Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (primerjava) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Uporaba metod strojnega učenja za preučevanje odnosov med značilnostmi branik in okoljem
Jernej Jevšenak, Sašo Džeroski, Tom Levanič, 2017, izvirni znanstveni članek

Povzetek: Različne študije so pokazale, da lahko z nelinearnimi metodami bolje opišemo (modeliramo) odnos med branikami in okoljem. V naši študiji smo primerjali (multiplo) linearno regresijo (MLR) in štiri nelinearne metode strojnega učenja: modelna drevesa (MT), ansambel bagging modelnih dreves (BMT), umetne nevronske mreže (ANN) in metodo naključnih gozdov (RF). Za primerjavo teh metod modeliranja smo uporabili štiri množice podatkov. Natančnost naučenih modelov smo ocenili z metodo 10-kratnega prečnega preverjanja (ang. 10-fold cross-validation) na naši množici in preverjanjem na dodatni testni množici. Na vseh množicah smo dobili boljše statistične kazalce za nelinearne metode s področja strojnega učenja, s katerimi lahko pojasnimo večji delež variance oz. dobimo manjšo napako. Nobena metoda se ni pokazala kot najboljša v vseh primerih, zato je smiselno predhodno primerjati več različnih metod in nato uporabiti najprimernejšo, npr. za rekonstrukcijo klime.
Ključne besede: strojno učenje, primerjava metod, dendroklimatologija, umetne nevronske mreže, modelna drevesa, ansambel modelnih dreves, naključni gozdovi, linearna regresija
Objavljeno v DiRROS: 21.02.2018; Ogledov: 3524; Prenosov: 2168
.pdf Celotno besedilo (1,18 MB)
Gradivo ima več datotek! Več...

2.
Učinkovitost bioloških vlaganj
Darij Krajčič, 1996, izvirni znanstveni članek

Ključne besede: vlaganja, učinkovitost, gozdnogojitveni tipi, primerjava, finančna analiza
Objavljeno v DiRROS: 12.07.2017; Ogledov: 2950; Prenosov: 1198
.pdf Celotno besedilo (1,76 MB)

3.
Iskanje izvedeno v 0.19 sek.
Na vrh