Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (alkali-activated mortars) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Electrochemical corrosion tests on steel in alkali-activated materials
Nina Gartner, Miha Hren, Tadeja Kosec, Andraž Legat, 2021, objavljeni znanstveni prispevek na konferenci

Povzetek: One of the potential alternatives to Ordinary Portland Cement (OPC) are Alkali-Activated Materials (AAMs). The service life of reinforced concrete structures greatly depends on the corrosion resistance of embedded steel reinforcement. Due to the wide range of AAMs and their diverse properties, corrosion processes of steel in these materials are relatively unknown. Corrosion monitoring methods or their interpretations in certain cases cannot be directly transferred from the ones for OPC materials. The chemical compositions of pore solution in different AAMs influence the results of electrochemical measurements and their interpretations. Within this research, three different alkali-activated mortar mixes were prepared, based on fly ash, slag or metakaolin. Pore solutions were extracted from each mortar andchemical analysis was acquired. Different electrochemical corrosion measurements were performed on steel submerged to synthetic pore solutions. In parallel, ordinary carbon steel reinforcing bar was installed in the same types of alkali-activated mortar mixes. Specimens were exposed to wet/dry cycles with saline solution and periodic measurements of electrochemical impedance spectroscopy (EIS) were performed. Measured parameters in both systems were analysedand compared. It was concluded that electrochemical measurements in pore solutions can provide basic overview on corrosion behaviour in different AAMs environments. Periodic EIS measurements enabled monitoring of corrosion initiation and propagation on steel reinforcement in AAMs, although the information on the corrosion type is missing. Interpretation of results depends on visual analysis of corrosion damages after the end of exposure, providing information on corrosion type and intensity. The continuation of research on corrosion monitoring techniques will be performed by using Electrical Resistance (ER) sensors and Coupled Multi-Electrode Array (CMEA) sensors.
Ključne besede: corrosion, alkali-activated mortars, pore solution extraction, electrochemical corrosion techniques, visual analysis
Objavljeno v DiRROS: 22.01.2024; Ogledov: 630; Prenosov: 374
.pdf Celotno besedilo (9,29 MB)
Gradivo ima več datotek! Več...

2.
Production of lightweight alkali activated mortars using mineral wools
Ahmad Alzaza, Mohammad Mastali, Paivo Kinnunen, Lidija Korat, Zahra Abdollahnejad, Vilma Ducman, Mirja Illikainen, 2019, izvirni znanstveni članek

Povzetek: This experimental study aimed to develop a fiber-reinforced lightweight mineral wool-based alkali activated mortar. The lightweight mineral wool-based alkali activated mortars were produced using premade foam and reinforced by polypropylene (PP) fibers. They were assessed in terms of fresh and hardened-state properties. Fresh-state properties were investigated by mini-slump tests. Hardened-state characteristics were assessed by ultrasonic pulse velocity, dry density, compressive and flexural strengths, drying shrinkage, efflorescence, water absorption, and permeable porosity. For the first time, the resistance of the synthesized lightweight mineral wool-based alkali activated mortars against harsh conditions (carbonation, freeze and thaw, and high temperature) were evaluated. The porous structures of the developed lightweight alkali activated mortars were also analyzed using an X-ray micro-computed tomography (CT) technique. Lightweight mix compositions with densities in a range of 770%1510 kg/m3, compressive strengths of 1%9 MPa, and flexural strengths of 2.6%8 MPa were developed. Increases in both density and strength after carbonation were also recorded, while a decrease of strength was noticed after exposure to freeze/thaw and high temperatures of up to 500 %C.
Ključne besede: alkali activation, mineral wool, mortars
Objavljeno v DiRROS: 24.10.2023; Ogledov: 649; Prenosov: 295
.pdf Celotno besedilo (10,47 MB)
Gradivo ima več datotek! Več...

3.
Characterizing steel corrosion in different alkali-activated mortars
Nina Gartner, Miha Hren, Tadeja Kosec, Andraž Legat, 2021, izvirni znanstveni članek

Povzetek: Alkali-activated materials (AAMs) present a promising potential alternative to ordinary Portland cement (OPC). The service life of reinforced concrete structures depends greatly on the corrosion resistance of the steel used for reinforcement. Due to the wide range and diverse properties of AAMs, the corrosion processes of steel in these materials is still relatively unknown. Three different alkali-activated mortar mixes, based on fly ash, slag, or metakaolin, were prepared for this research. An ordinary carbon-steel reinforcing bar was installed in each of the mortar mixes. In order to study the corrosion properties of steel in the selected mortars, the specimens were exposed to a saline solution in wet/dry cycles for 17 weeks, and periodic electrochemical impedance spectroscopy (EIS) measurements were performed. The propagation of corrosion damage on the embedded steel bars was followed using X-ray computed microtomography (XCT). Periodic EIS measurements of the AAMs showed different impedance response in individual AAMs. Moreover, these impedance responses also changed over the time of exposure. Interpretation of the results was based on visual and numerical analysis of the corrosion damages obtained by XCT, which confirmed corrosion damage of varying type and extent on steel bars embedded in the tested AAMs.
Ključne besede: corrosion, alkali-activated mortars, steel reinforcement, electrochemical impedance spectroscopy, X-ray computed microtomography, visual analysis
Objavljeno v DiRROS: 05.07.2023; Ogledov: 711; Prenosov: 350
.pdf Celotno besedilo (7,00 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh