Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Miran Mozetič) .

1 - 6 / 6
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Evolution of surface functional groups and aromatic ring degradation upon treatment of polystyrene with hydroxyl radicals
Alenka Vesel, Rok Zaplotnik, Gregor Primc, Miran Mozetič, 2023, izvirni znanstveni članek

Povzetek: The surface properties of hydrocarbon polymers are inadequate for numerous applications. Hence, they require alteration via functionalisation with desired functional groups. Hydroxyl groups are often preferred, since they enable appropriate polarity for the irreversible grafting of desired molecules. In this study, the surface kinetics resulting from the treatment of polystyrene with hydroxyl (OH) radicals from the gas phase was fundamentally investigated through a precisely-designed experiment. Polystyrene samples were exposed to various known fluences of OH radicals, and the evolution of surface functional groups versus the OH fluence was monitored using high-resolution X-ray photoelectron spectroscopy (XPS). The fluences of OH radicals varied between 1 × 1018 and 4 × 1023 m−2 in the process of finding a threshold fluence for the formation of specific groups. The surface concentration of carbonyl (C=O) groups could be measured using XPS at a fluence of approximately 5 × 1020 m−2. The C=O groups became measurable at a fluence of approximately 1.5 × 1021 m−2, and carboxyl (COOH)/ester groups at approximately 4 × 1021 m−2. As deduced from the XPS, a concentration of C=O groups at approximately 5 % occurred before the degradation of the aromatic ring. The formation of other oxygen-functional groups required opening of the aromatic ring. The results have been explained using a two-step process, considering available theories vis-a-vis initial stages in the functionalisation of PS with polar functional groups.
Ključne besede: polistiren, kinetika površinske funkcionalizacije, OH radikali, vpliv doze radikalov, časovni razvoj, polystyrene, surface functionalisation kinetics, OH radicals
Objavljeno v DiRROS: 09.11.2023; Ogledov: 214; Prenosov: 101
URL Povezava na datoteko

2.
Recombination of oxygen atoms on the surface of oxidized polycrystalline nickel—temperature and pressure dependences
Domen Paul, Miran Mozetič, Rok Zaplotnik, Jernej Ekar, Alenka Vesel, Gregor Primc, Denis Đonlagić, 2023, izvirni znanstveni članek

Povzetek: The recombination of neutral oxygen atoms in the ground state on the oxidized nickel samples was studied experimentally in the range of pressures where the maximum density occurs in weakly ionized low-pressure oxygen plasma, i.e. between 40 and 200 Pa. The recombination coefficient was determined in the flowing afterglow. The source of oxygen atoms was plasma sustained in a quartz tube of inner diameter 4.7 mm by a microwave discharge in the surfatron mode. The recombination coefficient was determined in the afterglow chamber, which was a Pyrex tube with an inner diameter of 36 mm. The density of oxygen atoms in the afterglow chamber was varied by adjusting the discharge power, the gas flow, the pressure, and the position of a recombinator. Such flexibility of the experimental system enabled adjustment of the temperature of the oxidized nickel samples independently from the O-atom density in its vicinity or other parameters. The density of oxygen atoms in the afterglow chamber at various system parameters was determined by the Šorli method, which is reliable, and has an accuracy of about 20%. The recombination coefficient was determined by calorimetry. The coefficient was inversely proportional to the square root of the pressure and exponentially to the sample temperature. Systematic measurements performed at various pressures and temperatures enabled empirical formula, which were explained qualitatively by recombination kinetics.
Ključne besede: heterogenous surface recombination, recombination coefficient, nickel, nickel oxide, temperature
Objavljeno v DiRROS: 30.08.2023; Ogledov: 302; Prenosov: 176
.pdf Celotno besedilo (2,44 MB)
Gradivo ima več datotek! Več...

3.
Loss of oxygen atoms on well-oxidized cobalt by heterogeneous surface recombination
Domen Paul, Miran Mozetič, Rok Zaplotnik, Jernej Ekar, Alenka Vesel, Gregor Primc, Denis Đonlagić, 2023, izvirni znanstveni članek

Povzetek: Calorimetry is a commonly used method in plasma characterization, but the accuracy of the method is tied to the accuracy of the recombination coefficient, which in turn depends on a number of surface effects. Surface effects also govern the kinetics in advanced methods such as atomic layer oxidation of inorganic materials and functionalization of organic materials. The flux of the reactive oxygen atoms for the controlled oxidation of such materials depends on the recombination coefficient of materials placed into the reaction chamber, which in turn depends on the surface morphology, temperature, and pressure in the processing chamber. The recombination coefficient of a well-oxidized cobalt surface was studied systematically in a range of temperatures from 300 to 800 K and pressures from 40 to 200 Pa. The coefficient increased monotonously with decreasing pressure and increasing temperature. The lowest value was about 0.05, and the highest was about 0.30. These values were measured for cobalt foils previously oxidized with oxygen plasma at the temperature of 1300 K. The oxidation caused a rich morphology with an average roughness as deduced from atomic force images of 0.9 µm. The results were compared with literature data, and the discrepancy between results reported by different authors was explained by taking into account the peculiarities of their experimental conditions.
Objavljeno v DiRROS: 25.08.2023; Ogledov: 289; Prenosov: 138
.pdf Celotno besedilo (3,59 MB)
Gradivo ima več datotek! Več...

4.
Advanced method for efficient functionalization of polymers by intermediate free-radical formation with vacuum-ultraviolet radiation and producing superhydrophilic surfaces
Alenka Vesel, Rok Zaplotnik, Miran Mozetič, Nina Recek, 2023, izvirni znanstveni članek

Povzetek: An efficient approach for tailoring surface properties of polymers is presented, which enables rapid modification leading to superhydrophilic properties. The approach is based on vacuum-ultraviolet radiation (VUV) pretreatment of the surface to create reactive dangling bonds. This step is followed by a second treatment using neutral oxygen atoms that react with the dangling bonds and form functional groups. The beneficial effect of VUV pretreatment for enhanced functionalization was clearly demonstrated by comparing VUV pretreatment in plasmas created in different gases, i.e., hydrogen, nitrogen, and oxygen, which differ in the intensity of VUV/UV radiation. The emission intensity of VUV radiation for all gases was measured by vacuum ultraviolet spectroscopy. It was shown that VUV has a strong influence on the treatment time and final surface wettability. A superhydrophilic surface was obtained only if using VUV pretreatment. Furthermore, the treatment time was significantly reduced to only a second of treatment. These findings show that such an approach may be used to enhance the surface reaction efficiency for further grafting of chemical groups.
Ključne besede: plasma treatment, vacuum-ultraviolet radiation treatment, surface functionalization, polymer polyvinyl chloride, vacuum-ultraviolet spectroscopy, vacuum-ultraviolet photons
Objavljeno v DiRROS: 06.06.2023; Ogledov: 327; Prenosov: 170
.pdf Celotno besedilo (4,42 MB)
Gradivo ima več datotek! Več...

5.
A review of recombination coefficients of neutral oxygen atoms for various materials
Domen Paul, Miran Mozetič, Rok Zaplotnik, Gregor Primc, Denis Đonlagić, Alenka Vesel, 2023, izvirni znanstveni članek

Povzetek: Relevant data on heterogeneous surface recombination of neutral oxygen atoms available in the scientific literature are reviewed and discussed for various materials. The coefficients are determined by placing the samples either in non-equilibrium oxygen plasma or its afterglow. The experimental methods used to determine the coefficients are examined and categorized into calorimetry, actinometry, NO titration, laser-induced fluorescence, and various other methods and their combinations. Some numerical models for recombination coefficient determination are also examined. Correlations are drawn between the experimental parameters and the reported coefficients. Different materials are examined and categorized according to reported recombination coefficients into catalytic, semi-catalytic, and inert materials. Measurements from the literature of the recombination coefficients for some materials are compiled and compared, along with the possible system pressure and material surface temperature dependence of the materials’ recombination coefficient. A large scattering of results reported by different authors is discussed, and possible explanations are provided.
Ključne besede: heterogeneous surface recombination, recombination coefficient, surface catalicity, catalytic efficiency, atom loss coefficient, oxygen, neutral atoms, plasma
Objavljeno v DiRROS: 22.02.2023; Ogledov: 452; Prenosov: 208
.pdf Celotno besedilo (3,59 MB)
Gradivo ima več datotek! Več...

6.
Nanoporous stainless steel materials for body implants—review of synthesizing procedures
Metka Benčina, Ita Junkar, Alenka Vesel, Miran Mozetič, Aleš Iglič, 2022, pregledni znanstveni članek

Objavljeno v DiRROS: 13.01.2023; Ogledov: 566; Prenosov: 134
.pdf Celotno besedilo (1,62 MB)

Iskanje izvedeno v 0.24 sek.
Na vrh