Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (electrochemotherapy) .

1 - 10 / 19
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
Adjuvant TNF-a therapy to electrochemotherapy with intravenous cisplatin in murine sarcoma exerts synergistic antitumor effectiveness
Maja Čemažar, Vesna Todorović, Janez Ščančar, Urša Lampreht Tratar, Monika Savarin, Urška Kamenšek, Simona Kranjc Brezar, Andrej Cör, Gregor Serša, 2015, izvirni znanstveni članek

Povzetek: Background. Electrochemotherapy is a tumour ablation modality, based on electroporation of the cell membrane, allowing non-permeant anticancer drugs to enter the cell, thus augmenting their cytotoxicity by orders of magnitude. In preclinical studies, bleomycin and cisplatin proved to be the most suitable for clinical use. Intravenous administration of cisplatin for electrochemotherapy is still not widely accepted in the clinics, presumably due to its lower antitumor effectiveness, but adjuvant therapy by immunomodulatory or vascular-targeting agents could provide a way for its potentiation. Hence, the aim of the present study was to explore the possibility of adjuvant tumour necrosis factor % (TNF-%) therapy to potentiate antitumor effectiveness of electrochemotherapy with intravenous cisplatin administration in murine sarcoma. Materials and methods. In vivo study was designed to evaluate the effect of TNF-% applied before or after the electrochemotherapy and to evaluate the effect of adjuvant TNF-% on electrochemotherapy with different cisplatin doses. Results. A synergistic interaction between TNF-% and electrochemotherapy was observed. Administration of TNF-% before the electrochemotherapy resulted in longer tumour growth delay and increased tumour curability, and was significantly more effective than TNF-% administration after the electrochemotherapy. Tumour analysis revealed increased platinum content in tumours, TNF-% induced blood vessel damage and increased tumour necrosis after combination of TNF-% and electrochemotherapy, indicating an anti-vascular action of TNF-%. In addition, immunomodulatory effect might have contributed to curability rate of the tumours. Conclusion. Adjuvant intratumoural TNF-% therapy synergistically contributes to electrochemotherapy with intravenous cisplatin administration. Due to its potentiation at all doses of cisplatin, the combined treatment is predicted to be effective also in tumours, where the drug concentration is suboptimal or in bigger tumours, where electrochemotherapy with intravenous cisplatin is not expected to be sufficiently effective.
Ključne besede: electrochemotherapy, TNF, adjuvant immunotherapy, cisplatin
Objavljeno v DiRROS: 17.04.2024; Ogledov: 42; Prenosov: 5
.pdf Celotno besedilo (978,26 KB)

2.
3.
4.
Effects of electrochemotherapy on immunologically important modifications in tumor cells
Urša Kešar, Boštjan Markelc, Tanja Jesenko, Katja Uršič Valentinuzzi, Maja Čemažar, Primož Strojan, Gregor Serša, 2023, izvirni znanstveni članek

Povzetek: Electrochemotherapy (ECT) is a clinically acknowledged method that combines the use of anticancer drugs and electrical pulses. Electrochemotherapy with bleomycin (BLM) can induce immunogenic cell death (ICD) in certain settings. However, whether this is ubiquitous over different cancer types and for other clinically relevant chemotherapeutics used with electrochemotherapy is unknown. Here, we evaluated in vitro in the B16-F10, 4T1 and CT26 murine tumor cell lines, the electrochemotherapy triggered changes in the ICD-associated damage-associated molecular patterns (DAMPs): Calreticulin (CRT), ATP, High Mobility Group Box 1 (HMGB1), and four immunologically important cellular markers: MHCI, MHC II, PD-L1 and CD40. The changes in these markers were investigated in time up to 48 h after ECT. We showed that electrochemotherapy with all three tested chemotherapeutics induced ICD-associated DAMPs, but the induced DAMP signature was cell line and chemotherapeutic concentration specific. Similarly, electrochemotherapy with CDDP, OXA or BLM modified the expression of MHC I, MHC II, PD-L1 and CD40. The potential of electrochemotherapy to change their expression was also cell line and chemotherapeutic concentration specific. Our results thus put the electrochemotherapy with clinically relevant chemotherapeutics CDDP, OXA and BLM on the map of ICD inducing therapies.
Ključne besede: electrochemotherapy, cisplatin, immune response
Objavljeno v DiRROS: 21.03.2024; Ogledov: 74; Prenosov: 40
.pdf Celotno besedilo (7,17 MB)
Gradivo ima več datotek! Več...

5.
6.
7.
Numerical modeling in electroporation-based biomedical applications
Nataša Pavšelj, Damijan Miklavčič, 2008, izvirni znanstveni članek

Povzetek: Background. Numerous experiments have to be performed before a biomedical application is put to practical use in clinical environment. As a complementary work to in vitro, in vivo and medical experiments, we can use analytical and numerical models to represent, as realistically as possible, real biological phenomena of, in our case, electroporation. In this way we canevaluate different electrical parameters in advance, such as pulse amplitude, duration, number of pulses, or different electrode geometries. Suchnumerical models can contribute significantly to the understanding of an experiment and treatment planning as well as to the design of new electroporation devices and electrodes. Methods. We used commercially available modeling software, based on finite element method. We constructed a model of a subcutaneous tumor during electrochemotherapy (EMAS) and a model ofskin during gene electrotransfer (COMSOL Multiphysics). Tissue-electrode geometries, pulse parameters and currentvoltage measurements from in vivo experiments were used to develop and validate the models. Results. To describeadequately our in vivo observations, a tissue conductivity increase during electroporation was included in our numerical models. The output currents of the models were compared to the currents and the voltages measuredduring in vivo experiments and a good agreement was obtained. Also, when comparing the voltages needed for a successful electropermeabilization assuggested by the models, to voltages applied in experiments and achieving a successful electrochemotherapy or in vivo gene electrotransfer, good agreementcan be observed. Conclusions. Modeling of electric current and electric field distribution during cell and tissue electroporation proves to be helpful in describing different aspects of the process and allowing us to design electrodes and electroporation protocols as a part of treatment planning.
Ključne besede: electroporation, gene electrotransfer, electrochemotherapy, subcutaneous tumor, finite-element method
Objavljeno v DiRROS: 07.03.2024; Ogledov: 99; Prenosov: 31
.pdf Celotno besedilo (549,62 KB)

8.
9.
10.
Combination of pembrolizumab with electrochemotherapy in cutaneous metastases from melanoma : a comparative retrospective study from the InspECT and Slovenian Cancer Registry
Luca Giovanni Campana, Barbara Perić, Matteo Mascherini, Romina Spina, Christian Kunte, Erika Kis, Petra Rozsa, Pietro Quaglino, Maja Čemažar, Maša Omerzel, Gregor Serša, 2021, izvirni znanstveni članek

Povzetek: Electrochemotherapy (ECT) is an effective locoregional therapy for cutaneous melanoma metastases and has been safely combined with immune checkpoint inhibitors in preliminary experiences. Since ECT is known to induce immunogenic cell death, its combination with immune checkpoint inhibitors might be beneficial. In this study, we aimed to investigate the effectiveness of ECT on cutaneous melanoma metastases in combination with pembrolizumab. We undertook a retrospective matched cohort analysis of stage IIIC%IV melanoma patients, included in the International Network for sharing practices of ECT (InspECT) and the Slovenian Cancer Registry. We compared the outcome of patients who received the following treatments: (a) pembrolizumab alone, (b) pembrolizumab plus ECT, and (c) ECT. The groups were matched for age, sex, performance status, and size of skin metastases. The local objective response rate (ORR) was higher in the pembrolizumab-ECT group than in the pembrolizumab group (78% and 39%, p < 0.001). The 1 year local progression-free survival (LPFS) rates were 86% and 51% (p < 0.001), and the 1 year systemic PFS rates were 64% and 39%, respectively (p = 0.034). The 1 year overall survival (OS) rates were 88% and 64%, respectively (p = 0.006). Our results suggest that skin-directed therapy with ECT improves superficial tumor control in melanoma patients treated with pembrolizumab. Interestingly, we observed longer PFS and OS in the pembrolizumab-ECT group than in the pembrolizumab group. These findings warrant prospective confirmation.
Ključne besede: electrochemotherapy, metastatic melanoma, skin metastases
Objavljeno v DiRROS: 10.10.2022; Ogledov: 464; Prenosov: 230
.pdf Celotno besedilo (701,05 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.38 sek.
Na vrh