Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Simona Adrinek) .

1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Influence of geology, hydrogeology, and climate on ground source heat pump distribution in Slovenia and selected European countries
Simona Adrinek, Mitja Janža, Rao Martand Singh, 2024, izvirni znanstveni članek

Povzetek: Shallow geothermal energy (SGE) is a renewable energy that could contribute to the decarbonatization of the heating and cooling sector. SGE is predominantly harnessed through ground source heat pump (GSHP) systems. The choice of which type of GSHP system depends on various factors. Understanding these factors is crucial for optimizing the efficiency of GSHP systems and fostering their implementation. In this paper, we have analysed the spatial distribution of GSHPs in Slovenia. We identified 1073 groundwater and 1122 ground-coupled heat pump systems with a total heat pump capacity of almost 30 MW. We quantitatively assessed the influence of geological, hydrogeological, and climate conditions on their spatial distribution. Using the χ2 test and information value method, we identified hydrogeological conditions as the most influential factor for the GSHP systems’ spatial distribution. We also performed the spatial analysis of geological and hydrogeological data in 22 European countries, including Slovenia. We collected the reported numbers of installed GSHP units in 2020 and were able to distinguish the shares of groundwater and ground-coupled heat pump systems for 12 of these countries. The analysis showed that ground-coupled heat pumps predominate in most countries, even if the natural conditions are favourable for groundwater heat pumps.
Ključne besede: shallow geothermal energy, renewable heating and cooling, ground-source heat pump, spatial distribution, natural condition
Objavljeno v DiRROS: 19.03.2024; Ogledov: 69; Prenosov: 38
.pdf Celotno besedilo (15,39 MB)

2.
Overview of the thermal properties of rocks and sediments in Slovenia
Dušan Rajver, Simona Adrinek, 2023, pregledni znanstveni članek

Povzetek: The use of geothermal energy, which comes from both deep geothermal systems and the shallow underground, has been developing rapidly in the last few decades. The purpose of the paper is to present the results of measurements of the thermal properties of all rock samples and sediments that were available from boreholes, two tunnels and numerous surface locations in Slovenia in the period from 1982 to the end of 2022. In relation to the shallow geothermal potential, a special effort is needed to characterize the thermal properties of the rocks and sediments and to implement thermal energy transfer technology. In this sense, knowledge of the thermal conductivity of rocks and sediments is required to assess the possibility of low-enthalpy heat exchange in a given local area. The largest number of measurements was taken to determine thermal conductivity. Determinations of thermal diffusivity were carried out on a much smaller number of rock and sediment samples, as well as determinations of radiogenic heat production in rocks. The results of thermal conductivity measurements on 430 samples from 119 wells, 20 samples from two tunnels and 156 samples from surface locations are shown. The highest thermal conductivities are shown by samples of dolomite, quartz conglomerate and conglomerate, phyllonite, quartz phyllite and gneiss, while the lowest are measured in sediments such as clay, lignite with clay, peat and dry sand. The determined radioactive heat generation is the lowest for milonitized dolomite and highest for dark grey sandstone with shale clasts. Our results are comparable to those already published worldwide, and they could be the basis for the possible future Slovenian standard for the thermal properties of measured rocks and sediments.
Ključne besede: thermal conductivity, thermal diffusivity, borehole, tunnel, surface, rock, sediment, radioactive heat generation, Slovenia
Objavljeno v DiRROS: 15.01.2024; Ogledov: 146; Prenosov: 75
.pdf Celotno besedilo (6,03 MB)
Gradivo ima več datotek! Več...

3.
Impact of Open-Loop Systems on Groundwater Temperature in NE Slovenia
Simona Adrinek, Mitja Janža, Mihael Brenčič, 2023, izvirni znanstveni članek

Povzetek: To achieve sustainable and efficient use of shallow geothermal resources, it is important to understand the heat transfer in the subsurface of the planned geothermal system. In the City Municipality of Murska Sobota, NE Slovenia, the use of geothermal open-loop systems has increased in recent years. Their high spatial density raises the question of possible mutual interference between the systems. By compiling geological, hydrogeological, and thermal data, obtained from the monitoring network, fieldwork, and knowledge of regional hydrogeological conditions, we have developed a transient groundwater flow and heat transfer model to evaluate the impact of the open-loop systems on the subsurface and surrounding systems. The transient simulation showed that the thermal state in the observed area is restored over the summer, when the systems are not in operation. Also, the systems do not have significant mutual interference that would affect their efficiency. However, as interest in installing new systems in the area increases, simulations of the thermal plumes of new geothermal systems are needed to ensure sustainable and efficient use of shallow geothermal energy in the future.
Ključne besede: geothermal energy, open-loop system, groundwater heat pump, intergranular aquifer, numerical modelling, thermal plume
Objavljeno v DiRROS: 19.09.2023; Ogledov: 353; Prenosov: 94
.pdf Celotno besedilo (36,17 MB)

4.
Evaluation of thermal conductivity estimation models with laboratory-measured thermal conductivities of sediments
Simona Adrinek, Rao Martand Singh, Mitja Janža, Mateusz Żeruń, Grzegorz Ryżyński, 2022, izvirni znanstveni članek

Povzetek: Thermal conductivity is one of the key parameters for estimating low-temperature geothermal potential. In addition to field techniques, it can be determined based on physical parameters of the sediment measured in the laboratory. Following the methodology for cohesive and non-cohesive sample preparation, laboratory measurements were carried out on 30 samples of sediments. Density, porosity and water content of samples were measured and used in thermal conductivity estimation models (TCEM). The bulk thermal conductivity (λb) calculated with six TCEMs was compared with the measured λb to evaluate the predictive capacity of the analytical methods used. The results show that the empirical TCEMs are suitable to predict the λb of the analysed sediment types, with the standard deviation of the residuals (RMSE) ranging from 0.11 to 0.35 Wm−1 K−1. To improve the fit, this study provides a new modified parameterisation of two empirical TCEMs (Kersten and Côté&Konrad model) and, therefore, suggests the most suitable TCEMs for specific sample conditions. The RMSE ranges from 0.11 to 0.29 Wm−1 K−1. Mixing TCEM showed an RMSE of up to 2.00 Wm−1 K−1, meaning they are not suitable for predicting sediment λb. The study provides an insight into the analytical determination of thermal conductivity based on the physical properties of sediments. The results can help to estimate the low-temperature geothermal potential more quickly and easily and promote the sustainable use of this renewable energy source, which has applications in environmental and engineering science.
Ključne besede: thermal conductivity, non-cohesive sediment, cohesive sediment, estimation model
Objavljeno v DiRROS: 25.08.2022; Ogledov: 550; Prenosov: 244
.pdf Celotno besedilo (2,61 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.1 sek.
Na vrh