-term genomic DNA damage. Plasmid DNA for transfection (pEGFP-N1), which is present outside the cells during EP, neutralizes the generated ROS. The ROS generation is proportional to the amplitude of the electric pulses and can be scavenged by antioxidants, such as vitamin C or tempol. When antioxidants were used during gene electrotransfer, the transfection efficiency of C2C12 myoblasts was statistically significantly increased 1.6-fold with tempol. Also in vivo, the transfection efficiency of M. tibialis cranialis in mice was statistically significantly increased 1.4-fold by tempol. The study indicates that ROS are generated on cells during EP and can be scavenged by antioxidants. Specifically, tempol can be used to improve gene electrotransfer into the muscle and possibly also to other tissues.
Ključne besede: electropermeabilization, gene electrotransfer, muscle, tempol, reactive oxygen species
Objavljeno v DiRROS: 26.02.2025; Ogledov: 287; Prenosov: 145
.pdf Celotno besedilo (1,48 MB)
Gradivo ima več datotek! Več...

2.
Intertwined roles of reactive oxygen species and salicylic acid signaling are crucial for the plant response to biotic stress
Tjaša Lukan, Anna Coll Rius, 2022, pregledni znanstveni članek

Povzetek: One of the earliest hallmarks of plant immune response is production of reactive oxygen species (ROS) in different subcellular compartments, which regulate plant immunity. A suitable equilibrium, which is crucial to prevent ROS overaccumulation leading to oxidative stress, is maintained by salicylic acid (SA), a chief regulator of ROS. However, ROS not only act downstream of SA signaling, but are also proposed to be a central component of a self-amplifying loop that regulates SA signaling as well as the interaction balance between different phytohormones. The exact role of this crosstalk, the position where SA interferes with ROS signaling and ROS interferes with SA signaling and the outcome of this regulation, depend on the origin of ROS but also on the pathosystem. The precise spatiotemporal regulation of organelle-specific ROS and SA levels determine the effectiveness of pathogen arrest and is therefore crucial for a successful immune response. However, the regulatory interplay behind still remains poorly understood, as up until now, the role of organelle-specific ROS and SA in hypersensitive response (HR)-conferred resistance has mostly been studied by altering the level of a single component. In order to address these aspects, a sophisticated combination of research methods for monitoring the spatiotemporal dynamics of key players and transcriptional activity in plants is needed and will most probably consist of biosensors and precision transcriptomics.
Ključne besede: plant immune response, reactive oxygen species, ROS, salicylic acid, programmed cell death, biotic stress, biotechnology
Objavljeno v DiRROS: 05.08.2024; Ogledov: 632; Prenosov: 322
.pdf Celotno besedilo (812,79 KB)
Gradivo ima več datotek! Več...

3.
Precision transcriptomics of viral foci reveals the spatial regulation of immune-signaling genes and identifies RBOHD as an important player in the incompatible interaction between potato virus Y and potato
Tjaša Lukan, Maruša Pompe Novak, Špela Baebler, Magda Tušek-Žnidarič, Aleš Kladnik, Maja Križnik, Andrej Blejec, Maja Zagorščak, Katja Stare, Barbara Dušak, Anna Coll Rius, Stephan Pollmann, Karolina Morgiewicz, Jacek Hennig, Kristina Gruden, 2020, izvirni znanstveni članek

Povzetek: Whereas the activation of resistance (R) proteins has been intensively studied, the downstream signaling mechanisms leading to the restriction of the pathogen remain mostly unknown. We studied the immunity network response conditioned by the potato Ny-1 gene against potato virus Y. We analyzed the processes in the cell death zone and surrounding tissue on the biochemical and gene expression levels in order to reveal the spatiotemporal regulation of the immune response. We show that the transcriptional response in the cell death zone and surrounding tissue is dependent on salicylic acid (SA). For some genes the spatiotemporal regulation is completely lost in the SA-deficient line, whereas other genes show a different response, indicating multiple connections between hormonal signaling modules. The induction of NADPH oxidase RBOHD expression occurs specifically on the lesion border during the resistance response. In plants with silenced RBOHD, the functionality of the resistance response is perturbed and the spread of the virus is not arrested at the site of infection. RBOHD is required for the spatial accumulation of SA, and conversely RBOHD is under the transcriptional regulation of SA. Using spatially resolved RNA-seq, we also identified spatial regulation of an UDP-glucosyltransferase, another component in feedback activation of SA biosynthesis, thus deciphering a novel aspect of resistance signaling.
Ključne besede: immune signaling network, NADPH oxidase RBOHD, reactive oxygen species, salicylic acid, Sola-num tuberosum (potato), spatiotemporal response analysis, virus resistance, Potyvirus
Objavljeno v DiRROS: 22.07.2024; Ogledov: 609; Prenosov: 367
.pdf Celotno besedilo (2,87 MB)
Gradivo ima več datotek! Več...

4.
Iskanje izvedeno v 0.11 sek.
Na vrh