Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (alkali-activated materials (AAM)) .

1 - 10 / 20
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
Particle size manipulation as an influential parameter in the development of mechanical properties in electric arc furnace slag-based AAM
Katja Traven, Mark Češnovar, Vilma Ducman, 2019, izvirni znanstveni članek

Povzetek: Alkali-activated materials (AAM) have gained recognition as a promising alternative to technical ceramic and building materials owing to the lower energy demands for production and the potential to use slag as a precursor. In the present study, five sets of slag-based AAM pastes were prepared with different particle sizes (fractions d < 63, 63 < d < 90, and 90 < d < 125 μm in different mass ratios) under the same curing regime and using a fixed precursor to activator (water) mass ratio. Precursors and the hardened AAM are evaluated using BET, XRD, XRF, SEM, FTIR, reactivity of precursors by leaching, and mercury intrusion porosimetry (MIP). Chemical analysis indicated only marginal differences among the different-sized fractions of input materials, whereas the BET surface area and reactivity among the precursors differed significantly-smaller particles had the largest surface area, and thus, higher reactivity. The mineralogical differences between the precursors and hardened AAM were negligible. The results revealed that compressive strength was significantly influenced by particle size, i.e., a threefold increase in strength when the particle size was halved. Microstructural evaluation using MIP confirmed that the porosity was the lowest in AAM with the smallest particle size. The low porosity and high reactivity of the fine fractions led to the highest compressive strength, confirming that manipulation of particle size can significantly influence the mechanical properties.
Ključne besede: alkalijsko aktivirani materiali, žlindra iz obločne peči, mehanska aktivacija, mehanske lastnosti, poroznost, alkali-activated materials (AAM), electric arc furnace steel slag, mechanical activation, mechanical properties, porosity
Objavljeno v DiRROS: 22.11.2023; Ogledov: 48; Prenosov: 27
.pdf Celotno besedilo (2,26 MB)
Gradivo ima več datotek! Več...

2.
The corrosion properties of steel in pore solutions obtained from alkali‐activated mortars
Nina Gartner, Tadeja Kosec, Stéphane Poyet, Andraž Legat, 2023, izvirni znanstveni članek

Povzetek: Alkali‐activated materials (AAMs) are considered a promising alternative to materials made from ordinary Portland cement (OPC). Other than considering the durability of the material itself, the use of AAMs for reinforced concrete elements also raises the question of steel corrosion processes in these materials, which are still relatively unknown. Three different alkali‐activated mortars were prepared for this study, based on either fly ash, slag, or metakaolin. Pore solutions were then extracted from each mortar and chemically analyzed. Electrochemical techniques were used to study the corrosion of steel in synthetic pore solutions containing varying concentrations of chlorides. In parallel, the same corrosion tests were performed in a generic pore solution representing OPC mortar. It was shown that the chemical composition differed in each pore solution tested, thus affecting the corrosion properties of the steel. The addition of chloride also had a varying effect on the corrosion properties of the steel in each type of pore solution tested. This study provided a basic overview of the corrosion behavior and mechanisms of the various AAM environments in comparison to that of OPC.
Ključne besede: alkali-aktivated materials, corrosion, electrochemical corrosion techniques, extracted pore solution
Objavljeno v DiRROS: 20.11.2023; Ogledov: 67; Prenosov: 10
.pdf Celotno besedilo (2,73 MB)
Gradivo ima več datotek! Več...

3.
RILEM TC 247-DTA round robin test : mix design and reproducibility of compressive strength of alkaliactivated concretes
John L. Provis, Kamel Arbi, Susana Bernal, Dali Bondar, Anja Buchwald, Arnaud Castel, Sundararaman Chithiraputhiran, Martin Cyr, Alireza Dehghan, Katja Dombrowski-Daube, Ashish Dubey, Vilma Ducman, Gregor J. G. Gluth, Sreejith Nanukuttan, Karl Peterson, Francisca Puertas, Arie van Riessen, Manuel Torres-Carrasco, Guang Ye, Yibing Zuo, 2019, izvirni znanstveni članek

Povzetek: The aim of RILEM TC 247-DTA Durability Testing of Alkali-Activated Materials is to identify and validate methodologies for testing the durability of alkali-activated concretes. To underpin the durability testing work of this committee, five alkali-activated concrete mixes were developed based on blast furnace slag, fly ash, and flash-calcined metakaolin. The concretes were designed with different intended performance levels, aiming to assess the capability of test methods to discriminate between concretes on this basis. A total of fifteen laboratories worldwide participated in this round robin test programme, where all concretes were produced with the same mix designs, from single-source aluminosilicate precursors and locally available aggregates. This paper reports the mix designs tested, and the compressive strength results obtained, including critical insight into reasons for the observed variability in strength within and between laboratories.
Ključne besede: alkali-activated materials (AAM), mechanical properties, test method, Rilem TC, durability
Objavljeno v DiRROS: 14.09.2023; Ogledov: 109; Prenosov: 74
.pdf Celotno besedilo (431,19 KB)
Gradivo ima več datotek! Več...

4.
Life cycle assessment of prefabricated geopolymeric façade cladding panels made from large fractions of recycled construction and demolition waste
Davor Kvočka, Anja Lešek, Friderik Knez, Vilma Ducman, Matteo Panizza, Constantinos Tsoutis, Adriana Bernardi, 2020, izvirni znanstveni članek

Povzetek: The construction and demolition sector is one of the biggest consumers of natural resources in the world and consequently, one of the biggest waste producers worldwide. The proper management of construction and demolition waste (CDW) can provide major benefits for the construction and recycling industry. However, the recycling rate of CDW is relatively low, as there is still a lack of confidence in the quality of recycled CDW materials. Therefore, new research projects are looking for innovative solutions within recycling of CDW in order to overcome uncertainties currently associated with the use of construction products made from recycled or re-used CDW. In this paper, a “cradle-to-cradle” life cycle assessment (LCA) study has been conducted to investigate the environmental performance of the prefabricated geopolymeric façade cladding panels made from large fractions of CDW. The LCA results indicate that the majority of the environmental burden arises within the manufacturing stage; however, the environmental burden can be reduced with simple optimisation of the manufacturing process. Furthermore, the environmental impact of the prefabricated geopolymeric façade cladding panels is generally lower than the environmental burden associated with the façade cladding panels made from virgin materials.
Ključne besede: construction and demolition waste, alkali activated materials, geopolymers, LCA
Objavljeno v DiRROS: 24.08.2023; Ogledov: 128; Prenosov: 70
.pdf Celotno besedilo (2,03 MB)
Gradivo ima več datotek! Več...

5.
Characterization of fly ash alkali activated foams obtained using sodium perborate monohydrate as a foaming agent at room and elevated temperatures
Lidija Korat, Vilma Ducman, 2020, izvirni znanstveni članek

Povzetek: Alkali activated foams have been extensively studied in recent years, due to their high performance and low environmental footprint compared to foams produced via other methods. Three types of fly ash differing in chemical and mineralogical composition and specific surface were used to synthesize alkali activated foams. Sodium perborate monohydrate was added as a foaming agent and sodium dodecyl sulphate as a stabilizing agent. Foams were characterized at room temperature and after exposure to an elevated temperature (1,000 °C). Densities from 1.2 down to 0.3 g/cm 3 were obtained, depending on the type of fly ash and quantity of foaming agent added. Correspondingly, compressive strength ranged from 1 to 6 MPa. Comparing all three fly ashes the most favorable results, in terms of density and corresponding compressive strength, were achieved from the fly ash with the highest amounts of SiO 2 and Al2 O 3 , as well as the highest amorphous phase content i.e., RI fly ash. Furthermore, after firing to 1,000 °C, the density of samples prepared using fly ash RI remained approximately the same, while the compressive strength increased on average by 50%. In the other two types of fly ash the density increased slightly after firing, due to significant shrinkage, and compressive strength increased by as much as 800%. X-ray powder diffraction analysis confirmed the occurrence of a crystallization process after firing to 1,000 ° C, which resulted in newly formed crystal phases, including nepheline, sodalite, tridymite, and gehlenite.
Ključne besede: foamed alkali activated materials, geopolymers, properties, micro-CT
Objavljeno v DiRROS: 22.08.2023; Ogledov: 133; Prenosov: 71
.pdf Celotno besedilo (7,94 MB)
Gradivo ima več datotek! Več...

6.
Evaluation of locally available amorphous waste materials as a source for alternative alkali activators
Katja Koenig, Katja Traven, Majda Pavlin, Vilma Ducman, 2021, izvirni znanstveni članek

Povzetek: The production of alkali-activated materials with excellent mechanical performance requires the use of waterglass, which has a significant carbon footprint. Such materials can have a lower carbon footprint if we replace water glass with alternative activators sourced from waste. In this study, we assessed the suitability of locally available amorphous waste materials (stone wool, glass wool, bottle glass and cathode-ray tube glass) as a source for the preparation of alternative alkali activators. We quantified the amount of silicon and aluminium dissolved in the activator solutions via inductively coupled plasma-optical emission spectrometry. The alternative activators were then used to produce alkali-activated fly ash and slag. The compressive strength values of alkali-activated fly ash specimens upon the addition of NaOH, water glass and the most promising alternative activator were 38.98 MPa, 31.34 MPa and 40.37 MPa, respectively. The compressive strength of slag specimens activated with alternative activators with the highest concentration of dissolved silicon (21 g/L) was, however, 70% higher than the compressive strength of slag specimens activated with only 10 M sodium hydroxide. The compressive strength of slag specimens with the addition of the most promising alternative activator was significantly lower (3.5 MPa) than the compressive strength of those that had been activated by commercial water glass (34.3 MPa).
Ključne besede: alkalijsko aktivirani materiali, alternativni aktivatorji, lastnosti, alkali activated materials/geopolimers, alternative activators, properties
Objavljeno v DiRROS: 22.08.2023; Ogledov: 108; Prenosov: 87
.pdf Celotno besedilo (6,02 MB)
Gradivo ima več datotek! Več...

7.
Influence of particle size on compressive strength of alkali activated refractory materials
Barbara Horvat, Vilma Ducman, 2020, izvirni znanstveni članek

Povzetek: Influence of particle size on the mechanical strength of alkali activated material from waste refractory monolithic was investigated in this study. Precursor was chemically and mineralogically analysed, separated on 4 fractions and alkali activated with Na-water glass. Alkali activated materials were thoroughly investigated under SEM and XRD to evaluate the not predicted differences in mechanical strength. Influence of curing temperature and time dependence at curing temperatures on mechanical strength were investigated in the sample prepared from a fraction that caused the highest compressive strength.
Ključne besede: refractory materials, alkali activation, particle size, SEM, XRF, XRD, compressive strength
Objavljeno v DiRROS: 21.08.2023; Ogledov: 210; Prenosov: 182
.pdf Celotno besedilo (13,36 MB)
Gradivo ima več datotek! Več...

8.
Up-scaling and performance assessment of façade panels produced from construction and demolition waste using alkali activation technology
Ana Frankovič, Vilma Ducman, Sabina Dolenec, Matteo Panizza, Sergio Tamburini, Marco Natali, Katherine-Maria Pappas, Constantinos Tsoutis, Adriana Bernardi, 2020, izvirni znanstveni članek

Povzetek: Novel prefabricated insulating façade panels were developed from construction and demolition waste (CDW) aggregates under the framework of the European H2020 project InnoWEE. These non-structural components, aimed at improving the thermal efficiency of existing buildings, consist of an insulating plate covered by a facing layer made of CDW aggregates bound with metakaolin, furnace slag and class F fly ash activated by a potassium silicate solution. The paper presents the design and assessment of the binder and panels for exterior use, taking into account mechanical performance, behaviour in the presence of water and durability issues. Testing was carried out on both laboratory prototypes and panels from the pilot industrial production.
Ključne besede: construction and demolition waste, alkali activated materials, geopolymers, properties, up-scalimg
Objavljeno v DiRROS: 21.08.2023; Ogledov: 124; Prenosov: 70
.pdf Celotno besedilo (2,99 MB)
Gradivo ima več datotek! Več...

9.
RILEM TC 247-DTA round robin test : carbonation and chloride penetration testing of alkali-activated concretes
Gregor J. G. Gluth, Kamel Arbi, Susana Bernal, Dali Bondar, Arnaud Castel, Sundararaman Chithiraputhiran, Alireza Dehghan, Katja Dombrowski-Daube, Ashish Dubey, Vilma Ducman, Karl Peterson, Penny Pipilikaki, Siska L. A. Valcke, Guang Ye, Yibing Zuo, John L. Provis, 2020, izvirni znanstveni članek

Povzetek: Many standardised durability testing methods have been developed for Portland cement-based concretes, but require validation to determine whether they are also applicable to alkali-activated materials. To address this question, RILEM TC 247-DTA "Durability Testing of Alkali-Activated Materials" carried out round robin testing of carbonation and chloride penetration test methods, applied to five different alkali-activated concretes based on fly ash, blast furnace slag or metakaolin. The methods appeared overall to demonstrate an intrinsic precision comparable to their precision when applied to conventional concretes. The ranking of test outcomes for pairs of concretes of similar binder chemistry was satisfactory, but rankings were not always reliable when comparing alkali-activated concretes based on different precursors. Accelerated carbonation testing gave similar results for fly ash-based and blast furnace slag-based alkali-activated concretes, whereas natural carbonation testing did not. Carbonation of concrete specimens was observed to have occurred already during curing, which has implications for extrapolation of carbonation testing results to longer service life periods. Accelerated chloride penetration testing according to NT BUILD 443 ranked the tested concretes consistently, while this was not the case for the rapid chloride migration test. Both of these chloride penetration testing methods exhibited comparatively low precision when applied to blast furnace slag-based concretes which are more resistant to chloride ingress than the other materials tested.
Ključne besede: alkali-activated materials (AAM), carbonatization, chloride penetration, Rilem TC, durability
Objavljeno v DiRROS: 17.08.2023; Ogledov: 128; Prenosov: 95
.pdf Celotno besedilo (1014,30 KB)
Gradivo ima več datotek! Več...

10.
Optimization and mechanical-physical characterization of geopolymers with construction and demolition waste (CDW) aggregates for construction products
Matteo Panizza, Marco Natali, Enrico Garbin, Vilma Ducman, Sergio Tamburini, 2020, izvirni znanstveni članek

Povzetek: The paper presents the mechanical and physical characterization of a metakaolin-slag-fly ash-potassium silicate geopolymer mortar embedding inorganic recycled aggregates from Construction and Demolition Waste (CDW). The binder was holistically optimized to comply with the pilot plant requirements for producing architectural panels of satisfactory quality, among them: reduced viscosity, minimum open time of 1 h, use of commercial reagents, sufficient strength and limited shrinkage. Size and aspect ratio of small scale cylindrical specimens were investigated in compression, comparing the performance of tested geopolymers to available provisions for natural rocks, cement concrete and mortars. Empirical correlations between compressive and splitting tensile strength were calibrated through the results of about 130 geopolymer mixtures produced in former and current activities. Lastly, the suitability of reusing geopolymers at their end-of-life as recycled aggregates in a new geopolymer production was preliminarily assessed to explore the feasibility of a closed-loop process.
Ključne besede: construction and demolition waste, alkali activated materials, geopolymers, properties
Objavljeno v DiRROS: 17.08.2023; Ogledov: 137; Prenosov: 87
.pdf Celotno besedilo (2,88 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.59 sek.
Na vrh