1. |
2. |
3. Characterisation of a 3D-printed alkali-activated material based on waste mineral wool at room and elevated temperaturesMajda Pavlin, Barbara Horvat, Romana Cerc Korošec, Rok Capuder, Lidija Korat, Vilma Ducman, 2024, izvirni znanstveni članek Ključne besede: recycling, alkalijsko aktivirani materiali, 3D print, mineralna volna Objavljeno v DiRROS: 25.01.2024; Ogledov: 690; Prenosov: 419 Celotno besedilo (17,73 MB) Gradivo ima več datotek! Več... |
4. Particle size manipulation as an influential parameter in the development of mechanical properties in electric arc furnace slag-based AAMKatja Traven, Mark Češnovar, Vilma Ducman, 2019, izvirni znanstveni članek Povzetek: Alkali-activated materials (AAM) have gained recognition as a promising alternative to technical ceramic and building materials owing to the lower energy demands for production and the potential to use slag as a precursor. In the present study, five sets of slag-based AAM pastes were prepared with different particle sizes (fractions d < 63, 63 < d < 90, and 90 < d < 125 μm in different mass ratios) under the same curing regime and using a fixed precursor to activator (water) mass ratio. Precursors and the hardened AAM are evaluated using BET, XRD, XRF, SEM, FTIR, reactivity of precursors by leaching, and mercury intrusion porosimetry (MIP). Chemical analysis indicated only marginal differences among the different-sized fractions of input materials, whereas the BET surface area and reactivity among the precursors differed significantly-smaller particles had the largest surface area, and thus, higher reactivity. The mineralogical differences between the precursors and hardened AAM were negligible. The results revealed that compressive strength was significantly influenced by particle size, i.e., a threefold increase in strength when the particle size was halved. Microstructural evaluation using MIP confirmed that the porosity was the lowest in AAM with the smallest particle size. The low porosity and high reactivity of the fine fractions led to the highest compressive strength, confirming that manipulation of particle size can significantly influence the mechanical properties. Ključne besede: alkalijsko aktivirani materiali, žlindra iz obločne peči, mehanska aktivacija, mehanske lastnosti, poroznost, alkali-activated materials (AAM), electric arc furnace steel slag, mechanical activation, mechanical properties, porosity Objavljeno v DiRROS: 22.11.2023; Ogledov: 859; Prenosov: 323 Celotno besedilo (2,26 MB) Gradivo ima več datotek! Več... |
5. Evaluation of locally available amorphous waste materials as a source for alternative alkali activatorsKatja Koenig, Katja Traven, Majda Pavlin, Vilma Ducman, 2021, izvirni znanstveni članek Povzetek: The production of alkali-activated materials with excellent mechanical performance requires the use of waterglass, which has a significant carbon footprint. Such materials can have a lower carbon footprint if we replace water glass with alternative activators sourced from waste. In this study, we assessed the suitability of locally available amorphous waste materials (stone wool, glass wool, bottle glass and cathode-ray tube glass) as a source for the preparation of alternative alkali activators. We quantified the amount of silicon and aluminium dissolved in the activator solutions via inductively coupled plasma-optical emission spectrometry. The alternative activators were then used to produce alkali-activated fly ash and slag. The compressive strength values of alkali-activated fly ash specimens upon the addition of NaOH, water glass and the most promising alternative activator were 38.98 MPa, 31.34 MPa and 40.37 MPa, respectively. The compressive strength of slag specimens activated with alternative activators with the highest concentration of dissolved silicon (21 g/L) was, however, 70% higher than the compressive strength of slag specimens activated with only 10 M sodium hydroxide. The compressive strength of slag specimens with the addition of the most promising alternative activator was significantly lower (3.5 MPa) than the compressive strength of those that had been activated by commercial water glass (34.3 MPa). Ključne besede: alkalijsko aktivirani materiali, alternativni aktivatorji, lastnosti, alkali activated materials/geopolimers, alternative activators, properties Objavljeno v DiRROS: 22.08.2023; Ogledov: 600; Prenosov: 332 Celotno besedilo (6,02 MB) Gradivo ima več datotek! Več... |