Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
Raziskovalni podatki

Možnosti:
  Ponastavi

Iskalni niz: "ključne besede" (jelka) .

31 - 39 / 39
Na začetekNa prejšnjo stran1234Na naslednjo stranNa konec
31.
32.
33.
34.
35.
36.
37.
Primerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke
Andrej Ficko, Vasilije Trifković, 2021

Povzetek: V prispevku na primeru jelke predstavljamo sedem regresijskih modelov za modeliranje priraščanja dreves s podatki periodičnih meritev na stalnih vzorčnih ploskvah. Poleg polinomske regresije, modela z dodanim šumom in mešanega linearnega modela, predstavljamo regresijo z naravnimi zlepki in tri modele z omejenimi odvisnimi spremenljivkami: truncated regression, tobit regression in grouped data regression. Modele lahko uporabimo, kadar se zaradi načina merjenja in zaokroževanja podatkov ter hierarhičnosti podatkov srečamo z rezanimi ali krnjenimi slučajnostnimi spremenljivkami, nezveznostjo odvisne spremenljivke in pristransko oceno prirastka. Pri pojasnitvi debelinskega priraščanja 21.013 jelk na 4.405 ploskvah v obdobju 1990–2014 v raznomernih gozdovih v dinarskih jelovo-bukovjih so vsi modeli pokazali podoben vpliv prsnega premera, sestojne temeljnice, temeljnice debelejših dreves, raznomernosti, nagiba, nadmorske višine in le manjše razlike v regresijskih koeficientih in merah prileganja. Največje povprečne napovedi prirastka daje tobit model, mešani model pa se najbolj prilega podatkom. V primerjavi z drugimi modeli model z zlepki kaže na počasnejše zmanjševanje prirastka zelo debelih jelk po kulminaciji prirastka.
Ključne besede: prirastek, multipla regresija, statistične metode, tobit model, krnjenje, mešani modeli, jelka, modeli z omejenimi odvisnimi spremenljivkami, stalne vzorčne ploskve
DiRROS - Objavljeno: 01.12.2021; Ogledov: 824; Prenosov: 527
.pdf Celotno besedilo (2,97 MB)

38.
39.
Iskanje izvedeno v 0 sek.
Na vrh