Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Petra Jamšek Rupnik) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Seismogenic depth and seismic coupling estimation in the transition zone between Alps, Dinarides and Pannonian Basin for the new Slovenian seismic hazard model
Polona Zupančič, Barbara Šket Motnikar, Michele M. C. Carafa, Petra Jamšek Rupnik, Mladen Živčić, Vanja Kastelic, Gregor Rajh, Martina Čarman, Jure Atanackov, Andrej Gosar, 2024, izvirni znanstveni članek

Povzetek: Seismogenic depth and seismic coupling are important inputs into seismic hazard estimates. Although the importance of seismic coupling is often overlooked, it significantly impacts seismic hazard results. We present an estimation of upper and lower seismogenic depth and expected hypocentral depth and seismic coupling in the transition zone between the Alps, Dinarides and Pannonian Basin, characterized by a complex deformation pattern, highly variable crustal thickness, and moderate seismic hazard, supporting the development of the 2021 seismic hazard model of Slovenia. The hazard model was based on three seismic source models: area source model, fault source model and smoothed seismicity (point) source model. We estimated the lower seismogenic depth using seismological and geological data and compared them. The seismological estimate was based on two regional earthquake catalogues prepared for this study. In the area source model, estimates of lower seismogenic depth from seismological data are deeper or equal to the ones derived from geological data, except in one case. In the fault source model, we analysed each fault individually and chose seismological lower depth estimates in 12 among 89 faults as more representative. The seismogenic thickness for each individual fault source was determined for seismic coupling determination. The seismic coupling was assessed by two approaches, i.e. we chose the most trusted value from the literature, and the value determined for each fault individually by using the approach based on the updated regional fault and earthquake data sets. The final estimate of seismic coupling ranges from 0.77 to 0.38. We compared the tectonic moment rate based on long-term slip rate using different values of seismic coupling with the seismic moment rate obtained from the earthquake catalogue. The analysis is done for the whole area, as well as for the individual area zones. The analysis of N–S components of estimated slip for the largest faults in the area of west Slovenia shows that the regional geological and geodetic shortening rates are comparable. The total activity rate of three global seismic source models is compared, which gives up to a 10 % difference. Our results contribute to a better understanding of the seismic activity in the region. The presented approach for seismic coupling estimation can be applied in cases where the total slip rate is given instead of its seismic part and can be used at regional or national level. The approach is also suitable for the cross-border harmonization of the European seismic hazard modelling data.
Ključne besede: seismic hazard, modeling, Slovenia
Objavljeno v DiRROS: 18.03.2024; Ogledov: 110; Prenosov: 63
.pdf Celotno besedilo (11,29 MB)
Gradivo ima več datotek! Več...

2.
Seismic activity in the Celje Basin (Slovenia) in Roman times—archaeoseismological evidence from Celeia
Miklós Kázmér, Petra Jamšek Rupnik, Krzysztof Gaidzik, 2023, izvirni znanstveni članek

Povzetek: Searching for unknown earthquakes in Slovenia in the first millennium, we performed archaeoseismological analysis of Roman settlements. The Mesto pod mestom museum in Celje exhibits a paved Roman road, which suffered severe deformation. Built on fine gravel and sand from the Savinja River, the road displays a bulge and trench, pop-up structures, and pavement slabs tilted up to 40°. The city wall was built over the deformed road in Late Roman times, supported by a foundation containing recycled material (spolia) from public buildings, including an emperor’s statue. We hypothesize that a severe earthquake hit the town before 350 AD, causing widespread destruction. Seismic-induced liquefaction caused differential subsidence, deforming the road. One of the nearby faults from the strike-slip Periadriatic fault system was the seismic source of this event.
Ključne besede: paleoseismology, Periadriatic fault system, active tectonics, Southern Alps, Pannonian Basin, Dinarides
Objavljeno v DiRROS: 14.02.2023; Ogledov: 470; Prenosov: 151
.pdf Celotno besedilo (4,04 MB)

3.
The Sistiana Fault and the Sistiana Bending Zone (SW Slovenia)
Ladislav Placer, Petra Jamšek Rupnik, Bogomir Celarc, 2021, izvirni znanstveni članek

Povzetek: The Sistiana Fault is an alleged disjunctive deformation of Microadria in the sea bottom of the Gulf of Trieste. Onshore, it is visible only in the Sistiana Bay, but towards the northeast it soon pinches-out, in structural-geometric terms it diminishes soon after the crossing of the thrust boundary of the Dinarides, or the Istrian-Friuli Underthrustig Zone, respectively. Further to the northeast, only the bending zone is developed in the External Dinarides, which stretches all the way from the Sistiana Bay to the Idrija-Žiri area. We named it the Sistiana Bending Zone. Its direction can be determined based on geological maps and is around 60°, so we conclude that the Sistiana Fault should extend approximately in this direction. In the bending zone, the Trieste-Komen Anticlinorium, the Vipava Synclinorium, the Trnovo Nappe opposite to the Hrušica Nappe and the Raša and Idrija Faults are laterally bent. The size of the bend is the largest in the Sistiana Bay, and in the east-northeast direction it decreases linearly. The general geological circumstances suggest that the Sistiana Fault has not been recently active.
Ključne besede: Sistiana Fault, Sistiana Bending Zone, adjusting fault, Adria Microplate, Gulf of Trieste
Objavljeno v DiRROS: 09.03.2022; Ogledov: 685; Prenosov: 365
.pdf Celotno besedilo (23,95 MB)

Iskanje izvedeno v 0.06 sek.
Na vrh