Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (genetic monitoring) .

1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Monitoring of species’ genetic diversity in Europe varies greatly and overlooks potential climate change impacts
Peter Pearman, Olivier Broennimann, Tsipe Aavik, Tamer Albayrak, Paulo Célio Alves, Filipos Aravanopoulos, Laura Bertola, Aleksandra Biedrzycka, Elena Bužan, Vlatka Čubrić Čurik, Katja Kavčič Sonnenschein, Marjana Westergren, 2024, izvirni znanstveni članek

Povzetek: Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species’ joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union’s Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity.
Ključne besede: genetics, monitoring, population genetic diversity, Europe
Objavljeno v DiRROS: 22.01.2024; Ogledov: 188; Prenosov: 73
.pdf Celotno besedilo (7,53 MB)
Gradivo ima več datotek! Več...

2.
Manual for forest genetic monitoring
2020, slovar, enciklopedija, leksikon, priročnik, atlas, zemljevid

Ključne besede: forests, forest genetics, genetic monitoring
Objavljeno v DiRROS: 16.04.2021; Ogledov: 7948; Prenosov: 4188
.pdf Celotno besedilo (13,01 MB)
Gradivo ima več datotek! Več...

3.
Reconstruction of brown bear population dynamics in Slovenia in the period 1998-2019 : ǂa ǂnew approach combining genetics and long-term mortality data
Klemen Jerina, Andrés Ordiz, 2021, izvirni znanstveni članek

Povzetek: Reliable data and methods for assessing changes in wildlife population size over time are necessary for management and conservation. For most species, assessing abundance is an expensive and labor-intensive task that is not affordable on a frequent basis. We present a novel approach to reconstructing brown bear population dynamics in Slovenia in the period 1998-2019, based on the combination of two CMR non-invasive genetic estimates (in 2007 and 2015) and long-term mortality records, to show how the latter can help the study of population dynamics in combination with point-in-time estimates. The spring (i.e. including newborn cubs) population size estimate was 383 (CI: 336-432) bears in 1998 and 971 (CI: 825-1161) bears in 2019. In this period, the average annual population growth rate was 4.5 %. The predicted population size differed by just 7 % from the non-invasive genetic size estimate after eight years, suggesting that the method is reliable. It can predict the evolution of the population size under different management scenarios and provide information on key parameters, e.g. background mortality and the sex- and age-structure of the population. Our approach can be used for several other wildlife species, but it requires reliable mortality data over time.
Ključne besede: genetic estimates of population size, mortality records, population monitoring, population size, predictive modelling, brown bear
Objavljeno v DiRROS: 28.03.2021; Ogledov: 4007; Prenosov: 2345
.pdf Celotno besedilo (1005,41 KB)
Gradivo ima več datotek! Več...

4.
The interplay between forest management practices, genetic monitoring, and other long-term monitoring systems
Darius Kavaliauskas, Barbara Fussi, Marjana Westergren, Filipos Aravanopoulos, Domen Finžgar, Roland Baier, Paraskevi Alizoti, Gregor Božič, Evangelia V. Avramidou, Monika Konnert, Hojka Kraigher, 2018, pregledni znanstveni članek

Povzetek: The conservation and sustainable use of forests and forest genetic resources (FGR) is a challenging task for scientists and foresters. Forest management practices can affect diversity on various levels: genetic, species, and ecosystem. Understanding past natural disturbance dynamics and their level of dependence on human disturbances and management practices is essential for the conservation and management of FGR, especially in the light of climate change. In this review, forest management practices and their impact on genetic composition are reviewed, synthesized, and interpreted in the light of existing national and international forest monitoring schemes and concepts from various European projects. There is a clear need and mandate for forest genetic monitoring (FGM), while the requirements thereof lack complementarity with existing forest monitoring. Due to certain obstacles (e.g., the lack of unified FGM implementation procedures across the countries, high implementation costs, large number of indicators and verifiers for FGM proposed in the past), merging FGM with existing forest monitoring is complicated. Nevertheless, FGM is of paramount importance for forestry and the natural environment in the future, regardless of the presence or existence of other monitoring systems, as it provides information no other monitoring system can yield. FGM can provide information related to adaptive and neutral genetic diversity changes over time, on a species and/or on a population basis and can serve as an early warning system for the detection of potentially harmful changes of forest adaptability. In addition, FGM offers knowledge on the adaptive potential of forests under the changing environment, which is important for the long-term conservation of FGR
Ključne besede: forest monitoring, forest genetic monitoring, forest genetic diversity, silviculture
Objavljeno v DiRROS: 20.02.2020; Ogledov: 1994; Prenosov: 1263
.pdf Celotno besedilo (766,78 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.25 sek.
Na vrh