Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po


Iskalni niz: "ključne besede" (machine learning) .

1 - 10 / 12
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
Models for forecasting the traffic flow within the city of Ljubljana
Gašper Petelin, Rok Hribar, Gregor Papa, 2023, izvirni znanstveni članek

Povzetek: Efficient traffic management is essential in modern urban areas. The development of intelligent traffic flow prediction systems can help to reduce travel times and maximize road capacity utilization. However, accurately modeling complex spatiotemporal dependencies can be a difficult task, especially when real-time data collection is not possible. This study aims to tackle this challenge by proposing a solution that incorporates extensive feature engineering to combine historical traffic patterns with covariates such as weather data and public holidays. The proposed approach is assessed using a new real-world data set of traffic patterns collected in Ljubljana, Slovenia. The constructed models are evaluated for their accuracy and hyperparameter sensitivity, providing insights into their performance. By providing practical solutions for real-world scenarios, the proposed approach offers an effective means to improve traffic flow prediction without relying on real-time data.
Ključne besede: traffic modeling, time-series forecasting, traffic-count data set, machine learning, model comparison
Objavljeno v DiRROS: 28.09.2023; Ogledov: 168; Prenosov: 72
.pdf Celotno besedilo (5,05 MB)
Gradivo ima več datotek! Več...

Algorithm instance footprint : separating easily solvable and challenging problem instances
Ana Nikolikj, Sašo Džeroski, Mario Andrés Muñoz, Carola Doerr, Peter Korošec, Tome Eftimov, 2023, objavljeni znanstveni prispevek na konferenci

Ključne besede: black-box optimization, algorithms, problem instances, machine learning
Objavljeno v DiRROS: 15.09.2023; Ogledov: 144; Prenosov: 90
.pdf Celotno besedilo (2,03 MB)
Gradivo ima več datotek! Več...

Assessing the generalizability of a performance predictive model
Ana Nikolikj, Gjorgjina Cenikj, Gordana Ispirova, Diederick Vermetten, Ryan Dieter Lang, Andries Petrus Engelbrecht, Carola Doerr, Peter Korošec, Tome Eftimov, 2023, objavljeni znanstveni prispevek na konferenci

Ključne besede: algorithms, predictive models, machine learning
Objavljeno v DiRROS: 15.09.2023; Ogledov: 160; Prenosov: 106
.pdf Celotno besedilo (935,67 KB)
Gradivo ima več datotek! Več...

Optimal sensor set for decoding motor imagery from EEG
Arnau Dillen, Fakhreddine Ghaffari, Olivier Romain, Bram Vanderborght, Uroš Marušič, Sidney Grosprêtre, Ann Nowé, Romain Meeusen, Kevin De Pauw, 2023, izvirni znanstveni članek

Povzetek: Brain–computer interfaces (BCIs) have the potential to enable individuals to interact with devices by detecting their intention from brain activity. A common approach to BCI is to decode movement intention from motor imagery (MI), the mental representation of an overt action. However, research-grade electroencephalogram (EEG) acquisition devices with a high number of sensors are typically necessary to achieve the spatial resolution required for reliable analysis. This entails high monetary and computational costs that make these approaches impractical for everyday use. This study investigates the trade-off between accuracy and complexity when decoding MI from fewer EEG sensors. Data were acquired from 15 healthy participants performing MI with a 64-channel research-grade EEG device. After performing a quality assessment by identifying visually evoked potentials, several decoding pipelines were trained on these data using different subsets of electrode locations. No significant differences (p = [0.18–0.91]) in the average decoding accuracy were found when using a reduced number of sensors. Therefore, decoding MI from a limited number of sensors is feasible. Hence, using commercial sensor devices for this purpose should be attainable, reducing both monetary and computational costs for BCI control.
Ključne besede: brain-computer interface, motor imagery, feature reduction, electroencephalogram, machine learning
Objavljeno v DiRROS: 03.04.2023; Ogledov: 345; Prenosov: 137
.pdf Celotno besedilo (670,67 KB)
Gradivo ima več datotek! Več...

On the influence of aging on classification performance in the visual EEG oddball paradigm using statistical and temporal features
Nina Omejc, Manca Peskar, Aleksandar Miladinović, Voyko Kavcic, Sašo Džeroski, Uroš Marušič, 2023, izvirni znanstveni članek

Povzetek: The utilization of a non-invasive electroencephalogram (EEG) as an input sensor is a common approach in the field of the brain–computer interfaces (BCI). However, the collected EEG data pose many challenges, one of which may be the age-related variability of event-related potentials (ERPs), which are often used as primary EEG BCI signal features. To assess the potential effects of aging, a sample of 27 young and 43 older healthy individuals participated in a visual oddball study, in which they passively viewed frequent stimuli among randomly occurring rare stimuli while being recorded with a 32-channel EEG set. Two types of EEG datasets were created to train the classifiers, one consisting of amplitude and spectral features in time and another with extracted time-independent statistical ERP features. Among the nine classifiers tested, linear classifiers performed best. Furthermore, we show that classification performance differs between dataset types. When temporal features were used, maximum individuals’ performance scores were higher, had lower variance, and were less affected overall by within-class differences such as age. Finally, we found that the effect of aging on classification performance depends on the classifier and its internal feature ranking. Accordingly, performance will differ if the model favors features with large within-class differences. With this in mind, care must be taken in feature extraction and selection to find the correct features and consequently avoid potential age-related performance degradation in practice.
Ključne besede: aging, elderly, machine learning, visual oddball study, brain-computer interface
Objavljeno v DiRROS: 01.02.2023; Ogledov: 254; Prenosov: 146
.pdf Celotno besedilo (3,50 MB)
Gradivo ima več datotek! Več...

A data-driven machine learning approach for brain-computer interfaces targeting lower limb neuroprosthetics
Arnau Dillen, Elke Lathouwers, Aleksandar Miladinović, Uroš Marušič, Fakhreddine Ghaffari, Olivier Romain, Romain Meeusen, Kevin De Pauw, 2022, izvirni znanstveni članek

Povzetek: Prosthetic devices that replace a lost limb have become increasingly performant in recent years. Recent advances in both software and hardware allow for the decoding of electroencephalogram (EEG) signals to improve the control of active prostheses with brain-computer interfaces (BCI). Most BCI research is focused on the upper body. Although BCI research for the lower extremities has increased in recent years, there are still gaps in our knowledge of the neural patterns associated with lower limb movement. Therefore, the main objective of this study is to show the feasibility of decoding lower limb movements from EEG data recordings. The second aim is to investigate whether well-known neuroplastic adaptations in individuals with an amputation have an influence on decoding performance. To address this, we collected data from multiple individuals with lower limb amputation and a matched able-bodied control group. Using these data, we trained and evaluated common BCI methods that have already been proven effective for upper limb BCI. With an average test decoding accuracy of 84% for both groups, our results show that it is possible to discriminate different lower extremity movements using EEG data with good accuracy. There are no significant differences (p = 0.99) in the decoding performance of these movements between healthy subjects and subjects with lower extremity amputation. These results show the feasibility of using BCI for lower limb prosthesis control and indicate that decoding performance is not influenced by neuroplasticity-induced differences between the two groups.
Ključne besede: neuroprosthetics, brain-computer interface, machine learning, electroencephalography, data-driven learning, lower limb amputation
Objavljeno v DiRROS: 21.07.2022; Ogledov: 414; Prenosov: 290
.pdf Celotno besedilo (858,15 KB)
Gradivo ima več datotek! Več...

Treatment outcome clustering patterns correspond to discrete asthma phenotypes in children
Ivana Banić, Mario Lovrić, Gerald Cuder, Roman Kern, Matija Rijavec, Peter Korošec, Mirjana Kljajić-Turkalj, 2021, izvirni znanstveni članek

Povzetek: Despite widely and regularly used therapy asthma in children is not fully controlled. Recognizing the complexity of asthma phenotypes and endotypes imposed the concept of precision medicine in asthma treatment. By applying machine learning algorithms assessed with respect to their accuracy in predicting treatment outcome, we have successfully identified 4 distinct clusters in a pediatric asthma cohort with specific treatment outcome patterns according to changes in lung function (FEV1 and MEF50), airway inflammation (FENO) and disease control likely affected by discrete phenotypes at initial disease presentation, differing in the type and level of inflammation, age of onset, comorbidities, certain genetic and other physiologic traits. The smallest and the largest of the 4 clusters- 1 (N = 58) and 3 (N = 138) had better treatment outcomes compared to clusters 2 and 4 and were characterized by more prominent atopic markers and a predominant allelic (A allele) effect for rs37973 in the GLCCI1 gene previously associated with positive treatment outcomes in asthmatics. These patients also had a relatively later onset of disease (6 + yrs). Clusters 2 (N = 87) and 4 (N = 64) had poorer treatment success, but varied in the type of inflammation (predominantly neutrophilic for cluster 4 and likely mixed-type for cluster 2), comorbidities (obesity for cluster 2), level of systemic inflammation (highest hsCRP for cluster 2) and platelet count (lowest for cluster 4). The results of this study emphasize the issues in asthma management due to the overgeneralized approach to the disease, not taking into account specific disease phenotypes.
Ključne besede: asthma, allergy and immunology, pediatrics, machine learning, treatment outcome, phenotypes, childhood asthma, clustering
Objavljeno v DiRROS: 16.08.2021; Ogledov: 797; Prenosov: 575
.pdf Celotno besedilo (1,32 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.33 sek.
Na vrh