Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (general position number) .

1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Lower general position sets in graphs
Gabriele Di Stefano, Sandi Klavžar, Aditi Krishnakumar, James Tuite, Ismael G. Yero, 2025, izvirni znanstveni članek

Povzetek: A subset $S$ of vertices of a graph $G$ is a general position set if no shortest path in $G$ contains three or more vertices of $S$. In this paper, we generalise a problem of M. Gardner to graph theory by introducing the lower general position number ${\rm gp}^-(G)$ of $G$, which is the number of vertices in a smallest maximal general position set of $G$. We show that ${\rm gp}^-(G) = 2$ if and only if $G$ contains a universal line and determine this number for several classes of graphs, including Kneser graphs $K(n,2)$, line graphs of complete graphs, and Cartesian and direct products of two complete graphs. We also prove several realisation results involving the lower general position number, the general position number and the geodetic number, and compare it with the lower version of the monophonic position number. We provide a sharp upper bound on the size of graphs with given lower general position number. Finally we demonstrate that the decision version of the lower general position problem is NP-complete.
Ključne besede: general position number, geodetic number, universal line, computational complexity, Kneser graphs, line graphs
Objavljeno v DiRROS: 11.04.2025; Ogledov: 152; Prenosov: 68
.pdf Celotno besedilo (254,31 KB)
Gradivo ima več datotek! Več...

2.
General position polynomials
Vesna Iršič, Sandi Klavžar, Gregor Rus, James Tuite, 2024, izvirni znanstveni članek

Povzetek: A subset of vertices of a graph $G$ is a general position set if no triple of vertices from the set lie on a common shortest path in $G$. In this paper we introduce the general position polynomial as $\sum_{i \geq 0} a_i x^i$, where $a_i$ is the number of distinct general position sets of $G$ with cardinality $i$. The polynomial is considered for several well-known classes of graphs and graph operations. It is shown that the polynomial is not unimodal in general, not even on trees. On the other hand, several classes of graphs, including Kneser graphs $K(n,2)$, with unimodal general position polynomials are presented.
Ključne besede: general position set, general position number, general position polynomial, unimodality, trees, Cartesian product of graphs, Kneser graphs
Objavljeno v DiRROS: 28.02.2024; Ogledov: 881; Prenosov: 394
.pdf Celotno besedilo (384,07 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.08 sek.
Na vrh